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ABSTRACT - The domain of interest for the applications of a method
to solve the Schr8dinger equation through continued
fractions is studied. It is argued that the me thod
applies almost equally well to quantum mechanical regimes
(lower energy levels, low energy scattering) as well as

to semiclassical ones simultaneously; this is illustrated

by the example of the central power 1law potentials
V . . . . .

r (v>0). The explanation of this behaviour is given
in terms of the mathematical approximations involved

and its relationship to physically interesting quanti-

ties.
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I. INTRODUCTION

A method aimed to solve second order ordinary linear

(1)

differential equation through continued fractions has been

applied recently to obtain exact(z) and approximate(3£olutions
of the Schr8dinger equation for central potentials. Bound
states and scattering are considered and solved in a very

similar footing with this method. A number of exact results
(some new) were got for bound states and a good approximation
is obtained since the start in other cases. For scattering, as
usual, it was harder to obtain good results than for bound
states, but results compare well with other procedures. There
is to our knowledge no analytic results concerning the expected
domain of application of this method in most physical cases
considered. This is the situation also regarding the convergence

(2) (3)

of the solution in general. Known theorems of convergence
are not applicable in many cases.

The motivation for the present article is to provide some
hints on the properties of the systems where the solutions are
seen to converge heuristically. Since continued fractions are
not yet a very familiar object for physicists, we think that
it is useful to illustrate or exemplify how they work or in
which sense do they provide a sensible approximation for central
potentials.

As we shall exhibit below at first sight continued
fractions for the Schrddinger equation seem to provide and
exact or a quite approximate solution in two non overlapping
domains at one time. One is the extreme quantum mechanical

physical domain, embracing ground state levels and first excited

ones for bound states and the very low energy scattering, where



wave mechanical properties are important. The other 1is the
semiclassical domain of higher energy leveéls with large
quantum numbers, or of scattering with large impact _
parameters. We shall discuss below how we canunderstand this
feature from the mathematical approximation involved since
we shall show ‘that it coresponds precisely to

these two different physical cases. To be more specific, an
order of approximation in the continued fraction corresponds
to neglecting higher derivatives of the Schrddinger wave
function, and we then obtain a better approximation (or even
an exact solution) whenever these higher derivatives in the
required solution are small (or zero); this is precisely the
case for the lower bound states, for slow colliding particles
and for states with large angular momentum(*).

The text is organized as follows. In section II we
recall in a sketchy way the fundamentals of the method used
by Refs.(2) and (3). A short account of the results it present
ed for the applications already made, specially referring to

(3)

our own previous work . Section III covers a rough quanti-

tative study of the domain of application for the potential

v

, providing a concrete sample of the method. Finally, the
end section IV is devoted to an analysis of the preceding
ones and to advance a possible interpretation that

allows to . understand them in rather precise teims.

(*) . . ] .
A transformation of the radial coordinate translates this

argument to the new variable in all cases where this

transformation appears advisable to simplify the problem
at hand.



II. THE METHOD AND ITS APPLICATIONS

We shall just give the fundamentals of the method,
for more details the reader may refer to Refs. (1), (2) and

(3).

Let us take to start the differential equation

2
y = B dy , 5 4y (1)
01 dx 02 dX2

with BOi (i=1,2) functions of the dependent variable and of
a set of parameters fixed by the physical problem ( for
instance, energy, angular momentum, coupling constants,
potential ranges, etc.). Deriving successively we obtain a

system of three terms relations

(n) _ (n+l1) (n+2)
Y - Bn,n+l + Bn,n+2 Y , n=1,2,...
(2)
with
J
y(J) _ 4y
de

and the Bjk (k=j+1, j+2) are functions made out of BOiﬂi=L2)

and of its derivatives up to order j. Substituting each time

(n) 1
y(n+l) n,n n,n+2 y(n+l)

y(n+2)



we obtain a continued fraction:

A 02
- 301 + B (3)
Y Bip + 713
B23+ .o
An approximant of order n (n= 1, 2,...) is obtained by _
(n+2)

. . . 3 = = i
definition putting Bn,n + 2 0 or —iTHIIT 0, and is of
the form

50
[_ayL] _ __0n n=1, 2, ... (4)
n Sln
where Sij is a (tridiagonal) determinant found by Perron(l)
and Mignaco and Miraglia(3b) satisfying
Sik = Bi,i+1 Si+1,k ¥ Bi,i+2 Sis2,k (5)

with s, . =1, =0 (j<i).
In this or ina slightly modified version this method
was applied to a number of potentials in the radial Shr8 -

dinger equation

d 2 d 2 L2(2+1)
+ + |k° - =—=—='= U(r) (r) = 0 (6)
dr2 r dr r2 Rkl
k2 _ 2mE  U(r) = 2m V(r)



or to differential equations obtained starting from it.

Table I summarizes the relevant information, and

in the next section we consider another simple application.

In brief, the outstanding features of the method

as emerging from the analyses made in Refs. (2) and specid
ly (3) are the following:
For bound states:

a) The lower order approximants reproduce or give
a better approximation for the lower energy
levels.

b) For the potentials r2 and r_l the energy levels
with large principal quantum number are exactly
given by the lower approximants.

For scattering states:

a) For given angular momentum, the lower order
approximants provide a better description the
lower is the energy.

b) For given energy in the intermediate energy
range, the lower order approximants give a
better descrption as the angular momentum is

higher.

Both cases a) refer to solutions where the quantum
mechanical characteristics of the system are the more
important ones. On the other hand, cases b) refer to semi-
classical situations where JWKB approximations work satis-
factorily.

It is amusing that continued fractions work well

in both cases. Since no physical assumption is made to



obtain an approximant it is the mathematics of the game that
will explain this feature. This we shall analyze after
considering the example of the next section to furnish a

stronger support.



III. THE POTENTIAL r°( v>0 )

Let us consider in Eq. (6)

V(r) = g ¢ v >0 (7)

U(r) (7")

il
<
2]

If we examine the behaviour of the radial equation
(6) and subtract the dominant contributions at the singular

points r=0 and r=« , the general solution is of the form

v+2

2y .2 v

sz(r) = rg exp - (r) (8)

v + 2
where sz(r) is of course regular in both points. Notice that
we are not allowed to extrapolate (8) to v <0. We shall now

consider two different equations; one results from the

substitution of (8) into (6), and is:
2 v 72
4 -2 [yr 2 (£+l)r_l:’ 4 . EZ S{20041) + —%’—}yr‘z (1) =0
dr dr
(9)
and the other from the subsequent change of variable
v+2
_ 2
Z =vyr (10)

and is



_ 4 2=V
2 v+2 v+2
L S E)+4(z+1)-4z] 4+ 2 1Py z -
dz v+2 dz (v+2)
\Y _
-2 (241 - —5;} sz(z) =0 (11)

In the following, we shall consider just the n=1
approximants since we are willing to settle a rough quanti -
tative behaviour(*x Searching for the lowest eigenvalue we
must look at the solutions of (9) and (11l) such that they
don't have any node, as is done in Ref. (3a). We arrive to
a couple of relations between the energy of levels with no

nodes in this approximation and the coupling. They are

[\

4 v-

k2 = | V*2 [2(“1) + %J (24+1) V2 (12)

coming from Eg. (9) and

4 V2
k2 = V¥ [2(sa+1) +—12’—:Hz+1+L] (13)

obtained from Eqg.(11l). The dependence on would just result
from dimensional analysis, and the ground state corresponds to
setting 4=0. How do.Eqs. (12) and (13) compare with the true
answer ?

In general an exact or even a numerical result,
is not available for all v and then we shall compare with

other approximate expressions as well.

(*)

This potential is currently being studied in detail with
Marcia L.Ramos.
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The first approximate expression is obtained using
a poor man's version of the Heisenberg principle currently used

in courses on Quantum Mechanics. Starting with

2 2 v
E = 0 S g T
2m

and putting

and then minimizing E, obtains

4 2
5 V2 vy VF2 "
k® =y (———} (l + ———} (14)

Another set of approximate values comes out from

the more sophisticated functional version of the uncertainty

)

principle due to Sobolev and used by Lieb(4 in his work on the

stability of matter., It provides an absolute lower bound for

the energy of a system and in our case we obtain:
2 v

4 (3 3 V+2
A _ r —(\)+2),
2 V2,73 43/2 172 o 2

-, o

where T'(x) is Euler's Gamma function.

(15)

In Table II we have the results of all these
appproximations and some exact values for the lower v values.
We notice that for this range of values continued fractions _

(7)

provide a reasonable set of results as was said Dbefore

for other cases.



Let us now go on to consider another limiting situation in the
region of larger quantum numbers. Here comparisons are poor ,
since there are in general no accurate numbers available .
For continued fractions, in the case of harmonic
oscillator and Coulomb potentials, a linear relation existing
between the principal quantum numbers and the angular momentum
allows to establish the value of higher energy levels just
setting 2 large. We don't know whether asimilar relationexists
for other potentials, nonetheless it is in general true that
higher £ values correspond to higher excitations.
We then shall examine our expressions (12) and (13) from this
point of view.

On the other hand, we shall translate into the

radial equation the known results (8 available for |x |V po-
tentials in one dimension, as corresponding to s-waves.
We then compare
_2_ __ 4
op = k% 2 VP2V L g (e, 0> 1) (16)
and the one dimensional result
2V
4 _ 2V 1/2 r( 3 \)+2J V+2
2 +2 +2 .
a, = k°y V7T n VT = 2V (17)

(n >> 1,v:even)

for which we obtain

2.000
2.185
v = 0y= 2.467



Two points are to be mentioned. The first concerns
the rather good numerical agreement. The second regards the
similarity in the dependence of Eg. (16) on & and of Eq. (17)
on n, suggesting a linear relation between the two, at last.

We think that the comparison made is reasonable,
though a more refined analysis is desirable, and it again shows

the ability of continued fractions to give a reasonable answer

in the semiclassical domain.



IV. PROPOSAL, DISCUSSION AND COMMENTS

Our task is now to advance a convincing argument to
explain the characteristics of the behaviour of continued
fractions. As said before, the explanation should lie in the
mathematical approximations involved.

An approximant of order n is obtained neglecting _
radial derivatives of order higher than n+2. If the solution of
our problem would not depend on derivatives higher than the n+l}
th, we should arrive at an exact solution. This is the case for
all known exact solutions found.

Now, radial derivatives are related to powers of

the radial component of the linear momentum operator:

. 5
p,=-1i4 [ = *

H|=
[

(18)

It appears then quite natural that since the lower energy levels
have the lower values for P, , they are candidates to be well
represented (approximately) by the lower approximations to the
continued fraction.

In the quasi classical limit we have to apply
another line of reasoning . S-states involve classically the
passage of the particle through the center of force. We should _
not expect then to represent well low angular momentum states
with higher energies. Instead, trajectories having sufficiently
large angular momentum are available having a large contribution
to energy but with small values on the average, of the radial

component of the linear momentum. It is then plausible that these_

states will be well approximated by lower order approximants .



We then propose that continued fractions solution
of the radial Shré#dinger equation approximates better the
states containing lower average values of the radial com-
ponent of the linear momentum.

We have two other examples of the applicability _
of this criterium. The S-levels of the Yukawa potential have
a depth that increases with the coupling constant faster than
linearly. Since the average energy depends explicitly on the
coupling Y2 in a linear way(*), we may conclude that kinetic
energy, as the coupling increases, does not follow the
increase in the negative potential energy. We should then
expect that, as the coupling increases, a better approximation
is obtained from an approximant of fixed order. This is the
case, precisely, as illustrated by Fig. 1 of Ref. (3a).

Let us come back to the power law radial potential
dealt with in Section III. Applying the virial theorem we get
for the rate of the average values of the kinetic and po-

tential energy contributions:

< T > v
<V > 2

We should then expect to obtain better approximations for
lower values ofv, as it was shown in Table II.

For scattering processes a similar line of thought
applies. It is evident that at lower energies (larger wave -
lenghts) we should obtain better approximations. By the same

considerations about the semiclassical range in bound states,

(*)

An implicit dependence at the average values on Y2 is

surely possible.
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it is to be expected that large angular momentum states be-
come well represented by the lower approximants in the inter-
mediate energy region.

To conclude, we think that our analysis provides a
clue to carry on applications of continued fractions in the
way considered above, at least for central potentials of a
simple shape. It would be better, of course, if we would be
able to provide a sound analytical foundation of the _
features discussed. Nonetheless we think that our contribu -
tion clears up some aspects of the applications performed and

allow for a more intuitive understanding of these mathematical

tools.
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TABLE I
A summary of the application of continued fractions to the radi
al Schrédinger equation.g2> 0, u>0 in the expressions below.

POTENTIAL PARTIAL REFERENCE TYPE OF
WAVES RESULTS

1. Bound States

—%— mwzr2 All 2; 3a Exact
- g2t All 2; 3a Exact
2 -1 .
- g~ r Texg-ur) . S,pP 3a Approximate
2
- g exp(-ir) S 2 Exact
2 -
-9~  exp(~ur) (l-exp(-ur)) S 2 Exact

2. Scattering Only approximate results are obtained

~g% (cosh yr) 2 S 2
2

-g exp(ur) S 2

gty 2 L <3 3b

2 —_
+g” ¥ Texp (—ux) % <10 b



TABLE II
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Comparison of exact and approximate values for the ground state

energy of the potential rV( v>0 ) with the result of continued

fractions

The case v=w

Eq. (12)

2.5000

3.0000

3.5000

4.0000

Eq. (13)

2.3208

3.0000

3.9145

5.0397

Eq. (14)

0.9449

2.0000

2.9402

3.7798

Eg. (15)

1.9478

2.1822

2.2569

2.2798

2.1079

Exact

2.338 (%)

3.000

3.7939(6)

9.8696

is the infinite potential well of radius 1.
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