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75252 Paris Cedex 05, France.
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Abstract

We present the whole set of equations with regularity and matching conditions

required for the description of physically meaningful static cylindrically symmmetric

distributions of matter, smoothly matched to Levi–Civita vacuum spacetime. It is

shown that the conformally flat solution with equal principal stresses represents

an incompressible fluid. It is also proved that any conformally flat cylindrically

symmetric static source cannot be matched through Darmois conditions to the Levi-

Civita spacetime. Further evidence is given that when the Newtonian mass per unit

length reaches 1/2 the spacetime has plane symmetry.
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1 Introduction

Cylindrical systems in Einstein’s theory puzzles relativists since Levi–Civita found its

vacuum solution in 1919 [1]. The precise meaning of its two independent parameters is

still hard to grasp and, in particular, the one that describes the Newtonian energy per

unit length σ looks the most elusive. The fact that there are two parameters while in its

counterpart, Newtonian theory, has only one parameter looks a sufficient justification for

deserving more research. But the importance of its research goes further if one notices

the close link between Levi–Civita, γ and Schwarzschild spacetimes [2] and its peculiar

properties. Besides, there has been renewed interest in cylindrically symmetric sources in

relation with different, classical and quantum, aspects of gravitation (see [3] and references

therein). Such sources may serve as test–bed for numerical relativity, quantum gravity

and for probing cosmic censorship and hoop conjecture, among other important issues,

and represent a natural tool to seek the physics that lies behind the two independent

parameters in Levi–Civita metric.

The purpose of this work is twofold. On the one hand we would like to present

systematically the field equations as well as all regularity and junction conditions required

to ensure the correct behaviour of a source of a cylindrically symmetric spacetime (Levi–

Civita). On the other hand we want to bring out the relationship between the Weyl tensor

and different aspects of the source. This last question is in turn motivated by the very

conspicuous link existing in the spherically symmetric case between the Weyl tensor, the

inhomogeneity of the energy density and the anisotropy of pressure [4].

The paper is organized as follows: in section 2 we present the general form of the energy

momentum tensor, the line element, the Einstein equations, the active gravitational mass

and the Weyl tensor. The exterior space–time as well as junction and regularity conditions

are discussed in section 3. In section 4 the consequences derived from the condition of

conformal flatness are obtained. The non existence of conformally flat models satisfying

Darmois conditions is given in section 5. Finally, some conclusions are presented in the

last section.

2 Interior spacetime

We consider a static cylindrically symmetric anisotropic non–dissipative fluid bounded by

a cylindrical surface Σ and with energy momentum tensor given by

Tαβ = (µ+ Pr)VαVβ + Prgαβ + (Pφ − Pr)KαKβ + (Pz − Pr)SαSβ , (1)
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where, µ is the energy density, Pr, Pz and Pφ are the principal stresses and Vα, Kα and

Sα are vectors satisfying

V αVα = −1, KαKα = SαSα = 1, V αKα = V αSα = KαSα = 0. (2)

We assume for the interior metric to Σ the general static cylindrically symmetric which

can be written

ds2 = −A2dt2 +B2(dr2 + dz2) + C2dφ2, (3)

where A, B and C are all functions of r. To represent cylindrical symmetry, we impose

the following ranges on the coordinates

−∞ ≤ t ≤ ∞, 0 ≤ r, −∞ < z < ∞, 0 ≤ φ ≤ 2π. (4)

We number the coordinates x0 = t, x1 = r, x2 = z and x3 = φ and we choose the fluid

being at rest in this coordinate system, hence from (2) and (3) we have

Vα = −Aδ0
α, Sα = Bδ2

α, Kα = Cδ3
α. (5)

For the Einstein field equations, Gαβ = κTαβ with (1), (3) and (5) we have the non

null components

G00 = −
(
A

B

)2
[(

B′

B

)′
+

C ′′

C

]
= κµA2, (6)

G11 =
A′

A

C ′

C
+

(
A′

A
+

C ′

C

)
B′

B
= κPrB

2, (7)

G22 =
A′′

A
+

C ′′

C
+

A′

A

C ′

C
−
(
A′

A
+

C ′

C

)
B′

B
= κPzB

2, (8)

G33 =
(
C

B

)2
[
A′′

A
+

(
B′

B

)′]
= κPφC

2, (9)

where the primes stand for differentiation with respect to r. Since we have four equations

for seven unknown functions, three additional constraints (e.g. equations of state) should

be given in order to uniquely determine a solution.

There are two compact expressions that can be obtained from (7-9),

κ(Pr + Pz)B
2 =

(AC)′′

AC
, (10)

κ(Pz − Pφ)B
2 =

h′′

h
+

(
A′

A
+

B′

B

)
h′

h
, (11)

where

h =
C

B
. (12)
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The conservation equation, T β
r;β = 0, with (1) and (3) becomes

(µ+ Pr)
A′

A
+ P ′

r + (Pr − Pz)
B′

B
+ (Pr − Pφ)

C ′

C
= 0, (13)

which can substitute any of the independent field equations (6-9).

The Whittaker formula [5] for the active gravitational mass per unit length m of a

static distribution of perfect fluid with energy density µ and principal stresses Pr, Pz and

Pφ inside a cylinder of surface Σ is

m = 2π
∫ rΣ

0
(µ+ Pr + Pz + Pφ)

√−gdr, (14)

where g is the determinant of the metric. Now substituting (3) and (6-9) into (14) we

obtain

m =
4π

κ

∫ rΣ

0

(
A′′

A′ +
C ′

C

)
A′C dr, (15)

which can be recast into the simpler form

m =
4π

κ

∫ rΣ

0
(A′C)′dr. (16)

The spacetime (3) has the following non-null components of the Weyl tensor Cαβγδ

C1212 = −
(

B2

AC

)2

C0303 =
B2

6

[
A′′

A
− 2

(
B′

B

)′
+

C ′′

C
− 2

A′

A

C ′

C

]
, (17)

C1313 = −
(
C

A

)2

C0202

=
(C)2

6

[
A′′

A
+

(
B′

B

)′
− 2

C ′′

C
− 3

(
A′

A
− C ′

C

)
B′

B
+

A′

A

C ′

C

]
, (18)

C2323 = −
(
C

A

)2

C0101

=
(C)2

6

[
−2

A′′

A
+

(
B′

B

)′
+

C ′′

C
+ 3

(
A′

A
− C ′

C

)
B′

B
+

A′

A

C ′

C

]
. (19)

We obtain from (17-19) (
C

B

)2

C1212 + C1313 + C2323 = 0, (20)

hence we have only two independent components of the Weyl tensor for (3).

3 Exterior spacetime and junction conditions

For the exterior spacetime of the cylindrical surface Σ, since the system is static, we take

the Levi-Civita metric [1],

ds2 = −a2ρ4σdt2 + b2ρ4σ(2σ−1)(dρ2 + dz2) + c2ρ2(1−2σ)dφ2, (21)
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where a, b, c and σ are real constants. The coordinates t, z and φ in (21) can be

taken the same as in (3) and with the same ranges (4). The radial coordinates in (3)

and (21), r and ρ, are not necessarily continuous on Σ as we see below by applying the

junction conditions. The constants a and b can be removed by scale transformations,

while c cannot be transformed away if we want to preserve the range of φ in (21) [6].

The constant σ represents the Newtonian mass per unit length. (For a discussion of the

number of constants in cylindrical spacetimes see [7, 8, 9].)

In accordance with the Darmois junction conditions [10], we suppose that the first

fundamental form which Σ inherits from the interior metric (3) must be the same as

the one it inherits from the exterior metric (21); and similarly, the inherited second

fundamental form must be the same. The conditions are necessary and sufficient for a

smooth matching without a surface layer.

The equation of Σ, for the interior and exterior spacetimes, can be written respectively

as

f(r) = r − rΣ = 0, g(ρ) = ρ− ρΣ = 0, (22)

where rΣ and ρΣ are constants. From (22) we can calculate the continuity of the first and

second fundamental forms, and we obtain,

AΣ = aρ2σ
Σ , BΣ = bρ

2σ(2σ−1)
Σ , CΣ = cρ1−2σ

Σ (23)(
A′

A

)
Σ

=
2σ

ρΣ
,

(
B′

B

)
Σ

=
2σ(2σ − 1)

ρΣ
,

(
C ′

C

)
Σ

=
1− 2σ

ρΣ
. (24)

Considering (7) on the surface Σ and substituting into the junction conditions (22) we

obtain

PrΣ = 0, (25)

as expected.

The Whittaker mass per unit length (16) after integration and using the junction

conditions (23) and (24) becomes

m =
4π

κ
[2acσ − (A′C)0] , (26)

where the index 0 means the quantity evaluated at the axis of the mass distribution.

Next, regularity conditions on the the axis of symmetry imply [11]

B′(0) = A′(0) = C(0) = C ′′(0) = 0, C ′(0) = B(0) = 1, (27)
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hence, considering the gravitational coupling constant G = 1 then κ = 8π and (26)

reduces to

m = acσ. (28)

4 Conformally flat interior

The conformally flat condition imposes the vanishing of all Weyl tensor components, hence

from (17-20) we have

S ′ + S2 − 2h′

h
S +

h′′

h
= 0, (29)

S ′ + S2 +
h′

h
S − 2h′′

h
= 0, (30)

where

S =
A′

A
− B′

B
. (31)

Then it follows

h′S − h′′ = 0, (32)

S ′ + S2 − h′′

h
= 0, (33)

which produces

h′′′ − h′′h′

h
= 0. (34)

Let us now examine the two possible cases, h′ �= 0 and h′ = 0

4.1 Case h′ �= 0

We obtain from (34) after integration

h = a1 exp(a2r) + a3 exp(−a2r), (35)

where a1, a2 and a3 are integration constants with the condition that

h2 ≥ 4a1a3. (36)

However, regularity conditions on the axis (27) require

a1 = −a3, (37)
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and (59) reduces to

h = a1 sinh(a2r), (38)

where a1 was redefined.

Substituting (38) into (32) and integrating we have

A = a3 cosh(a2r)B, (39)

where a3 is another integration constant.

Thus, conformal flatness reduce the total number of unknown functions by two,

through (38) and (39). However, since the total number of variables is seven, we still

need one condition in order to determine a solution uniquely. So, let us consider the three

different cases of isotropy.

i) Pz = Pφ

Then we obtain from (8), (9) and (12)

h′′

h
+

h′

h

(
A′

A
+

B′

B

)
= 0, (40)

which together with (32) yields that A′ = 0, this in turn implies, because of (39) and

assuming without lost of generality A = 1,

B =
1

cosh(a2r)
, (41)

where we chose a3 = 1 to satisfy (27). Feeding back (38), (39) and (41) into (6–9) we

obtain

Pr = Pz = Pφ = −µ

3
= −a2

2

κ
. (42)

Thus the solution represents an incompressible cylinder with isotropic (negative) stresses.

ii) Pr = Pz

From (7) and (8), we have

A′′

A
+

B′′

B
− 2

(
A′

A
+

C ′

C

)
B′

B
= 0, (43)

and with (38) and (39) we obtain the equation for B,

B′′

B
− 2

(
B′

B

)2

+ a2
2 = 0, (44)

and by choosing the integration constants to satisfy (27) its solution is

B =
1

cosh(a2r)
. (45)



CBPF-NF-019/04 7

From (39) and (45) and assuming A = 1 this case yields the same solution as the preceding

one.

iii) Pr = Pφ.

From (7) and (9), it follows

A′′

A
+

B′′

B
− 2

(
B′

B

)2

− 2
A′

A

B′

B
− h′

h

(
A′

A
+

B′

B

)
= 0, (46)

and substituting into it (38) and (39) leads to the equation for B,

B′′

B
− 2

(
B′

B

)2

− a2 coth(a2r)
B′

B
= 0, (47)

which has the solution satisfying the regularity conditions (27)

B =
1

a4[cosh(a2r)− 1] + 1
, (48)

where a4 is an integration constant. Then substituting (48) into (39) we get

A =
a3 cosh(a2r)

a4[cosh(a2r)− 1] + 1
(49)

Using field equations (6-9) together with (38), (48) and (49), we can obtain the ex-

pressions for the physical variables, which are

κµ = 2a2
2a4 [(1− a4) cosh(a2r) + a4 − 3] + 3a2

2, (50)

κPr = κPφ = 2a2
2a4 [(a4 − 1) tanh(a2r) sinh(a2r) + 1]− a2

2, (51)

κPz = 2a2
2a4

[
1− a4

cosh2(a2r)
+ a4 + 1

]
− a2

2. (52)

Observe that in this case the matter distribution is not completely isotropic in the stresses

and the energy density is not homogeneous.

4.2 Case h′ = 0

Then we have from (33)

S =
1

b1 + r
(53)

where b1 is an integration constant. Using (53) in (31), we obtain after integration

A = Bb2(b1 + r), (54)

where b2 is another integration constant. However regularity conditions (27) imply from

(55) that A = 0, which is obviously unacceptable.
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So far we have only assumed the spacetime to be conformally flat at the interior, and

regularity conditions to be satisfied. However as it can be easily checked, neither of the

models above satisfy the Darmois conditions (23-24). As a matter of fact, and as it will

be shown in the next section, there is no conformally flat interior solutions satisfying

Darmois (and regularity) conditions.

5 Non existence of conformally flat solution satisfy-

ing Darmois conditions

As we have seen if the cylinder has a matter content that is conformally flat and satisfies

regularity conditions on the axis then,

h = a1 sinh(a2r), (55)

if h′ �= 0.

Now considering the junction conditions (23) and (24) we obtain from (55)

a1 =
cρ1−4σ2

Σ

b sinh(a2rΣ)
, (56)

a2rΣ coth(a2rΣ) = 1− 4σ2. (57)

Since always a2rΣ coth(a2rΣ) > 1 then the condition (57) can never be satisfied.

But if h′ = 0, then we have from (23) and (24)

σ =
1

2
, h =

c

b
. (58)

When σ = 1/2 there are strong evidences that the spacetime has plane symmetry [9, 11,

12, 13].

Hence we can state that any static cylindrical source matched smoothly to the Levi-

Civita spacetime does not admit conformally flat solution.

6 Conclusions

We have deployed the equations describing the static cylinder, as well as the regularity and

matching conditions. Then the consequences derived from the assumption of conformal

flatness were obtained. It was shown that there exist no interior conformally flat solution

which satisfies regularity conditions and matches smoothly to Levi–Civita spacetime on
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the boundary surface. Of course if we relax Darmois conditions and allow for the existence

of shells at the boundary surface, the latter conclusion does not hold.

It was also shown that the conformally flat, isotropic (in the stresses) cylinder is nec-

essarily incompressible (µ =constant). Inversely, since the solution for the incompressible

isotropic cylinder is unique (there are four equations for four variables) then it is clear

that such solution is also conformally flat.

So, if we look for an incompressible cylinder matching smoothly to Levi–Civita (hence

not conformally flat), we have to relax the condition of isotropy in the stresses . Thus

for example one could assume µ =constant, Pz = Pφ �= Pr, then we can integrate (11) to

obtain

ABh′ = c1, (59)

where c1 is an integration constant. By considering junction conditions we get

c1 = ac(1− 4σ2). (60)

From (28) and (60) it follows that as σ → 1/2, m → ∞. This result gives further evidence

that the spacetime at this limit for σ has plane symmetry [9, 11, 12, 13]. Of course to

fully specify a solution another condition has to be given.

Finally it is worth noting the diferences and the similarities between this case and

the the spherically symmetric situation. For spherical symmetry there is only one in-

dependent component of the Weyl tensor, while for cylindrical symmetry there are two

independent components. For spherical symmetry the conditions of incompressibility and

isotropic pressure lead also to a unique solution, the interior Schwarzschild solution, which

is conformally flat [14], however unlike our present case, that solution can be matched

smoothly on the boudary surface to the exterior solution. If the condition of isotropic

pressure is relaxed in the spherically symmetric case, conformally flat solutions matching

smoothly to Schwarzschild spacetime exist, but are not incompressible [15]. The same

happens in the cylindrically symmetric case with Pr = Pφ �= Pz, however in this case the

solution does not satisfy Darmois conditions.
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