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Abstract

We analyse the concept of active gravitational mass for Reissner-Nordström
spacetime in terms of scalar polynomial invariants and the Karlhede classification.
We show that while the Kretschmann scalar does not produce the expected expres-
sion for the active gravitational mass, both scalar polynomial invariants formed from
the Weyl tensor, and the Cartan scalars, do.
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1 Introduction

In a recent paper [1] the Kretschmann scalar is attributed with the role of characterizing
the curvature of spacetime: in the words of the author, allowing one to “see” the black
hole and so any possible black hole can be visualized realistically. Besides this scalar, the
scalars of Chern-Pontryagin and Euler have also been studied [2] in a similar context. In
this letter we look at the invariant characterization of the curvature of spacetime using a
different approach.

We restrict ourselves to spherical symmetry and to the analysis of the Reissner-Nordström
(RN) spacetime [3, 4]

ds2 = A dt2 − A−1dr2 − r2(dθ2 + sin2 θ dφ2), (1.1)

where A is defined by

A ≡ 1 − 2M

r
+

Q2

r2
, (1.2)

with M the mass parameter and Q the charge.
By taking a spherical surface, Σ, centred at r = 0 in the coordinate system describing

the metric (1.1) we expect that the gravitational field outside Σ does not affect the field
inside Σ. The mass M as well as the charge Q produce gravitational field. Hence it is
reasonable to expect that we can find a quantity at r, that we call gravitational mass
m(r), that takes the place of M and Q by producing a corresponding Schwarzschild (S)
gravitational field [5] at Σ. Our approach to find an eligible invariant expression to describe
physically the curvature should be one that reproduces the corresponding S expression with
m(r).

2 The active gravitational mass

In a recent paper [6] different concepts of gravitational mass for the RN spacetime are
discussed. The favoured definition, by the authors, is the active gravitational mass, ma(r),
obtained by Whittaker [7]. Starting from the active gravitational mass density, µ, defined
by Whittaker [7] and Tolman [8] as

µ = E0
0 − Ei

i , (2.3)

where Eα
β is the electromagnetic energy tensor, the active gravitational mass inside a

volume V is given by

ma(r) =
∫

V
µ(−g)1/2 dx1 dx2 dx3, (2.4)

where g is the four-dimensional determinant of the metric. Applying (2.4) to the met-
ric (1.1) we find

ma(∞) − ma(r) =
∫ ∞

r

Q2

r2
dr. (2.5)

Since M prevails asymptotically in RN spacetime we assume ma(∞) = M , and (2.5)
becomes

ma(r) = M − Q2

r
. (2.6)
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Considering a general anisotropic charged static fluid source for the RN spacetime it
is possible to prove [9] that, if the energy conditions are satisfied, the maximum charge
allowed inside the fluid sphere of boundary radius rb, is

Q2
max = Mrb. (2.7)

Another interpretation [9] of (2.7), is that the energy conditions impose a lower limit for
the size of the fluid distribution,

rbmin
=

Q2

M
. (2.8)

Hence, condition (2.8) imposes on (2.6) that the active gravitational mass ma ≥ 0.
Some further reasons that suggest that ma(r) is a plausible definition are the following.

The equations governing the radial geodesics and the circular geodesics in the equatorial
plane of RN spacetime for a chargeless test particle are, respectively,

d2r

dτ 2
= −ma(r)

r2
,

(
dφ

dτ

)2

=
ma(r)

r3
, (2.9)

where τ is the proper time. We see from (2.9) that locally ma(r) casts the equation of
motion in a Newtonian like form. Another reason is that at the event horizon of RN
spacetime the active gravitational mass is equal to the geometrical S mass of the RN
spacetime [6]. Furthermore, as shown in [10], the active gravitational mass allows one to
obtain a better grasp of the physical content of the matter when analysing the energy
content of a slowly collapsing gravitating sphere.

3 The Weyl and Cartan scalars

As is well known, the Riemann curvature tensor can be separated in a coordinate invariant
way into the Weyl tensor, the Ricci tensor and the curvature scalar, from which we may
deduce that the Weyl is generated only by the gravitational field. From the Weyl tensor
we may construct the Weyl scalar C ≡ CαβγδCαβγδ, which, for the RN spacetime (1.1), is

CRN =
48

r6

(
M − Q2

r

)2

. (3.10)

Comparing (3.10) with the corresponding form for the Schwarzschild spacetime with mass
parameter m,

CS =
48

r6
m2, (3.11)

we see that the expressions are equivalent if we make the identification (2.6) for ma(r).
Another way of describing a spacetime invariantly is by its Karlhede classification [11].

Using a basis fixed up to the isotropy group of the spacetime, the frame components of
the decompositions of the Riemann tensor and its covariant derivatives become invariantly
defined scalars for the spacetime. These scalars have been referred to in the literature [12]
as the Cartan scalars for the spacetime. The Cartan scalars provide a more refined invari-
ant characterization of the spacetime than scalar polynomial invariants since, for example,
they distinguish between the Minkowski spacetime and special plane wave solutions, for
which all scalar polynomial invariants vanish.
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In spinor notation, one of the Cartan scalars for the RN spacetime is the only non-null
component of the Weyl spinor

(Ψ2)RN = − 1

r3

(
M − Q2

r

)
, (3.12)

For the S spacetime with mass parameter m the corresponding Cartan scalar is

(Ψ2)S = −m

r3
(3.13)

and once again we identify equivalent forms if we use the definition (2.6) for the gravita-
tional mass. Several authors [13], [14] associate Ψ2 with the purely gravitational energy
that arises from the Weyl tensor for a collapsing fluid sphere.

The RN Cartan scalars, arising from the first and second covariant derivatives of the
Weyl tensor, do not reproduce the corresponding S Cartan scalars with the active gravi-
tational mass.

In passing we note that the Kretschmann scalar R = RαβγδRαβγδ for the RN spacetime
is

RRN =
46

r6



(
M − Q2

r

)2

+
Q4

6r2


 , (3.14)

which cannot be written in the corresponding S form with ma(r). Returning to the be-
ginning of this article, while this scalar may be useful for measuring curvature near a S
black hole, it does not seem to us to be the case that with it any possible black hole can
be visualized realistically. The Weyl and Cartan scalars seem to be better suited for this
purpose in the non-vacuum cases.
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