A0018/78
JUL,1978

THERMAL BEHAVIOUR OF THE ESR RELAXATION

TIME IN SLIGHTLY DIRTY SUPERCONDUCTORS

Georges Schwachheim,

Sydney Francisco Machado and Constantino Tsallis

Av. Q
Wesncestan Gsy 7?
2

2

71 Funggs ¥



THERMAL BEHAVIOUR OF THE ESR
RELAXATION TIME IN SLIGHTLY
DIRTY SUPERCONDUCTORS

by

GEORGES SCHWACHHEIM
SYDNEY FRANCISCO MACHADO
CONSTANTINO TSALLIS

Centro Brasileiro de Pesquisas Fisicas/CNPq
Av. Wenceslau Braz, 71 - Botafogo
Rio de Janeiro - RJ, BRAZIL



ABSTRACT

The thermal behaviour of the ESR relaxation rate in slightly
dirty superconductors is discussed for both exchange and spin-orbit inter-
actions between the conduction electrons and the impurities. The sensibi-
lity to the electronic density of states is exhibited by using, in a modi-
fied BCS ffamework, an heuristic analytic form which avoids two of three
defects of a previous similar treatment. The sudden increase (decrease)
of the relaxation rate immediately below the critical temperature for the
exchange (spin-orbit) case is confirmed. Reasonable agreement with expe

rimental data in LaRuZ: Gd 1s obtained.

" 'RESUME

On discute 1ie comportement thermique du taux de relaxation de
la résonance de spin €lectronique dans des supraconducteurs contenant des
impuretés diluées, dans les cas d'interactions d'échange oy de spin-orbite
entre les electrons de conduction et les impuretds. On montre la sensibi-
lité a la densite d'états €lectroniques en utilisant, dans un contexte BCS
modifié,‘une forme analytique heuristique qui evite deux parmi trois defauts
d*un traitement sqmblable antérieur. On confirme 1'augmentation (diminu-
tion) rapide du taux de relaxation juste en dessous de la température criti
que dans le cas d'échange (spin-orbite). Un accord raisonnable est obtenur

avec les résultats experimentaux existant pour LaRu, :Gd.



I- INTRODUCTION

Both experimental 1.2) and theoretical(l’s_lo) 'approaches
of electron spin resonance (ESR) in dirty superconductors have been attempted
in last years; however none of them seems to have unambiguously clarified
the corresponding microscopic situation as, in both experimental and theore-
tical grounds, exist several difficulties (8,11) which do not look like very

easy to overcame.

The present work might be considered as the continuation of pa
per (10), to which we shall continuosly refer and where a quick discussion
of the above bibliography is presented. In that paper a calculation is
performed of the contributions to the ESR linetwidth due to exchange and
spin-orbit scatterings of conduction electrons by dilute impqrities, through
the normal-superconducting phase transition. That calculation was performed
in a modified BCS (12) framework, and in principle the resuits concern only
the type I—SUperéonductors; however, it should not be very surprising if they
held (at least qualitatively) even for type II - superconductors. The
main result of that theory is that, immediately below the critical temperature
To’ the linewidth suddenly increases (decreases) with respect to its value in
the normal state, for the exchange (spin-orbit) mechanism. This result had
already been obtained by Maki(g) within a quite different framework, and
seems to be supported by the experiences performed by Hebel and Slichter(l)
and by Rettori et al (2).

In the theory developed in Ref. (10) the electronic density of
states fD plays a key-role; however it is unsatisfactory in at least

three points, namely:



1) &) presents, for energies above the gap value, some unphysical oscillations

2) jO does not contain the BCS density os states S)s as a particular

case;

3) for the spin-orbit mechanism, the linewidth takes, for sufficiently low

temperatures (T<< To) unphysical negative values.

In the present paper we introduce an heuristic density of
states P which avoids the two first difficulties; unfortunately we have
not succeded in avoiding the third one, so the theory remains unacceptable

for T << To, at least for the spin-orbit mechanism.



II - RELAXATION RATE AND DENSITY OF STATES

Let us define the ESR relaxations rate (or reduced line-

width) R + as follows

()

_ A
-Rﬁ = N L

(T2)
where TzN and Tg_ are the transverse relaxation times in the normal
and superconducting phases respectively, and where the plus (minus) sign
holds for exchange (spin-orbit) interaction. Within the theoretical frame

work of Ref. (10) we have that
oo
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with S= A(T)/z_kBT and —F(E/A\E?(E\/gf‘: , where

A (T) is the temperature-dependent variational BCS energy gap (see, for

example, Ref. (13) ), E 1is the electronic energy measured from the Fermi
level, ?( E) is the density of electronic states in the superconducting
phase and _PF is its value at the Fermi surface in the normal phase
(without consideration of the spin degeneracy). The heuristic reduced
density of states % (X) is demanded to satisfy the following reasonable

restrictions:

a) for £ >> S we must reobtain the standard BCS density of states,i.e.

x—> o => V0 ~L (X)

where &YSOQE X ’\4\? x>\

Vx?—1

= 0 o{\r\e\*W\se
b) %(x) is maximal at x = 1;

c) g(x) strongly vanishes -at the limit x —+o;



d) -&(x) identically vanishes if X £ © , and is otherwise positive;
e) R(x) conserves the total number of states, even after elimination
of its divergent part, in other words
i o ©o
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ﬁ 4 4 6
f) R(x) leads, through the integration process, to R+ =1 in the
limit & =0
g) %{x) monotonically increases in the interval (0, 1) and monotoni
cally decreases in the interval (1,00);
h) the family of densities of states f Qx,\Q) (where W isa parameter)
must contain %S‘(Xﬁ as a particular case (which, by anticipating

our future choice, will be k —> OO)

Let us remark that only the two last restrictions are new

with respect to the set of restrictions already used in Ref. (10). Our
proposal will be *
; S
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Mlere, as we shall see, it will always be X,> 1 (x0 =1 corresponds to
the particular case .Y o (x) ) and where the minus signs attached to b, c
and d have been introduced for future convenience. Furthermore we shall

impose continuity of the function and of its first derivative at the junction

point Xo, i.e.

(a —bxb-cxiye'd/x" - Ko [2- ]
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Let us call \'\ the maximal value (or height) of f(x),
which, as a consequence of restrictiens (b) and (g), will occur at x = 1,

i.e.

h = (& -b - c) E‘A [ZC]

Furthermore, restriction (b) leads to

b-\-?_C—-d:O [ZA]

and restriction (e) may be rewritten as follows

Xo
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Let us now synthetize: we have 6 unknown parameters (a, b, c,

'd, xo and h) associated to our choice of f (x) and 5 relations between

them ( [2_3] to \-_2. e-_\ , so we have only one degree of freedom which,
for commodity, we shall associate to an arbitrary value of the height h,
which in principle may take any value superior to one (the limiting
situation h —e 00 will reproduce the BCS density of states .Y (\L\\ .

It is easy to verify that the whole set of restrictions (a) to (h)



are now satisfied. In Figure 1 typical densities of states are presented.
The substitution of a given? (X) into relation [I] gives the relaxation
rate R as a function of & (typical examples are indicated in Table 1).
In order to have R * as a function of temperature T, we must explicitely

use

AT _Ary  AM/AWO _ AW 5 /1.
2\'(3-‘_ T 2ksTe T/To 2 Kg-ro (T/TB
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Typically it is A(o)/Z kBTo = 3.5  (see, for exemple, Ref. (13))
and z(T/To) may be straightforwardly obtained from the BCS theory (see,

for example, Ref. (13) ) and has been represented in Fig. 2.

11T - COMPARISON WITH EXPERIENCE AND CONCLUSION

In order to exhibit the ''bridge' between the present theory
and experience, we shall use the results obtained by Rettori et al (2) in
La RuZ: Gd, which are represented (after renormalization by the normal-
phase linear behaviour) in Fig. 3. As both exchange and spin-orbit mecha-

nisms are present in the experimental line width we propose

REM) = WRA (T W) + (L=YR_(T, W)

where W gives the relative weigh of those contributions, We have in this
way 2 parameters (W and h) which we shall determine by comparison with
experience. A reasonable fit has been obtained for WX 0.29 and he3

(see Fig. 3) (for A o) / 2 Ke To we have used the typical value 3.5).
Let us conclude by saying that the present work:

a) confirms (10) the great sensibility of the thermal behaviour of the
relaxation rate with respect to the density of 5tates;
b) exhibits the possibility of the sudden increase or decrease of the .

relaxation rate immediately below the critical temperature, being



d)

due to density of states effects together with the fact that the
interaction HamiltonianCIO) behaves, with respect to time inversion
into the electronic degrees of freedom, differently for exchange or
spin-orbit mechanisms (its sign changes in the exchange case whereas

it remains invariant in the spin-orbit case);

does not explicitely take into account the external ESR static magnetic
field H, however we believe that essentially this should not bring
down other effects than the standard dislocation of the critical
temperature (this is to say, in the present theory we may interpret

To as To (H) );

leads to a reasonable fit with the experimental resultscz) in
La Ru,: Gd;
unfortunately has not been able to avoid the unphysical negative

values of the relaxation rate that appear at sufficiently low

temperatures in the spin-orbit case.
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CAPTION FOR FIGURES AND TABLES

Fig. 1 - Three typical reduced densities of states (we recall that X = E/A

and % = 33/2-5)‘_) (a) h=1.5 (hence a = 5,216,
b = 2.815, ¢ = 0.4729, d = 0.6502 and xo0 = 1.584), (b) h

il
N

(hence a = 14.49, b = 3.409, c= 3.427, d = 1.342 and xo0 = 1.239),
{(c) h =3 (hence a = 2292, b = 1855, ¢ = 40.13, d = 4,884 and
x0 = 1.092)

Fig. 2 - The renommalized BCS energy gap 2 = To A (-T}/le (0 as a

function of the reduced temperature T/To.

Fig. 3 - The thermal behaviour of the relaxation rate.
Experimental points (2): 'LaRuz: Gd samples.
Solid line: present theory with h = 3 and W = 0.29.

Table 1 - Typical values of the relaxation rate as a function of the reduced
energy gap o  (we recall that = A [2XK4 T and that R, (R)
corresponds to the exchange (spin-orbit) case).

The three values with (¥ as well as the zeros have been obtained

by extrapolating the analytical expression of R-.



h h=2 h

S R+ R- R+ R- R+ R-

0 1 1 1 1 1 1

0.1 1.477 0,688 1.522 0.744 1.583 0,815

0.2 1.877 0.412 1.951 0.525 2.072 0.661

0.3 2.217 0.161 2.305 0.334 2.478 0.529

0.5 2.771 ~ 0 2.845 0.011 3.096 *0.328

0.7 3.206 = 3.225 20 3.522 "0.206

1 3.715 ~ 0 3.594 0 3.911 | 0.079

2 4.734 ~Q 3.959 ~ 0 4.143 20

3 5.196 ~0 3.792 20 3.770 B

5 5.355 = 3.110 ~0 2.663 20

7 5.084 ~( 2,456 =0 1.672 ~0
10" 4.451 ~0 1.716 20 0.777 ~0
20 2.581 ~0 0.572 ~0 0.067 20
30 1.503 20 0.219 ~0 0.008 20
50 0.561 ©0 0.042 ~0 0.0002 0

Table 1
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