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RIASSUNTO

Continuando un lavoro precedente, determiniamo la forma delle

sezione d'urto di produzione o (s) che soddisfano esattamente
Y

n(
le lTeggi empiriche note alle alte energie per il primo, secon-
do e terzo momento. I1 risultato e ottenuto per mezzo di una
equazione differenziale lineare del second'ordine per on(s)che
permette di calcolare esplicitamente tutti i momenti successivi.
In particolare, il quarto momento € in ottimo accordo con i da
ti. La soluzione asintotica dell'equazione per on(s) e data in
forma analitica mentre la soluzione completa e studiata in for
ma numerica e confrontata con il diagrama dello scaling KNO che
risulta essere una'proprietE della soluzione asintotica. Non
visono parametri liberi nel confronto con i dati ad eccezione
di un parametro di normalizzazione. Come ci si aspetta, lo sca
ling alla KNO si istituisce rapidamente al crescere di n e
1'acordo con i dati diventa sempre migliore. Tale accordo e
ottimo per 1'intero intervallo di valori di n/<n> per cui esis
tono dati (0< n/<n> <4) al crescere di n ma gia per nv3 € molto
buono fino ad n/<n> =2. Risulta che la soluzione asintotica da
ta analiticamente a un'eccellente approssimazione al dati e puo
essere usata in calcoli pratici invece della soluzione comple-

ta per cn(s).



SUMMARY

As a continuation of previous work, we determine hadronic pro
duction cross sections on(s) satisfying exactly the high ener
gy empirical laws known for the first, second and third multi
plicity moments. The result is obtained 1in the form of a sec
ond order linear differential equation for on(s) which allows
one to calculate explicitely all successive moments. In parti
cular, the fourth moment is in excellent agreement with the da
ta. The asymptotic solution of the equation for on(s) is giv-
en analytically. KNO scaling turns out to be an asymptoticpro
perty of our solution. The full solution for on(s) is studied
numerically and the KNO plot is compared with the data.No free
parameters are left to be adjusted except for an overall nor-
malization constant. As expected, KNO scaling sets in rather

quickly with increasing n and the agreement with the data is

progressively good. This agreement becomes excellent for the

n <4) as n be-

. n . .
whole interval of —— for which data exist (0<<n>m

<n>

comes larger but already for nn3 the agreement is very good

up to <2> = 2, It turns out that the asymptotic solution, giv
en in analytic terms is an excellent approximation to the da
ta and can thus be used for practical purposes instead of the

full solution for calculating on(s).



1. Introduction

Recently (!), a method of investigating hadronic production
cross sections on(s) has been proposed which automatically sat
isfies the empirical constraints known from high energy data
on the first and second distribution moments (multiplicity and
dispersion). The Ansatz in Ref.(!) consisted in assuming for

cn(s) a factorized form of the type

o, (s) = ¢ g(s) f'(s). (1.1)

Demanding that this form satisfies the phenomenological inputs
known to be valid at high energies on both the multiplicity and

dispersion (Wroblewski's Tlaw (2) i.e. (3)

<n> = ugin(s) (05,3 ) o,(s)s a=const.) (1.2)

and
D = /<n?>-<n>? = A(<n>-1) (A=0.56%0.57) (1.3)

one is led to the unique form

2
/A2 o, (s) VAT-1 . n__ 1.
_ (1/A%) in n 't (1.4)

on(s

which satisfies KNO scaling(*). As it can be checked by direct
integration, eq. (1.4) is the solution of the linear first or-

der differential equation



a (x) ——Hg——- + bo(x) o (x) = n o (x) ( 1.5)

where
| 2
ay(x) = ——(ax-1)?
(1.6)

b,(x) = X-A2L&%%lli
In (1.5), instead of the energy s , we have introduced

X = Oin(s) = Z o, (x) (1.7)

as the independent variable (°),

Eq. (1.5) can be used to calculate directly the successive
moments to compare with the data. Good data exists (up to about
Pqap=300 GeV/c) for the third and fourth moments <n3> and <n*>,
More exactly, the third order norjmah'zed cumulant (or "skewness")

Y3 = <(n—<n>)3>/<n>3 (]'8)
and the fourth order one ("kurtosis" or "excess")
vg = [<(n-<n>)*=3<(n-<n>)2>2]/<n>" (1.9)

are known (®) to be nearly constant (up to about p]abZBOOGerj

and small. Specifically, we have y3exp=0.08010.015 and

y4exp:0.015i0.015 while the successive normalized cumulants



are essentially zero.

The higher moments calculated with the solution of Ref.(!)
using eq.(1.4) or (1.5) turned out to be rather small but
fairly larger than required by the data (i.e. y3=0,12 and Vg
=0,09). This is an indication that the power-1like Anzatz (1.7)
is too simple-minded as to be able to account also for higher
moments while it can be made satisfy exactly the first two.
In particular, from the physical meaning of Y3 and Ygqs We can
argue that the distribution (1.4) is too wide on the positive
side of the mean and too spread out as compared with the acty
al one.

In this paper, we try to retain the nice features of the
approach of Ref.(') leading to a compact form for higher mo -
ments and to a simple expression for the asymptotic produc-
tion cross sections while improving on its numerical yields.

This is done by adding the skewness Y3 as an explicit con-
straint and generalizing accordingly the previous Ansatz (in the
differential form (1.5)) as to accomodate this new constraint.
We are thus Tled (Sec.2) to a linear second order differen-
tial equation for cn(s) (rather than a first order one) whose
asymptotic solution for <n>/n >> 1 is given in closed form
(Sec.3) while the full solution is studied numerically (Sec.4)
The fourth order moment is, again, evaluated explicitely (Sec.
5) and we find that its numerical value is reduced down to (at

P1ap=300 GeV/c)

v, = 0.0033 ¢ 0.027 (1.10)



according to whether one chooses A=0 .56 or A=0.57. It is rath
er staggering that a percent variation of A should make Yq
vary within a factor ten. The relevant point, however,is that
Yg is now very small and fully compatible (within the error
bars) with the experimental value previously quoted. Both the
asymptotic solution of the equation for cn(s) and the full so
lution are compared with the data on the KNO form (Sec.4). No
parameters are to be adjusted here except for an overall nor-
malization constant and the agreement in both cases is out-
standing.

The method could, in princip]e, be further genera]ized to
include as a constraint also the fourth moment but this would
lead to a very cumbersome third order Tinear differential e-
quation for on(x) while it could not improve much on the re-
sults we obtain.,

The approach is very simple and gives so good results as
to be a handy tool for numerica] calculations and for compar-
ison with physical models. We plan to discuss in future work
to what extent our result may be non unique in the sense of

the Stiltjes theory of moments.

2. The equation for cp(s)

The simplest generalization of the Ansatz of Ref.(!) in its

differential form (1.5) is given by

don(x)
dx

X
a(x) +b(x) op(x) + | c(y) o, (y)dy = no, (x)
d



where we use
x = 0..(s) = 2 o, (x) (2.2)

as the independent variable of the problem. Later on, we shall

find it more convenient to use the KNO variable

7 = Sn(s)> (2.3)

n

in terms of which we shall have asymptotically (*) (for Targe

<n>)

o (s) = “in'®) w< n > (2.4)
a(s)>  \en(s)>

The functions a(x), b(x) and c(x) in (2.1) will be . déeter-
mined by the high energy phenomenological constraints that
we will impose. The solution of Ref.(') will be recovered in
the case c¢(x)=0. The Tower 1limit of integration in (2.1) will
be assumed to be constant and determined later on but for all
practical purposes it can be taken =0 when working at 1arge X,

The empirical high energy constraints on the firSt, second

and third moments <n>, <n?> and <n®> will be written as

)} no_(s) = <n>ag,
ne1 n in

tH
Q
—
x
~—
]
Q
>
[\*
—
N
[$2]
~—

nZ] nzcn(s) = <n2>oin = B(x) = a?x® + A%x(ax-1)2 (2.6)

and



) n3cn(s) = <n3> oin = Y(X) = (y+1)a3x*+3A%2ax? (ax-1)2

) (2.7)
where, according to eqs.(1.3) and (1.8) and to the experi-
mental value quoted for the skewness y;, we shall use the nu

merical values (226)

=
f

0.56 :0.57

y = 0.08

while the dimensional proportionality constant o will never
come into play.

If we now differentiate (2.1) with respect to x, we find

d?¢ do _ do
a(x) -——E;'—Z‘— + B(x) —qx + C(x)o, = n —g;0— (2.9)

where we have defined

B(x) = b(x) + _d.%é"_)_

db
dx

(2.10)

C(x) c(x) +

We now sum eq.(2.9) over n upon having multiplied it re-
spectively by 1, n and n? and we find the following system

of Tinear algebraic equations for a(x), B(x) and C(x)

B(x)+ xC(x) = a;(x)
u;(x) a(x)+ ui(x) B(x)+ a(x) C(x) = B!(x) (2.11)

By (x) a(x)+ 8,(x) B(x)+ B(x) C(x)

|

<
b
—

x
S



where the coefficients u;(x),...yi(x) (denoting second and
first order derivatives of a(x), B(x), yv(x) with respect to
x) follow from the constraint equations (2.5-7).Substituting
their functional form and solving the system (2.11) with the

usual Cramer's method, we obtain

2 5 ) .
] a(X): aXx (2,Y+A2_3Al+>+__)il_\____ (7A2_2)+ A (]'5A2)+ A
A A%+] a(A241) 22x (A1)
4 2 2_ y
B(x)= ~2X— (1-8y+2A2+9A%)- 8AT A7 TIA-T 2A
A2+] A2+] oX A2+'l a2x2(A2+'| )
4 2 2_ y
C(x)= —%— (T+ay-0a%)s A 1 _ A" TIA%-1 op
AZ2+] A2+] X ax?2 A2+1 a2x3 (A2+] )
(2.12)
or,usingeq.(2.10), we find for b(x) and c(x)
2 2 5
b(x)= —2X (1-8y+15A% )+ —A__ (2-p5pz)y A 1TAT-1 A
A%+] A2+] X AZ+] O(,ZXZ( A24+1)
(2.13)
A
c(x)= 2% (y-2a%)+ 18R T
AZ+1 pz¢1 X

Notice, incidentally, that when X>>1, c(x) reduces to ze-
ro when y= 2A* which was, indeed, the asymptotic value x + =
found for YB(X) in Ref.(!).

With the explicit functional form of the coefficients a(x),
B(x) and C(x), we can now study the properties of cn(x) as so

Tution of the differential equation (2.9). Before doing so,we



will still determine the 1ower 1imit of integration d in the
integral term in (2.1). It should, however, be realized that
the small x behavior is in principle devoided of physical sig
nificance in our approach since the constraint equations we
have used (2.5-7) are valid in the Targe x 1limit. Any coinci
dence of our approach with the physical picture in the Tow X
domain is, therefore, to be considered, at the very best, as
an extra bonus or rather, as a manifestation of thepreauﬁous
setting of KNO scaling.

To determine d in (2.1), we notice that summing eq.(2.1)
over n, we get

X
<n>x-a(x)=xb(x) = f c(y)y dy (2.14)
d

which, upon using eqgs.(2.12,13) and integrating, gives for ad.

the algebraic equation
(ad)?(y-2A")+ 3A%ad-A%= 0 (2.15)
whose positive root, using (2.8) is
ad = 0,40 (2.16)
almost independent of the numerical value (2.8) used for A .

The consistency of the value thus obtained for d can be

checked from

x<n®>- o’ (x) a(x)- a(x) b(x) = de c(y) a(y) dy  (2.17)



which obtains multiplying (2.1) by n and summing over n. The
new equation for ad has one root (1/3) practically coincident

with (2.16).

3. Study of the asymptotic differentia] equation for On(x)1

Let us now consider the second order lTinear differential e
quation (2.9) which we have found for cn(x)°

Given the complicated form of the coefficients a(x), B(x)
and C(x), it is clear that the full solution of (2.9) cannot
be given in closed form. For this reason, on(x) is studied
numerically in Sec.4.

To get an idea of the properties of on(x) we first of all
notice that eq.(2.9) has not singular points (i.e. zeros of
a(x)) for finite positive x values. Thus, the only singular
points of eq.(2.9) for non negative x values are x=0 and
x=w, As the constraint equations are valid in the large x do
main, if we take the asymptotic limit x>« on (B(x)-n)/a(x) and

on C(x)/a(x) and we obtain from (2.9)

2 (as) (as)
d d
et o0 ) (ez-1) on (=) nd3) Gy =0 (3.1)
dz?2 dz n
<n>

In the above equation z= is the KNO variable previously

introduced (2.3) and 8§, € and n are constant coefficients giv

en by
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2 _ L
§ = 2YtA"-3A" . 0.137 : 0.127

A%+1

1+2A2+9A% -4y

= ~ 1.667 + 1.722 (3.2)
AZ+1
y
no= HAY-9A" L 5.333 :0.278
AZ+]

The above numerical values correspond to the two choices
for A= 0.56 +0.57 (see(2.8)). To the extent that KNO scaling
sets in precociously, the solution of the asymptotic equation
(3.1) should be a good approximation to the full solution of
eq.(2.9). That this is indeed so will be seen in the next sec
tion when comparing with the data.

[t is easy to see that if we set

O_$1a5)(z) - 21‘6/26 e‘ ]/ZCSZ wn( _é_l__) (303)

eq.(3.1) converts into a confluent hypergeometric equation of

the Whittaker type (7)

2 -2
d7Wn(t) (- 4+ t # MA=mTy 4y = 0 (3.4)
dt? t2 n

where t= 1/6z and

€ o~ =
r 1 5,13 + 5.78

=~
"

m = i [(e-6)%- 4ns] /"~ 5.40 :6.10
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0f the two independent solutions of (3.4), we choose the
one which reduces to (1.4) in the case of Ref.(') when vy=2A"
(inwhich 1imit, from (3.2) we have §,= A%, e,= 1+A?, n,=1-A%
and we find
%in ,1-e/26 ,-1/2082

O'(as)(Z)= K s zZ wk,m ('g%—')

o. _
Kr—in_ ,1/2-e/26-m 1/6z

]
<ns w(a’c’—g?)

where y(a,c;y) is the hypergeometric function regular (°*) at

y=o, and

= 5+ m- k = 0.777 : 0.823

c= 1+ 2m = 11.80 + 13.21

In (3.6) K and K' are dimensionless parameters satisfying

the normalization condition

) oka8) (z) = ofas) =y (3.8)
and related by
K'= K g~ ¥/2-W (3.9)

Just as it was the case in Ref. ('), the asymptotic solu-
tion (3.6) satisfies automatically KNO scaling as a conse-
quence of the asymptotic equation (3.1) depending only on

z= <n>/n and not on <n> and n separate]y. Furthermore, it is
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immediate to recover form (3.6) the solution (1.4) of Ref.(!)

in the case y= 2A* from the behavior

, Orfas)(z) 0 K Z2(1-8/26) e-]/éz (3.10)

Before giving an estimate of the constant K (or K'),we would
Tike to point out that the asymptotic form (3.6) is indeed pos
itive definite as one should have it for a «cross section.This
comes from general theorems on the zeros of confluent hyperge-
ometric functions (7) stating that when both parameters a and
c are positive (as it is the case from (3.7)) no zeros of y(a,csy)
are to be found on the positive real axis. Thus, if the func-
tion is positive, say around y=e , it remains positive down
to y=0,

To estimate the constant K in (3.6), we proceed first to con-
vert the sum over n into mwintegral over a continuous variable
Vv to obtain with the use of (3.8)

[

-1 R
K™ =~ J dy ye/26 1 oy/28 Wk’m(Y/a) (3.11)

0

which gives

K= (Lye/2s

oo —

[r(z% #m+ )T (55 -mt —)] (3.12)

As the expression (3.12) (°) is the normalization for the asymp-
totic solution (3.6), one can check from (3.6,12) that one gets,
asymptotically, the correct form for the constiraint inputs

(2.5-7). This can be seen multiplying (3.6) by n, n?, n® (i.e.
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v, vZ, v?) and integrating it. The results coincide with the

leading order expressions from eq.(2.5,6,7) at large x.

4, Numerical study of o‘(x)

In this Section, we study the numerica] solution on(s)of
eq.(2.9) corresponding to the asymptotic solution (3.6,12)and
we compare it with the data (°) for the KNO universal func-
tion. To this aim, we first of all recall that the KNO form
obtains in the asymptotic regime. Thus, if we rewrite (2.9)

using the variable ('°)
y = n/<n> (4'])

we see that the equation becomes independent of n for large
n when (2.4) holds. It is, however, rather instructive to
inspect the rate at which KNO scaling sets in. We will also
plot the solution of eq.(3.1) to see what becomes the compar
ison with the KNO form using direct]y the asymptotic Timit
of our solution.

In Fig.1 we show the plot of eq.(3.6) as compared with
the data. The agreement is staggering given that the curveis
not a fit but the result of our calculation of On(as) satis
fying the three first moments constaints. The overall norma-
lization constant has been adjusted at the maximum.

Fig. 2 shows the result of the curve for cn(z) as obtained
for various values of n from a numerical integration of equa

tion (2.9) with the boundary conditions
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9y 2h5) 2. 0(5) or 0(5) (4.2)
which are consequence of egs.(2.12,13).

Either of the above boundary conditions (4.2) give practi-
cally the same numerical yields and for yz5 the solution is
very stable by changing the value y, of y at which the solu-
tion was nummerically joined with the boundary condition(4.2).
For simplicity we have chosen y0=5.

Aside from the curve n=1 (which, quite understandably can-
not have any asymptotic property), already for n=3 the agree-

ment with the asymptotic curve (i.e. with the data) is good

up to <2> < 2. As expected, the agreement improves dramati-

cally with increasing n(at fixed ?%? this means with in-
creasing <n>) and becomes excellent for large n. This is a di
rect check of the extent to which precocious KNO scaling sets

in.

5. The normalized cumulant of fourth order.

Multiplying eq.(2.1) by n® and summing over n, we get
X
x<n®> = a(x)v}(x)+b(x)y(x)+ [d c(¥)7(y)dy (5.1)

in  terms of which, the fourth normalized multiplicity moment

vy, (eq.(1.9)) is given by

Y= [<n*>-4<n®><n>-3<n?2>2+12<n?><n>2-6<n>"] /<n>* (5.2)
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(where all moments so far introduced (2.5-7) appear also. Using
eqs.(2.5-7) and (2.12,13) it is just matter of some algebra

to compute explicitely y, in closed form. Neglecting terms
1

<n>3
one obtains

of ordef

and lower (which turn out to be negligibly small)

3

Y, = ——=——— (4y2-y+12A%y-3A"y+2A*-T6A°)+
5(A%+1)
s 3 A L o3nte5Aty-3A2-8y)+ (5.3)
z azg1 P
2
+ —3A 1 (y+4A2-3A2y-12A%) + O(—— )
A2+1 <n>2 <n>?

Using the numerical values (2.8) for A? and y, the above

formula gives

o 0.286 , 0.061, . ,_ 0.349 , 0.023
v, = (-0.0333+ —=522 4 <n>2) 2 (-0.0162+ =22 + <n>2)
(5.4)

according to whether one chooses A=0.56 or A=0.57.
Working at Plab™ 300 GeV/c where <n>=8, we find, approxi-
mately

i/

Y, = 0.0033 + 0.027 (5.5)

values which cover entirely the range of the experimental es-
timate (°) Yiexp = 0,015 + 0.015. Taking (5.4) at face value,
one finds that y, vanishes somewhere between <n>=9 and <n>=20
and that it tends to a small negative value as <n>»>», Both re-

marks are, however, of very 1little significance due to the
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Targe variations that occur in y, as we vary A of about one

percent,

6. Concluding remarks

We have shown with an explicit calculation how high energy
phenomenological inputs can be used as constraints to derive
hadronic production cross sections. Data on moments up to the
third have been used and the fourth one is calculated and pre
dicted right where one finds it experimenta]]y.

The asymptotic form O(as) has been derived and shown to
obey KNO scaling and to reproduce extreme]y well the experi-
mental KNO form. The extent at which KNO scaling sets in pre
cociously has also been discussed.

It is felt that the method outlined in the paper may be
an interesting way to impose asymptotic constraints on high
energy production cross sections and a very handy way of ex-
plicetely constructing them,

The questions which remains open and which we hope to in-
vestigate in the future is whether the present approach can
be extended to other more complicated situations and to what
extent the solution we find compares with the theory of mo-
ments., Another interesting point which we plan to investi-
gate is the conection between our present approach and the

equations of the group of renormalization (!!),

Acknowledgement

One of us (E.P.) would Tike to acknowledge the warm hospi-



- 17 -

tality extended to him at the Centro Brasi]eiro de Pesquisas

Fisicas of Rio de Janeiro where this work was done. He would

also 1ike to thank the CNPq for financial support.

()

(2)

C‘

REFERENCES AND FOOTNOTES

Novero and E. Predazzi: Univ. of Torino preprint 401/

81 (to be published in the Nuovo Cimento).

For the up to date situation, see A. Wroblewski: Proceedings

of the 10th Int. Symposium on Mu]tipartia]e Dynamics; Editors

S.N. Ganguli, P.K. Ma]hotra and A. Subramanian, =Goa, India

(September 1979); p.191.

In the paper we have used <n> = 2 . whereas the data would

in

rather require <n> = uoin+8. Since, however, this is used as

an independent variable, it can be checke that nothing would

have changed in our result had we used <n> = aoin+8 instead

of <n> = qo.

Z.

in®
Koba, H.B. Nielsen and P. Olesen:; Nucl. Phys. B40 317(1972).

The specification of the growth with energy of oin(s) is total-

ly immaterial for our purposes but it is generally accepted

that Uin(s)
Z,
A.
F.
F.

SgooO(Inzs).

Koba and D. Weingarten: Lettere al Nuovo Cimento 8 303(1973);
Giovannini, P. Autich, E. Calligarich, G. Cecchet, R.Dolfini,
Impellizzeri and S. Ratti: Nuovo Cimento 24A 421(1974).

Tricomi: Funzioni ipergeometriche confluenti; Edizioni

Cremonese-Roma 1954,

Since we are ignoring the production of neutral particles in

our treatment, we expect that the actual normalization factor



(‘")

- 18 -

Kexp. should be a factor of 1.5 to 2 larger than the value
(3.12) obtained theoretically.

P. Slattery: Phys. Rev. Lett. 26 1624(1972); A.J. Buras and
Z. Koba: Lettere al Nuovo Cimento 6 629(1973); E.H. de Groot:
Phys. Lett. B57 159(1975); Z. Koba - Proceedings of the 1973
CERN-JINR School of Physics - CERN - Yellow report 73-12
(24-September (1973).

In this Section, we find it preferab]e to use y= n/<n> as
independent variable bather than z= <n>/n since it is in the
former that the data are plotted to check the KNO form (see
Ref. (9).

W. Ernst and I. Schmitt, Nuovo Cimento 31A, 109(1973)



FIGURES CAPTION

Fig.T - oas(y) as obtained from eq.(3.6) compared with the
data, for A= 0,56 and Y,= 5.

Fig.2 - on(y) as obtained from numerical integration of eq.(2.9)
with n= 1,3,8,15,30,50. The dashed line is the asymptotic
solution shown in fig.1.
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