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ABSTRACT

Ve study phuse trausitionvin the iSotroPic non—degeneréte Hubbard
lamiltonian within the renormalization group techniques, using the
€ = 4 - d expansion to first order in e . The functional obtained from
the Hubbard haﬁdltonian displays full rotation symmetry and describes
two coupled fields : a vector spim field; with n compoﬁents and a non-
soft scaiéf_charge field., This coupliﬁg is pufe imaginary, which has
interestiné»éonsequenceé on the critical propertics of_this coupled
field system. The effect of simple constraints imposé& on the.charge
field is considered. The relevance of the.coupling between the fielids
" in producing Fisher renommalization of the critical exponents is discus-
sed. The possible singularities introduced in the charge-charge corre~’

Iation function by the coupling are also discussed.



iy e

ki B

INTRODUCTION
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In this paper we shall consider the effects of the spin-charge

Counling on thz magnetic transition of the electren gas, described by

the non degererate Hubbard “d.lllonluﬂln The latter has been studied

A . . ' . 2,3
with the use of frnctional integral techmiques™’

in recent year 31’5. This formulation exhibits a coupling between spin

by several authors

fluctuations and charge Iluctuataonb, vhich has usually becn disregarded
in the literature, as is understandable when onc realizes that charge

fluctuations cannot be unstable at any temperature or space dimension

.

the non de obncratp Uub1ara Hemiltonian. -
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Recentl , two of us have undertaken the study of th consequences
b4 Y '

of this spin-charge coaolLﬂ on the thermodynanic properties of the

electron gas, in particular on 1ts critical properties. In reference (5)
the first part discusses some difficulties related with the functiona

integral technique : one can derive various exact formulations for the

b}

peltltlon function of the electron gas ; some of thése, once they are

anorox1mated by Landau-Ginzburg 1ike free cnergy functionals, exhibit
spin fields w1th only one component (jQJnU—lllo flpldsﬁ hhlic others
have spin fields with n =3 components (Heiscnberg—like fields). Given
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the importance of synmetyy in the critical- prop‘“LLCS of the magne

phlic transition, and given the spin rotational invariance of the original

hamiltonian, it was argued in (5) that the correct formmlation must ex-

plicitly cxhibit the vecter pature of the spin field. Iowever, in the

second part of (5) the effect of 5pin~chnrge corpling was studied with

the aid of yennrmalivation group ro.n"uﬁ, within a theory with Ising-like
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spin Fields. The reason was that the renormalization group had been used
: e e PR . o : " 6
provicusly dn the study of a phencmenological free energy functional™,
Guite siwilar to the one derived from the Hubbard Hamiltonian, describing
tho critics) p‘O“ﬂTEWGL of & coupled field system, with a non soft scalar
Ptetd snd oosoft Isirg-like one.  The study of the MHubbard Hamiltonian
i redleresce (5) relied on the results of that theory. It was shown that
the spin-charge coupling restricts the domain of existence of first order

t;uw~lb10A\ with respect to that predicted by a spin-only theory.

In this paper we study a general free-crergy functional, with a

n-component spin field, the Hubbard miodel corresponding to n = 3. '

Thefqhestion of what happens to a usual second order transition
when the oxder parametcr‘is coupled to some other (non;séft) degrees 5f
ireedom, has received censiderable theorctical attention in the past
fow years, essentially in connecticn with the <p1n~phonon problem, when
“the nagnetic cxchange interactions depend on senaration betiween ionic
- spins. This is due to the fact that real-systéms-have finite elastic
-constants and the modulation of the couplings, e.g. the exchange interac-
tiqns, by the lattice vibrations may lead to qualitative effects on the
phsse trahsitiom7; Fisher® fomulated a iheor} based oﬂ thexmodynamic

assumptions, of rcn0imali2dLvon of critical e\*onﬁnts dCSC*lban the
Second-order exponents b}.constraihad "hidden variables'. An cxample is
the coﬁstraint_of constant volume. If ong. assumes that the specific heat
at consiant preséurc, Cp’ diverges, i.e., CP'L[T - Tc(p)[mai, where
«y> 0 (as is the case for the Ising madel) and Tc(p) is a well behaved
funciion, one can then show that the specaific Leat at constant volure,

darT .
Lv’ mist. be fipite at the transition, exce Pl oviien wSo= 0, More



precisely, onc can show that, close to T, CV is given by

C, = const. + const. |T~TCCV)l_aR

vhere
Gy = = ch/(l ul) < Q

is the Fisher-renormalized rrJtlcal exponent. When @y < 0, as is the
case for the Hoisenbere nodel, no such renormalization can occur.

Sak used renormalization group recursion relations for the effec
tive spin hamiltonien obtained after 1nLccr ting out the elastic modcq.

This }hmilfénian has ap additional coupling term, uhlch was al 50 conside~

zed by Rudn nick, Bergman and }mry . -

.

Starting from a‘completely different microscopic hamiltonian, sui

table to cescribe a metamagnet in the presence of an external magnetic
~field, Nelson and Fisherlo derived a free energy density which also
exhibits two coupled or&er parameters, which reflects the existence of
.alternate planes of~spins, couple férromagnetically withiﬁ a plane and
antifertomagnetical]y between adjacent planes. Instead of integrating
~out the non soft modes Nelson and FisherljQ carry out the renormalization
group precedure for both fields, and verify'thc gaussian like nature of
the critical cponents f9r space diwcnsLon d = 3 at the tricritical point.
In ibCLx casc, due to the different exchangc interactions, intra and in-
ter~planes, the two ficlds aré not simultaneéusly soft and consequently,

a scaling consistent \JLH that is adopted.

3 - - 3 - ( : -
Achiam and Dary” study a H“CNOWﬁnWlO(' al free cnergy functional
cscribinns 0 (e frY Ted ST cmd 3 PR
describing two coupled lxc]\A , & (soft) Ising-like spin ficld and a’ (non-

soft) scelar field, the coefficient of the coupling term in their theory



They investigate the role of constvaints imposed on the (non-soft)
scalar field, and they discuss the weak singularities of the non-soft
field at the critical point, when constraints are present or not, and

alse vhon the cowpling between the soft and the non-soft field changes

ite form. A result of speciel intevest obtained by Achiem and Doy is
that the constraint imposed on the non-soft field results in stabilizing

the renevmalized-Ising critical point, which in Szk's treatment, was not

[y
I/;

sicalily allowed, dus to the impossibility of negative bulk modulv.s7.
s parameler space they use is richér, since it contains the zero wave-
vecior coupling between fields, as well. Thercfore .the' chart of fixed-
points t11¢}"0bt:ain is richer as compared' to cther treatments. FYour
Froups oifued points are obtained, i.e. Gaussian, Ising, renormalized
1sing and ép}zeri.cal. Some fixed points differ only byitl@e relevance of

»

the coupling between the two ficlds. .

. Two guestions arise about .the work of Achiam and Imry Fi‘}jstiy

‘the validity of the results they obtained when the number n of components
of the soft field is greater than n = 1. Since the specific heat exponent
o changes sign when n goes from 1 to 3, one expects the chart of fixed
points to be altered and the Jtablj ity of tho Fisher renorma lized fixed
‘,po:‘x.z'x‘(.s to be exchanged with that of the L%‘lﬂ vnrenormalized fixed point.

econdi}-‘, the consequances of the spin charge couphng cocfficient being
pore imaginary, which ‘i’u;:ns cut to be the case for the Hubb{ird. model,

have to be inve Sijgfatfd in detail.

In part I, we derive ‘che free encrgy functional corresponding to
the (isotropic) b vhoud Hamiltendan, introducing explicitly spin rotatio-
pid dnvariance

Part 11 is divided in three subpavagraphs, Ihe i rstoone is the

BRIV YennYmiization study of the frec energy functional obtalned in pavt
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The

a simple constraint

exponents describing

agraph deals with the Lhalge-ch \Tge Corre

at the critical point.

on ¢f the vesulis obtai-

I, keeping explicitly both ficlds and imposing
sccord ane-is a themodynanic study of the crossover
the fimeiltonian flow between the renormalized critical point and the con-
ventionad one. The third subpox
fotion function and IS possib_fé singularities
Part 117 s devoted to 4 physical discussi
ed in pzrt 11,

I

i¢ Hubbard Hamiltonian.

- The ¥ree Energy Functional for the Isotrop

io

1.1.0

13

rI\-

usual, .
1}

is the hopping integral

ol
1o And Cjc arc the creation and destruction
the sites i and j, with spin ¢ , respectively.

~tion, supposed to exist only between clectrons

. 1
ith the non-degenerate Hubbard Hamiltonian

(1-a)

between sites i and j

k]

operator for electrons in

U is the Coulomb interac-

in the same site and

. = (. C_ 1 th = . A q - {
io ic Cige with o lor 4 and -1 or +..
5 g
“With the aid of thc identity '
. U 1
Un., n., == (n., +n., )+ %
y i T (g nl§) 8 (n
Ve rewrite (1)
N n, .
. W i Y
1= . ) N o . ’ ¥ (n.
1:3,973) ta G < o S Sy

w82 Uz =2
T an') ) §1 © Dj_
s | 2 - .I_I [ -, 0_(\‘.
SETR RS RS
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vhere .Tij #= Tii 7 634 A nunber of identities used to transfonn the
. R T ’ .. ) ; ) ) 2.4.5
~interaction temm in the Hubbard Hamiltonian exists: in the litervature™™ .
However, as discussed in reference 5, the identity used here is the appro-
priate cne if rotatien inveriance is to be preserved, as it should, and if,

t 1o take into account tha "wector' nature of the spi

Yot

1,

-

" . N
o spririous nany-body interaction .

Now we use the lubbard Stratenovich identity”™ in its vector form

Kz (e ‘\'{'0[--1; EZ(T) + 2 FT‘K (1) —E: (T)] dr

€ =T DE e (2)

1) oo

-

for the last temm in (1-a) and its scalar version for the second term in
(1a). In (2) T is the time-ordering operator needed to preserve the non-
commutativity of the operators, which are now (imaginary) time-dependent.

- After some manipulation (see for example reference 2) one gets for the

partition function 2

2=7 f by HEL ¥ (3-2)

with )

. g : K
H(éi il = )‘i j de w [’é‘j_z(T) + .}’,-/'(T)} ) Trace log (1-VG®)  (3-b)

.

o .. i - o 1,T

5 ]

where the potential V has matrix elenents given by

". \ ! 6 "v :f {(] }" +G€i‘) 60'(7,-( £1 6(}}__(}!}, (4)

N S P o : ,
£y and 67 are the partition function and the CGreen function, v spectively

vty d 3 a4 INTC ETINY T4 3 P S ° B - - o~ iy
cuing syster. It ds zeon frem (4) thar the wse of the
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Inibbard-Stratonovich identity cnables us to change from a two-body hamil-
tonian to a oné~body problem, but the potential is now compleX and depends
on time, spin and the site, as well. The first term in the diagonal con-
rabution et in (4) is the electric potential with pure imaginary

y. being the charge ficld at site 1, while the re-

maining terss represent the vector magnetic field. In addition a gaussian

weight factor appears in the functional integral (3).

Expanding the Tr Log (1 - VG°) up to fourth order in V (second
order in U} and using the Fourier transform representation with

. = (0., w.) to include both the momentun ¢. and the Matsubara fermion
i : i 43

i
frequency ;w%, we get

nEy =3 L@ e v b gla,a0® e F b
a,c h 4779 g q.q 1=m2757 gy qz q3 -(ag+aytas)
419243
6, R

S

L +U ¥ (O)))

Kol

Vv ) Y. Y.y
3 (ql qé) ’ ql)O‘Z} - ((114-C12) *

(5

: N C v
497247430 ¥ Q L Y (aLd L +
Y | ) 'Ci ’ : }: [~
+ = u ((] ')) £ g ; + --].}’C'(O O,(‘.,)."a £ Y Y.
. F B A t(l -(C' -+ ) ’Z ll lzl.) Ed S . . C 4 +0
5.4 179 419,03 : 9, 43 (J ‘3)
«
whiore the sui over o« yuns f*om 1 1o . Tha»function Xo(q) i1s the non-

entibility of the eleciron gas; the coupling constants are

§

Cor o
TN

function of the interaction eneryy U and of 1lic bare feimion 10nn\
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versions of the transformmations of the Hubbard Hamiltenian through cqu. (2)

- . .

exhibit incorrect RPA spin correlution function (2). Equ. (5) has the
correct RPA spin- or charge-correlation funct ‘ion, along with sp1n—101 2t10-
nzi ipvarisnce and spin-charge coupling. Note that p and V. are pure ima-
cinary,  The foctor (10 + U >_r_0(q)_) in the gaussian charge term mplies the
ibility of @ churge instability, as is well known for the Hubbard
wodel., That K the recason why the ch:n ge terms are usually neglected; we
i since we are interested in studying their possible effects

o the magnetic transition through the two last coupling terms in (5).
Hevertheless, 11 an apprepriate scaling of the field is made, the last
ferm in (%) the V3 and V g terms, as well the q2 dependence of the Gaussian

term in Lhc J Erge field, which appoars when we expand the susceptlbhlty

. 6,10
{sce Below), are irrelevant in the renoimalization group sense SO we

2

(5]

neglect them. The choice of that scaling is dictated by, the fact that

the Chargc ficld is not soft within the pure Fubbard model, as stated above.

Now we are interested in studying the _S}f§’;ezﬁ close to its feryo-
x:*“’gnnhc instability, possibly at low temperé.t.utyeé but not very close to
T = 0. ‘. This means that it is enough to Cénsider the. dependence on ‘q of

the cozmllng onstants and fields, for small q and @ = 0. But in such
“case we can ncg;lect all dependence on q ‘o.f the coupling cons‘can‘cs]‘4 and

we can write Xo 1§

P

(@ 5o @ = 0 [1 - 4 (7]

whore N (1‘{}:) is the density of slates at the Feri level Epe A word of
caution about this expinsion should bic iﬂid, for d # 3. Ve assune its
validity arvound 4 = 4

. . " . ) L 16
b, including & = 3. In fact, it has been shown™

. 1. 9220047,
(C{)"‘)’.O(O)“ 3 Cr)’

€. .- K Al v P “~an A Y. 5 15 3 4 M -
JO0 a avee clectyon bavd, dv U o= 0 1dnit, that N )

1\0
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the d-depondence appearing only in the multiplicative factor —=. (The

d = 2 cese shows a peculiarity which need not concern us here).

So the MHamiltonian becomes

RN I ' ) a s B
RO AN N (R S S PO
o q "4 AR qp "y ag ~lagraytag)

o
> P ’ 4 , .
2! E)l ‘q-q g ~ ~( )ql qu k. (q1+q2) . ' (6)

where

=1 - U\( ) and g =1+ UEQIQEF)

We recall that the co:pllnrs u and w are connected to the band

structure through (Th) and its derivatives:

L (1 . . . 7 . H 2
b= G T CLLQ} W = aga)Ad? BNE

B, Lo 4B g

This constrasts uzth rcfcre ice 10 where the coupling betwecn the

ficlds depends on the extcrnal magnetjc field.

(6) appropriate wnits werc chosen in order to get rid of some

consta {actars( ).

o
o

Thie Hamiltonian now locks quite similar to two Lan-
dau-Cinzburg-Wilson Hwailronians plus a rotation invariant coupling beiween
the two ficlds, the first of which is vectorial and may become soft and

ther, o pon-soft scalar ficld.  ‘The passage to the continucus lnait



The terms Jm'o]\'mc the q = 0
“of the

™

Con\ sponding q £ 0 terms. Th

the next sections we stud'y the

Note that (7) coincide

. . : S
hemdtonian of Achiam and Doy

no=a = 3 31t can be quite LC’P"
Row we extend 1t to arbitrary
ihe Hualonian (7) {or geners)

'stem, in order to keep their dinensional

noand -d.

- } .
was mnxdc g‘ 2 1 s q.d bemn the space dimension.
S na , Y

R ¢} (L}?

As siated above we also want to consider the cffect of cons -
traints imposed on the chargs field. TFollowing Achiam and Imry” we res
TYRCT ouT oo the ¢ = 0 connooent of Y that is, on the unifom

stal cherse and il ey singlo cut that component, allowing
total Cherie ang wi CoTra SPL tL,E_,VL‘) Vifiga CGUL ohal comy eI, & 1334
Gifferent counling constants for them
. { L2 e0el 0 o0 B B
Heg @) sy Lo Jo Sy S, S, RICALRREY
T owevYq o 8 q}q7o 1 12 13 17492743
" s 4
B_ o { ' U
0.2 S . , o o
SIS .9y S ]
R ja yq Yoqg "W Yo 2 q q “-q -~
] .
t
: , o o .
-+ . S
) Y ~ (qu .
G qa., 1
where we have changed the notation, putting £ = 3. The prime in the in-
Ctegral means that the origin is excluded ﬁo,‘, the domai

n of integration.

CO;.F’)OA’ nt were

divided by @ , the volune
ity equal to that of the

e hamiltonian has now its final form; in

phase ‘transition in systcms governed by it.

5, for n = 1, with the phenomenological

when p is real. We have shown that, for

ally devived from the Hubbard homiltoniom.

Tn what {follows we will discuss

p (that 3s yeal or purc imaginavy). It



shauid be boryre in mind however, thot
e fneginedy.  This modifles in
soading to tha real counling situation.
Ii - a) The oI Apnico
We now proceed to study (7) wi

to {irst order in ¢ = 4 ~ d:

with omo

Z=yw"/g w = uo/ﬁo and
fad
D y :
. AW/ o e s .
< b / (0+Zn-y)  and ¢
l 0

fo oY the

a non-trivi

nta greater

Hamiltonian u as

qulja

Ay the results corres-

\
5t C o

+~Y
Li

thin the renormalization grou;_;

we AJI\L ,Lntmrate out all the

than 1/b, vhere b > 1; we then

lmgni the nonenta variables by b and ‘t}vn ficids Yoo yq and Sq by ¢

and ¢ , reép‘f"‘x tive 1}710 0 ¢ is detexmined by impos :mg that the coeffi-
cicint of the qz term in the transfo oymed hamiltonian is’ cqvﬂ to unity,

nd from this we get ¢ = b /2 o the other hand, we 0966 10

and c such that 8' = g and sof = B, \'.-'hmje the pr ime dﬂ]*okeq the corres
ronding parancter in the ‘c)."znisformed hamiltonian. VWe have ah‘_eady poin-
tod out that this choice is convenient since the Cndlge field camot be-
ccose soft. Using the Tecurss ion )f-JaLJuw for g and Bo

(3 =5 2y - Fni) o omd gl = 5 b"d(l—zmm\z)

where . ' /

g

(rtq 2y

(1

il

b

[e]

~~
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Cloarly, undor the renormalization group opeiallions, the toums
.5C N -2%e/? -4+ -2+g )
Vo, v, end DY dn (5) ZTWMSIO[M Jike b /‘, b and b , Tes-
O i & :
Noctivaely, boing foy that rénscw, irrelevant after many iterations . The
< - 2 ~~~~~ ~ v f—' :q 1 g vv)"}_
3 GaiUant & (v the q° temn in tho charpge field, as weil.
Phe o yenorsiioation o [7) genersidcs & 1o Mo Cg }3_3 B, heaiiiolr
§ . e 2 ..
arvizars whon the two uspin fields are contracted in the y S7-like towin.
° )
Fotiewing o in Yo in order to eli-
g X
_ 2,
manate it a term .2 b A T

this rec JIJ]OW relation,
1 w' read then

together with the cor-

22A; 5

n Az}

(9)

u' = bHu - 4kn+8) u? Ayt 28 uZ A, -4
28= b 2 {1 - 8(+2) u A, + 2(n + 4) Z A}
ot w {1 - 8§(m2) u AZ 8 Z Az + 2w
e bz (v + 4(n+2) u Al 47 A ~ 2

1

o

Eguations (§) have eipnt fixed points. {In ref. (6)
exist, since thely parameter space has an additiona
ding to an cncrgy-energy . coupling).

.
S

The fixed-point par alues, the eig

,...

vecter obtained by lings ing (8) (see reference 1

vith the omeronts v (corretation lengtll) and

i table 1o It 1s seeon from table 1 that the cight

ereupsd dn four grouns cach one 5pcci{ying a on
The oo 4 case s the Loxder Tine for the

n Al}

, sixteen fixed points

1 coordinate correspon-

.

envalues and the elgen—

4, for axamplc) together

(specific heat) are shown

fixed points may be

critical bebaviour.

o~~~
ot
[y
o

¢

of

AR

oxche

Lirs
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I
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botwers the fixed points; in what follews we shall limit the discussion
for n in the interval 0 < n < 4. The points labﬁlled with 1 are then the
most siahie In each group.

ailtonian is such that z = w; this corresponds

G, ceca stablos I one dntegizates cut the Yo O both for q = 0 and
G 0 - hecets on Haniltonian analogous to (7) but with o = z = 0 and
an effective v given by Ugpp = W 2/2, thg right hand side of the l?sf
cquation rcferiné; to ﬁhe situation vhere the integfétion has not yet becn
carried out. It is seen from teble 1 that this corresponds to H 2, the

integration cecreasing by one its stebility. The Gaussian point G 1 is

analogous LD H 1 but with the further condition u = z/2, thus decreasing

o

by one its stability. If, again, we integrate out thehyd we will get

o=z =u =0, the {ixed-point G 2, totally unstable.

P11 is obtained by imposing the constraint Yo = e in,(7), where
6 is a constant. The yOSZ teym in (7) may then be added to the first one,
thus giving a shift in r and © = 0. The constraint increases its‘stability
by one, K1 being the most stable fixed point, supposed to govern thevc1§;

tical behaviour of the systan. Rl 2 is obtajned6 by inposing a constraint

il

-

0

(=

An (7) of the fowm G(yo - 8) and integrating out the yq # 0 fields (z

and Ugpp & U - z/2). T 2 has thus the same degree of stability as H 1.

-

~ The spherical fixed-points are obtaixed by the same procedure as

described for the Wi points, but with the “QJL*Boua] restriction u = z/2

3

s decreasing by one their stability. 1t is secn from Table 1 that the

R T S RN - PR N : : 4 . 8

critical coponents of U ond 5 are those ol H and G, but renormalized™, as

oxpected. The integration of the Ya in (7) introduces an cffective u given
1

H . . ‘e PSP TR S et . . 4 .
DY Uipee T 0 o-oz/2, anostated whove, Thus the gaussian and the spherical

AN J:Q_Ixﬁh sOr Gt

to texcritical poants of the uneronstrained and

S T S S
Constratngt vy

e

ten, rCsneciively,

Y



IT - b) The Hubburd model

r
Do

e

First 1ot us discuss the occurrence of first order transitions.

bt
bt
o]
"
-,
i
4 »

absence of spin-cherg

This 14 never sciisfied for a e fe

in a transition metal with a rapidly
2 2

&y

gions in cnergy for vnlch “HN/AET > 0

alternate ard be comparable in size.

term becones nepative when

Ui

]

!

v
TRV

i
ey

Thus, a first order transition

. gas, 1t will never occur; in a trans

a fivst order transition are

.

tism (Stoner's criterion).

A RS R T
motals oxhibit Sw’:(‘_(_}})d or

jah

cr phase tra

]T i (i) ]h'\(‘l) KLJ‘ (,J (h(_.

o pavacreonh (T1-0) we have

o

{

tends to be inhibited.

shrunk teowasrds the
¢ density of states. The

Thus we can understand

"I 11 |CE£‘1 D'(u "7 ties

arge coupling, the cond ition for a first ordﬁr

> 0
Eg

Il

)

']
N

CLis

rion gas where N(E)m,\ﬁz

]

varying density of states, the re-

and those for which dZN/dE2 < 0 should

) .. 4
charge coupling, the effective S

.

) -
dE

};:F

e RS e et e

1+ U ?Q_(EP)

In a frec fermion
tion metal the chergy vanges favouring
2
. . ... 4N
extroma with -~ ?
dE
latter are unfavourable for mapne-
vhy most ferrvomagnetic

s1tichs,

Luoo rd modoel

presonted the renoymalization grousn
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aninly

ysis of the Haniltonian (7), thus extending the work of Achiam arxl

7

0) for arbitravy n. In that pg.mormh we have followed strictly the

procedure of (¢), and no emphasis was made in the peculiar form of the

Cine conatants in (7) for the Fubbard model. Now we need to discuss

STlasrty s ieniiite af tha Fisot wodnte {ovn o= d = %y furthemmosco

£
ER R Y P L e~y ~ R G S

the variocus Jiked points obtained chove do not necessarily pertain to the
pavomzter spece of thé Hubbard Hamiltonian. We divide this paragraph in

scveral parts: the region of paramster space describing the Hubbard model,

the vesults for a first order calculation, the connection. with the spoci-
fic heat,a themndynamic analysis of the anomalocus dJH‘CI‘S_LO’lS and {inally

the correlstion function for the nen-critical ficld.

i
(-

d

The spin-chzrge coupling is purcly imaginary. This implies that the
e 5 e 2 . 2 L . : 1
paramelers 2 = g /8 and w = u / 6 are negative. So, if one is to des-
cribe the critical properiies of the Hubbard wodel, only trajectories on
-the parameter space which correspond to Z and » mnegative or zero are
ved. The fixed points consequontly should satisfy this requirement

(6)

also. This differs from the results of Achiam and Imry for whom no

restriction on the parameters werc imposed. It is to be noted that the

allowed yegion (allowed {fixed points) according to ta ble 1 (which is a

first order calculation) should b\ co rofu].l’y discussed.

Wo discuss the allowed region within the first order approximation

in ¢ of table 1. Idrst of all we note that the Gaussian fixed points GI
al G2 ave respectively forbiédcn and allowed for all values of n.  Simi-
Torly tho spherica })\\)’13,53 Sl and 52 sre respectively forbidden and s1lowed
{or a1l n). The Heisenborg and resoraalized Heisenberg fixed points Hl and

MY el N r ey o [OR g 4 3 b h b
ROT are both forbidden for n < 4 thus contresting with 112 and RH2 viich



ihose by 2 forbidden.

.
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o to o obosical weality {cf o below for a further
. - N we . . -7 .- 3
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Piods ol constrained IHeisenberg fixed points
o ditoreons. Azain, 1= 4 is the border line of
tvpicnl feature of the first order calculation.

zhey order in € .

nawic arguments su a way to discuss the

the {fixed points for a*JJtrury order in € ,
- the anomalous

a/\)

any order in €, éz

- is cquel to ¢ = where «

the cerrelation length exponent.

[N

¢ and ¢« we expect a change in sign of ¢
2 z

14 . ‘
correspending  one in o, (For d = 3 and n >

Wo daononstrate now the relation ¢Z = afv,
the use of the fluctuztion-dissipaticn theoren ¢

-~ -
tenv d o x {< BEEEe) -~ <EX)>< E(o)>?

density with anomalouvs dimension ¢,

is the correletion length, one obtains 2¢F

P

relation, onc pets, 8 (Gup]]l"’ of

Lhonve to consider

o A 2 o P . A .1 A ~"‘ 2 v eryreey .. "
"'\'j 4 \'y 1 \i‘ o= Ll ana oy 6 ! 2‘“}/ = d , Whore (_151(1]!1 o ha\,e
tho v Tens dimepsion

The border line n =

sture of the first order approximation in

In fact, it

close to n = 2, due

Fromc v 1
= -0/V 4+ d.
. 4
the form vS',

ancnelous duacnsion of the coupling ve This i
i .

of the Tree enovgy density is d,
.l o
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Clecarly (cf. table 1) for n > 4 the points indexcd

4 is a

e and doss niot corres

analysis).

o  teble 1
a n-dependence of the-

stability. This is a

conclusions can be drawn only by extcniwng
We argue, however that thermody»

exchange of stabilities among

shown below

c¢imension of the coupling
is the specific heat exponent

Now, from the proportionality of

to the

2, @ is negative.)

This follows fron

as applied to the specific

e
where E(x) is the energy

and £ vt =, where €
Clearly from this
a/v

precisely Sak's ve -

where év is

and mg,so

used the fact thot

So the anonlous



dimensica of z 1s G, = 24 —q’uB =d - 2¢
to ¢ aud one has ¢ = ¢_.

iv ) The thennodynamic discussion above, together with the first order

results of tzble 7 sugoest a relation between the spocific heat behaviour

. L P : e - N L T o I 3% VRN S AU
MLH duaoant QX G ard L au LOWad pAaTAe Lol S o103 foy 0o Fabnbhoa
-b} t) &
modol, table 1 one verifies that the fixed points Hi, Rl and RH2Z
* % . .
heve z and o values which ave proportionel to the speciiic heal expone

<. We will meke the hypothesis that, to all orders in e the fixed point

® k3

values for z and o change sign with o . We emphasize that we have no

o
yigorous nroof of this, vhich is only indicated by the anomalous dimension

analysis and by the first order calculation. Once this hypothcsis 1s made
and recalling that the specific heat exponent changes sign from positive to

.

nega

wtive around » o+ 2 one can draw vigures 1 and 2. The chart of allowed

fixed points is then different for n =1 and n = 3. From fig. 2 one secs

ixed point is the most stable onc and corvesponds to
vanishing spin-charge coupling. The renomzz.liz?d fixed point for n = 3 is
then less stable than the Heisenberg onc and this strongly contrasts with
‘the n = 1 case for which the most stable fixed point is the Tenormaliz

Heisenberg with non zero spin-charge coupling. The rumber of allowed fixed
poirits (as contrasted with the rcsults in first order in e) changes with n;

S fixed points for n = 3 ,’md A4 Lixed points for n = 1.

3
1
i

Since the Cauzsian and spherical fixed point coordinates along

the z and v wxds do not change in sign with n to first order in = , and
S0 For all ordors, they ave coumwn to both {igures. Their
low, Note that for n = 3 (usual case), since the most

velite i o e Yo . P U T . . e m e -
< 0_,:.11,1.'., (‘ N ?,--‘\!1}\' }J.,!:) V& n“] (} Vi ‘.)) 51)111"\}!-}!5‘0 (Ov»\l] 0 17 1}]['(;1*()5, L,J_]]{; O.‘ffCCtS

ved Twoaph crossover effects as indicated in Fig. 2. There
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€X1s1s 4 particular surface in paranztor s»nace such that Habbard hamilto-
nens represented by points bolonging to this suriace bave critical pro-

&

pertaes soverned by a fixed point Hi with non zere spin-charge coupling.

{

As pointed cut by Achiom and Doy, the oxistence of a coupling

betwes the twe ficlds nay indroduce a weak singularity in the correlation

Tunclzon of the charge field .

"To sez this we define:

=

v

it
N

o

<

Y ) = 4
>hy(<1, < Yq Yeq

.

where £ = e“H and H is given by (7).

.

Introducing an exterral field teym in (7) given by ( h vy
- r -

_ 4 q9°q

Lhe end we let h q » 0, trensferining the new hamiltonian by eli-

TUNating the linesr term in Y onc obtains:

ETA . '
{‘1/ \, < (S(Q)Zq (™ )2

L
i
T
+

Ho<®y, G | - 4o

Equation (10) is a typical feature of the cou upling ’QZ among the
SOt and pamecelt 3eld ’ ;
ol weonon-soft field. In (30) we heve conserved the regular teim

¥

contravy 1o Achian and Iavy. This is necessary since

S ey N S AP .
seautern 18 nogative for the vbbard model.  I'rom UK‘ prececdin
H}.L"::".C\‘.'x';\,fgipic arouments this clearly dmsliece oy = at 11 )
ConEmtc argimente thas clearly-dmplics, for g = 0, that the crivical

CN T ey 0 T - 71 PR ' o N
ey v L) ey oy owds peecinely that of the specific heat of



the magnetic systom, namely o. Since o is spall
%, (0,T) to exhibit a small cusp at T when the cr

JAI N

- A
ana

negative, one C?UDLutb

tical behaviour is gover

ned b fixed point with non vanishing spin charge coupling. This cusp is
suburacted ovt from the regelar part 1/8 (eq. 10},
& 3 e - o v v T are Fransoivied via
S U .‘:i':lf,i (Lol Ccosr Clations Dotrmeen 1.‘ Yoo odale Transuiciet vVia
the coupling (o the soft field, one cxpects that the unique independont
YTengih of the problem is the spin-spin cerrelation length . The exponent
TS s R S i . +he bel
n, defined by <y v >nq * ' at T can be found” by comparing the beha-
Y q°-q - ,
viour of the two members in the above definition t )der rescaling. The right
. s . - . 2=y . 2. -d .
hand side and the left hand side scale like b“ % and c¢b , respectively,

where ¢ is given by Consequently we find:

(8).

*
. 22 1 AZ
2T T I b
Usually (one soft ficld) the ¢

case of a fixed point with

ritical exponent

non-venishing

(11)

2,
J

n is 0(e ;oIn

hlinz to the non-

counl

SOfL i CJ d

we get d first ovder correction to n .

The non correc-

ted value ny = 2 reflaocts the fact that yq is not critical, thus suppres-
sing the long wvange behnviovr of the curreiniion function.
g - * ) 1 ) ' -
The Cixed-points with z 0 correspond to uncoupled fields and we
4TI T 3 o ) s A 54 oY ! <+ 1, - vy 2
have already pointed out that it is precisely the coupling that transmits
sane degree of criticality to the Yq ficid.
A 3. : PR _1.-1 . . ~ 3
A Tinal vemark concerning the Hubbard wondel., The allowed fixed
- P Y, . kS -
points should satisfy z < 0. Conseguently in contrast with Achian and Ty,
o e Ty 1 L - - . . g e
the correlation fuaction varies with ¢ with a positive slope near criticali-
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ITT - Summeary and conclusions

Ve derived a free energy functional from the Hubbard Hamiltonian

B

s L H LN % DRSPS S S e - s A PRI -
which explicitly tekes into account the three-dimensional vector naturse of

jeld, d.e., the spin rotational invariance of the original i
tonion. In this respect, we generalized the work of references (5) and (6).

We have foun ¢ stability of the fixed points is significon

]
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tly altered, as compaved to the results of ref. (6}, because of the change

of sign of the specific heat exponent between n =1 and n = 3. Further-

more, because spin-charge coupling is pure imaginary, some fixed points are

not physically attainable. The main change is that the most stable exhibits

unrenormalized exponents and zero spin-charge coupling. A fixed point with
non-zero spin charge coupling is once unstable aud governs the critical be-

. L v

“havicur of a restricted class of Hamiltonians. The singularities of the
‘charge field correlation function, in general, ohey a crossover regime to
reguiar behaviour at the most stable fixed point. The singularity in ¥

is weak, since the corvesponding critical index is o . -In particular o being

5

wgative and small (ux -0.1) for the most stable fixed point and for n = d =

'tbc charge correlation function may at most exhibit a weak negative cusp at
”C, which may not be LdSl]y observed. Vowever thc-sbin charge coupling in
.any case restricts the péssibility of occurfencc of fifst order transition,
since these can occur only if the Fewwd lcvel of the pa“amaénetic metal is
near a dip in the density of states. Since the condition for the existence
of a tricvitical point is given in tewms of the GQHQity of states and its |
derivatives at Ep » N bxtc1ﬁa] varicble controlling these quantitics is

nocessary.  Allowing techniques may bea suitable tool.

Oar woerk sets the stage for 2 treatront of systems whoere both the

spin daeld amd the chinge feld oy become 5091 shmitancously.  There cadore
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Soveral capevimental exanples of charge instabilities in metallic sys -
Urovss however, one should invoke othei mechanisms than those contained in
ths simple Fubbard model in order to explain those eXpQIlN ents. In parti--

Criat, phonoa softening at a given wave vector g due to nesting in the

Fooms suvfooe foond in two-dinensional systemns, for example - may be conjec

-
b

o preluce charge seftening. It is tempting to start with a phenome

(7}, where the coefficients of the gaussian terms

are veplaced by 1 - Ui O(Q), 1 = 1,2 where Ui > 0 for both spin and charge
teyms.  In systems having two or more soft fields the renoymalization group
treatment is qualitatively differvent from that of this work, since the

scating cf‘thé cﬁs rge field must insure that the coefficient of the q2 term

in the gquadratic part is constant. (In particular it can be easily shown

. . - . : ’ ) 3.
that qu critical dimension in that case is dc = 6 and that the temn vo is

In a recent work, Ashkenazi }énd Wegerlg suggested that various Lher
modynanic states in TiZO3 and V203 such as spin ordered state and charge
density waves have almost the same free energy around the transition tcm“n~
3ratmrej In their case the existence of a diverse 1ange of nearly degenerate

instabilities is due to orbital degeneracy. This calls for further study
of coupled spin and charge fluctuation systems. In our case, also, the de-
generacy of the d-band hags been disvegarded., Agein, the Hubbard-Stratono-

vich approach, in a rofaiional invariant form, can be performed in this

Casce. s

In the text we hove considered enly the situation where the n-com-
poneat vector ficld is soft, the onc-camponent {icld being kept non-soft.
The Inverse situstion could alc be amagined end one procecds as in the

nhove case

-
~
P
-
-
—
-
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—
b

vie of the n-component. field is dnposcd
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to be irrelevant. Lxperimental situations where this might happen, con-

cern phase transitions with the occurrence of quadrupolar ordering, toge-
. . : 18 '

ther with a crystallographic transition. It has been pointed out™ that

the n vector model with n > 4 may be used to describe such phase transi-

Lion.
e have considered the electron-electron interaction to be local
As b?lc - discussed in reference (5), a g-independent Coulomb term in (1)

can be justified in tems of s-electron screening in a transition metal

s

iescribed in temms of s-d bands. For pure d-like bands, one expects that
screening 1s less effective and the interactions tend to be long-range.
This particular case should be considered separately since the scaling

must now be different. N

Finally a coment should be made on the apD10\*mdtlon made in
cq. (85) which consistad in disre qarding the g~dependence of the higher-
“order fermion loops. If we expand these functiohs in powers of q (for
w =.0), it can easily be shown that, with the adopted scaling, the new
_temms will be irrelevant. This con*rasts.with the results of Moura et
al.” . Their couplings, after the elimination.of the phonon degrees of
frcedom,‘dﬁgvld only on zngle variables but not on the magnitude of the

Wave VeCiors.

f\\ } Ilt\-\ 1_( \1
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Yicure Caption

ig. 1 - Tixed points physically attainsble within the Hubbard model (n = 1}.

The coordinates of the fixed points are:

= ES *

u zZ (5
H2 t/36 0 0
RH2 €/36 0 - /6
G2 0 0 0

S2 _ o 0 - g2

The arrows indicate the relevance of the various parameters along

the local axis (see table 1),

Fig. 2 =~ Fixed points physically attainable within the Hubbard wmodel (n = 3).

The coordinates of the fixed points are:

uz«'. Z* w:’:
11 €/33 al3 al/3-
112 €/44 0 0
RH1 €733 al3 0 -
c2 o o . 0
S2 ' 0 ) .0 _—-“e“:/c’

The arrows indicate the relevince of the various paramcters along

the locud avis (sec table 3).
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