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ABSTRACT

A multi-parton model with spin dne‘haif partons is proposed.
Clusterization similar to that contained in m6dél by Kemméth Wilson is
assumed. Predictions are mi#de &#55ut the nature of the clusters using
experimental data, The method of order parameters and their corresponding
correlation furctions is appiiéd €o thée case 6f deep inélastic eléctron
-proton &cattering yielding ififofmatiéon ab6iut Elustéfization in  the

proton. This paper serves as an introduétion o the model and is thus
fairly qualitative, succeedifig papérs will explore the model more
quantitatively.
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I. THE MOLEL

Since the name Parton was first suggested by Richard Feynman for
the proposed constituents of the hadron, many different parton models
have been proposed(l-sz some of them assuming the partons to be quarks.
Most of these models could in some way - be  -classified as being
multi-parton models. Recently Kenneth G. Wilson Droposed a - multi-parton
model which uses a cutoff A5>; this article proposes another similiar
version in that, it also, assumes clusterization of the partons.

As is the case with most multi~parton models,one viéws thie proton
as consisting of a very dense, very strongly interacting partonic gas.
In the model proposed here, the only hard and fast assumption made about
the quantum numbers of the parton is that it has spin one-half. Charge
and other quantum observables are left for now as unspecified.

The usual approach in parton models is to use the impulse ap-

proximation at very high energy D

. In this way the scattering = can be
thought of as inccherent scattering off the individual partons. The high
energy and momentum of the scattering particle is required to insure
that;

! (1)

T INTERACTION ¢
where he're Tg represents the lifetime of the bound state of the part-
ons, i.e., the proton. It is assumed here that at low energies, the
impulse approximation is no longer valid for the individual partons, but
is still valid for the clusters formed by the partons. Thus in the case .

of e-p scattering in the inelastic region, the virtual photon scatters

inccherently of the individual parton clusters present in the proton at
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that given time. At lower energies the individual partons are replaced
by their clusters., In this way all the results obtained through the
normal parton model can be translated over to the clusters for the low

energy data. In this assumption of correspondence two things are assumed:

(i) The cluster-cluster interaction is much Wweaker than the basic
parton-parton interaction. In this way one can assume inccherence

of the scattering even though one considers lower energies.

(ii) The lifetime of the cluster is sufficiently long to satisfy the
impluse approximation as applied to the clusters forming a proton

in their bound state. =

II. STATISTICAL APPROACH

A great handicap in trying to lock at individual partons in a
less than infinite momentum freme is that uncertainty enters the picture.
Because of the small size of the proton, the internal momentum of  the
individual partons can be quite high. Uncertainty does not allow one to
think of the parton as being localized inside the proton for even a
short time. Thus, when one speaks of bound states or clusters, one mst
speak of them as being highly virtual and extremely short lived. Using
an analogy from classical physics, that of a gas, a statistical approach
seems to be the most reascnable. One could then consider the proton and
its partons in the sense of a macroscopic-mircoscopic system; using the
collective behaviour at the macroscopic level to infer the properties of

the constituents at the partonic (microscopic) level.
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But in this statistical approach the influence of uncertainty
will still be felt. The density distribution of the partons can not be
thought of as constant or uniform throughout the volume of the proton.
One has at best a statistical equilibrium (the proton being stable) with
a nonuniform density distribution giving rise to regions which can be
labeled clusters that are constantly exchanging partons, but always in

such a way that the statistical equilibrium (the proton) is  preserved.

IIT. CLUSTERS

As the name used by Kenneth Wilson suggests, in a multi-parton
model it becomes quite natural to think in terms of the interaction
between the partons forming same sort of clusterization. If one  indeed
applies uncertainty and obtains a nonuniform density distribution for
the partons in the proton, then quite naturally, one could label . the
areas of higher density as the clusters. Since the partons which make up
the clusters have quantum nunbers associated with them, the clusters
themselves will possess quantum numbers which are just the  appropriate
sumnation of the quantum numbers of the partons contained in it.One then
assumes that the quantum numbers of the clusters can be matched with
those of some well known particle (e.g., a pion); the only difference in

this case is that the particle thus formed is highly virtual.

In the more specializied case of deep inelastic electron-proton
scattering where one assumes a single virtual photon is exchanged, one

can examine those clusters more closely. As the energy and the momentum
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trensferred squared ( q2 ) of the virtual photon are increased, - the
range of the photon will decrease, since the range r can be given byS) s
rc:—l-c(lqzl )‘1/2 (2)
m

Thus at higher energies the photon is able to discern more detail. Since
the clusters are nonuniformities in the partonic distribution, it seems
not too unreasonable, upon more detailed inspection by a more energetic
photon, to find that these clusters themselves are formed by smaller
clusters interacting with each other to form the larger clusters. These
smaller or finer clusters have the same property as that of the larger
ones, in that, they also are highly virtual copies of particles already
known. Thus as the energy increases, finer or smaller clusters appear
and the proton appears to be composed bf more of these smaller clusters
as the q2 of the virtual photon increases. Thus when one considers the
distribution function of the partons in terms of the e-p scattering data,

then it will be necessary to take the range of the photon into account.

Theoretically this idea of seeing smaller clusters  has its
logical conclusion when the q2 of the photon is so large that the photon
views only the individual partons themselves and no longer even senses
the clusters. This would then represent the same situation which is the
starting point forvth'e normal parton model. But there is a major reason
why one might never see the "free'" parton in the final state in an
experiment. Since the partons are very strongly coupled,they communicate
very quickly wit‘ﬁ their immediate néighbors. When a large q2 virtual

photon excites or interacts with a single parton, before the parton
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could be ejected singly, the parton would have via the interaction with
its neighbors transmitted some of the energy. At best then, one could
hope to isolate a "smallest" neighborhood which might be thought of as a
type of fundamental cell. Further, since N, the number of partons present
in the proton, ig very large (or even diverges as some might suggest),
and the partonic rest mass (if such a quantity makes physical sense) is
also probably quite large; then the energy required to liberate a single
parton is perhaps beyond the physically realizable. The energy required
would not be simply that required to put the parton on the mass  shell,
but that needed.to place all the members of the "fundamental cell" on

the mass shell.

The net effect of thinking in terms of partonic clusters in  the
proton is to evolve a sort of bootstrap theory which ultimately does ar-
rive at a truly elementary particle, but due to the reasons given above
one never really sees this "elementary" particle, the parton,in the free
state.

At this point it becomes useful to discuss the distribution func-
tion of the partons, which describes the proton in the terms of the
partonic clusters. The complete discussion of this function will be left
for a subsequent paper; for now the discussion will be limited to the
deternination b‘qf the variables of the distribution function. One natural
variable is the x defined by ref. 1. Here x is the fraction of the total
longitudinal proton momentum that the individual parton possesses in the

infinite momentum frame; if E is the parton momentum and 5 that of the
proton, then

P = x; D (3)
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v In the case of this model the El and x; now correspond to the

it cluster in the proton and is no longer restricted to  just the

, longitudinal part, At very high q2 then one reverts back to the picture
given in ref. 1.

The additional variable, since one is speaking of e-p scattering

would be qz. The number of clusters and/op partons the virtual  photon

sees are dependent. upon the q2 of the photon. Thus if one designates the

+ function as D(x,qz) » one immediate consequence is that:

jD(x,qz)dx =D ) "
with the auxiliary expression that,
. 2
lim N(@™) = NP
q2 T (5)

where NP represents the number of partons present in the proton.

IV. ORIER PARAMETERS

Now the method of order parameters will be used with the quantum \
numbers of the particle in question, the proton, being used as the order
parameters. From the appendix one has that the correlation function for
an order parameter is defined as:
_ 2 '
g(ﬁ,m, = <N)(:q%§ >, <m >2

oo 1=Y ©

Applying this result to the case of deep inelastic electron-proton scat-

(6)

tering, and viewing the equation in terms of the proton, the charge of
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the proton being plus one, this implies that < M >2

= 1. The r?li's repre-
sent the charges of the individual parton clusters.or, at sufficiently
high energy, the charges of the individual partons. Thus here ffL_L becomes
the Q; of ref. 1, and here denctes the charge of the el cluster. It
sh.ould be noted at this point that the final functional form of the func
tion g of equation (6) will probably have .two additional variables for
the following reasons. First, q2 will have to be included since this
parameter ultimately determines the Qi's and the N used in the summation.
Second, one will have to include s, the center of mass energy. The value
£ g is determined by its distribution W(M). As the energy s increases,
one expects this function to change its shape. Alternately as the q2 and
the energy of the interactioh increase, more and more clusters  appears;
thus, unless all the 'clusters would have charge equal to zero, one expec
ts the first term of the righf hand side of equation (6) to grow with
increasing q2 and s, since the likelyihood that the clusters are being
broken up is greater. Thus one could define a function h such that:
h (Q-,s,qz) = L P(N) -g—(-bi’-M—)—-— (7
p N N(qz)
where the dependence on the value one (the proton charge) has been drop
ped and just replaced by the subscript p denoting the proton. N(qz) is
the quantity defined in equation (u4). P(N) is the probability of finding
N clusters. This function also contains the q2 dependence, since one
expects the probability to change with a change in q2. The total expres
sion one now obtains by substituting (6) into (7) is,
; 2

hp(Qi,s,q?') = I P(N) f}——l-'-—) -<N_1(q2) >

2

N NG (8
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The first term of the right hand :side then represents the mean charge
squared of the clusters per cluster. The second, the mean of the inverse

of the number of clusters.

One can now view the proton in two different situations and see

what equation (8) predicts in terms of the charges of the clusters.
| The first case consists of what one could call the quiet proton.
In this case one considers a non-intenacting proton. Here, =~ then, the
charge of the system is always plus aone (one assumes that there are no
fluctuations of the charge, so all measurements yield plus one). This
then implies that the distribution or probability function W(ICI) has the

form,

implying then that

g(Qial) =0 (10)
which in turn implies that
riwcﬁ )
‘,<\ X o> . ﬁs= l (ll)
i=1 %

Since (11) contains the charge of the clusters squared,this implies that
if one of the clusters has -;ai;mazgmﬁ;pm one then all the rest . are
required to have charge zerq.If ‘ar ddditional cluste would have charge
not- equal: tozero, then the mile (1i)woiuldbe violated and one ™ ic1would
expect. fluctuations of the proton.charge. Thus at rest - the proton seems
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to be made upif'ef"only one charged clusterwrththe rest neutral' (e.g. a
virtual préton.cluster, the rest viftudl neutval pions).

Next one considers the case where the vpro'l‘:on is undergoing a scat
tering. Here one looks at the case where it -interacts with a virtual

‘First observation is that

photon in deep inelastic e-p. s‘catteriﬁg.”
the equation (9) and (10) no longer hold. Since the final states of the
deep J.nelastlc sca't'ter:mg may contain many charged as well as uncharged
particles, the W (M) function w::.ll have a form. dependent on the energy s.
In this case the valid starting po:mt for the discussion becames equat
ion (8). Thus one now attempts to llnk equatn:on '(8) with some other
known or expem.mentally obta:mable fmrltlohs +"One poss:Lble relatlon is

a sum rule which has relevance 1n the parton model. this sum rule is

2 o :

@? == (12)
where the right hand side represents the mean squared value of the

parton charges. Now if one again apﬁlkies thebas:.c assumption of this
article, that .at lower energy and .q2 s tl'ie pa,zrtqms in the parton model
can be replécea'_by‘ their cluste'rs:in,e multi-parton model, then equation
(12) is equal to the first term of the right bend side of equation (8) ,

giving the relatlon,

h(Q,s,q)+<N (q)>-—9—f WCv,q)dv
(13

Thus one links hy and < N(q ) > to_ an experm\entally obtainable value.

Although equation (13) has two different functions contained in it
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(b, and < N1 (%) >), if one applies some simplifications, one might
be able to ascertain the asymptotic behaviour of both..

The first simple case is where one locks at very hJ.gh values of
q2. As has been assumed throughout this artlcle, at very high q , N(q )
becomes very large. This would make the inverse of N very smalljthen one
has asymptotically,

2 ; 4 - -
q2 + @ hP(Qi’s’qz) = -R-— f v 1 Wﬂv,q?)d&» (1)
The other case would be in the q‘2 still not €es lavge. In this  region

cne would expect h, to be quite small yet, since the final state might
be a proton plus some nelrtrals. Thus hp could be considered ignorable.
At the same time due to the low qz, the photon will not see too. much
structure in the proton. Thus the value of < N~ (q )‘ > will probably
daminate in the region. This yields the relation,

oo

Nt = —9—- f L, (v,q? v (g2=1ow) (15)
\)

1l

Using the data given at the Kiev conference, cne can then ¥y fo obtain
a nunber for N at the given range availabie.
In this case the sum rule (13) was evaluated for values of w from

ane to twelwe, where w is defined as,

2M,v
w = —1\%’-— (16)
Q
and in this variable,. the sum rale (12) bacaines,
w, :
I w2 Flw)dw an

1
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7

where one defines F(w) = v W2. At the Kiev conference it was reported
that for the proton,
12
f WlFwdw = 0.14 (18)
R

Applying the simplification which yield equation (15), one obtains from
(15), that,

<N>=~7 (19)
The data used in obtaining (18) was data taken at 6° and 10°, with

various values of q2 > 1. But one can express q2 as,

L4

g% = - YEE'sin? (6/2) (20)

Thus if one keeps E and E'(the initial and final electron energies)fixed,
then an increase in the angle means the same as increasing q2 .Evaluating
the sum rule (12) for various angles, one could see whether the sum in

8) has in fact noted that

fact decreases as the angle increases. Gilman
there is a slight decrease, thus tending to confirm that the photon
senses more structure at higher values of q2. As q2 grows the decrease
may either lessen in terms of the rate of decrease, ar the sum rule (12)
may begin to grow since at high q2 cne expects to see the function hP
begin to grow and dominate. |

A further example of possible experimental evidence, is when the
sum rule (12) is evaluated for different values of q2, q2 being  kept

fixed over the integration. In a report by a SLAC-MIT group member % ’
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the sum rule is evaluated for w = 1 to 10 for three different values of

qz. The values are as follows:

10

= 0.156 + 2% for q° = 1,5(G=ev/c)2
‘j' W lF(wdw = 0.141 & 6% = 4.0 (21)
1 = 0.130 + 10% = 8.0

The errors are caused solely by the variation of the R ratio wused to
evaluate the sum rule, where the ratio is defined as the longitudinal
cross section of the virtual photon dividied by the transverse cross sec
tion. The R's used ranged from 0.0 to 0.3. Thus since there seems to be
a noticiable drop in the value of the sum rule, it would seem worth
while to analyse the data in this fashion since there seems to be an

indication of a weak q2 dependence.

VI. OBSERVATIONS

The first observation deals with the case where the «charge is
equal to zero, e.gy the neutron. Then the secand term on the right hand
side of (6) is zero and likewise the term N T in equation (13)disappears.
In cases like this application of the low energy approximation which

yielded equation (15) would not be useful.

The nextcobservation deals with the method of ornder parameters it
seif. In this paper, since.the basic interaction was electromagnetic
in nature, one linked the charge sum rule (12) with an order parameter
expression using the charge as the order parameter. Theoretically one
can do likewise with all the other quantum numbers,wherever cne has an
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- appropriate sum rule of the form of (12) involving a quantum observable.
In such a case one can then apply the methods of this article to infer

further properties of the partons and their clusters.

APPENDIX~ ORDER PARAMETERS

In appying order parameters to a composite system, one considers
the quantum operator M of the total system and the corresponding individ

ual operators m, of the particles forming the system. One assumes that,

N
R= ] A (A.1)

. i
i=1

Then one can define the average value of the operator as,

<M>=M= <] @ (A.2)

1=1

To obtain the previous two equations one has to assume inccherence of

the cluster wave functions. This assumption allows one to consider M as

diagonal and yields the simple result of equation (A.2).But this assumpt

ion is really nothing more than a restatement of the impulse approxima
tion for the clusters.

Now one can define a distribution or probability function for %

This function will be denoted by W(M). Next one examines a quantity cal

led the fluctuation, defined as,

=

N
5 - o 32 ~ 2 s 2
<) m~-<M>»)D=<] m°> -<M>
T jB 3 (A.3)

When one has fluctuations, then one can define a correlation function

g(ﬁ,ﬁ) such that,

‘ N o
gMM =<} ﬁ\iz > - <M> (A.4)
d=1
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This gives rise to two different cases. In the first case the probabili-

ty function WM is just,

WD = &M - T (A.5)
Then equation (A.3) is identically equal to zero and one has no cor-

relation function. Another way of saying the same thing is just,

at (A.6)

The other case is when W(fd) has a non-delta ftmction form; in that case
a non-zero correlation function can be defined and accordingly one has

that,

(A.7)




