NOTAS DE Fisica
VOLUME IV

K2 18

A STOCHASTIC THEORY OF CHROMATOGRAPHY
by

H. MAGEDO, A. L. ZAMITH and J. DANON

CENTRO BRASILEIRO DE PESQUISAS Fisicas
Av. Wenceglau Braz, 71
RIO DE JANEIRO

1958



Notas de Fisica, Volume IV X¢ 18

A STOCHASTIC THEORY OF CHROMATOGRAPHY

H. Macedo, A, L, Zamith and J. Danon
Escola Nacional de Quimica

Avenida Pasteur LOl, Rio de Janeiro, D. F.
(Received October 1lst, 1958)

The current theories of chromatography may be divided in two
main groups. The first group embraces theories which could be called
nacroscoplic, since no explicit assumption is made about microscopic
characteristics of the chromatographic process., Such are the theo-
ries of mass transport (continuous and;discontingoﬁs modéls), which
are based on the theoretical plate concept1’2’3.

In the seccond group of thecories the fundamental concepts are
‘the mieroscoplc characteristics of the chromatographic process and
its statistical natureu’s’é.

The use of these two different approaches have lead to very
different results, a fact that does not emphasize the intimate rela-
tions which must exist between the microscoplie and the macroscopic
description of the same phenomenon.

In this paper a microscopic theory is presented, in which the



.
stochastic varigble is the displacement of the particles along the
chromatographic system. This treatment ellows an easy derivation of
the main results of the chromatographic theories based on the theo-
retical plate concept.

I. CONCEFTS AND DERINITIONS

The chrome »grarphic system is constituted by a stationary phase
uniformly distributed in the whole volume of an experimental arrange-
ment; and a fluid phase which flows through it. Sites which cen ad-
sorb particles {(molecules or ions} from the mobile fluid phase are
distributed in the stationary phase (paper, resins, clays, alumine,
etc. ),

We shall use the t erm adsorbent for the gtationary phase, sol-
vernt for the moving fluld phase and solute for the substance which is
dizsolved In the fluid phase and can be adsorbed by the adsorbent.
Such designations are c¢learly not adequate for all types of chroma-
tography but they can be easily adapted to psrticular systems.

We Shall assume a spatlsally uniform distribution of sites of
the adsorbent, which is & good approximation for adsorbents with a
large number of sites per unit volume,

In thelr passage through the adsorbent the particles of the so=
ltute are alternatively and sucessively adsorbed and desorbed., When
desorbed the particles are carried along in their motion by the sol~-
vennt which flows continuously. When adsorbed the particles remain
Gssentially motionless on the adsorbent, being thus retarded with
s33pect to the front of the solvent.

The motion of the particles in the solvent posesses a random

cnuracteristic arising from its collisions with the molecules of the
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surrounding fluid., The interaction of the moclecules of the solvent
wlth the particles of the solute lmposes on them a movement with
brownlan character. The trajectory of a particle in the solvent will
be that of a typical random=-walk motion which is superimposed upon
the uniform drift by the solvent, If T is the temperature of the sys-
tem, the mean energy associated wlth the chaotic motlon of the par-
tieles is 3/2 kT per particle.

The random characteristics of the adsorption-desorption process
are the following. At the instant of desorption the particle posesses
a well-defined velocity in magnitude and direction. We shalllassume,
as is generally done in adsorption theory that this vector does not
possess any preferential direction and has in consequence a statisti-
cal uniform distribution in the space. In consequence the active
sites of the adsorbent almply retsin the particles from the solute and
do not impose any oriented contribution to their movement.,

While the particle remains fixed to a site it will uninterrup-
tedly suffer collisions from the molecules of the solvent, After a
certain time the particle will pick up Such an amount of energy that
1t may overcome the adsorption barrier and is thus desorbed. The de-
sorption energy which determinates the magnitude of the velocity vec-
tor. in the instant of desorption arises thus from thermal energy fluc~
tuantions. Its mean value is 3/2 kT, since the process is assumed to
be isothermic.

We shall assume that for large intervals of time there exists a
constant relation between the time during which the particle remalins
adsorbed and the time during which 1t remains desorbed. If ot is the
adsorption time, it is clear that (1 = X)t will be the fraction of

the time spent while desorbed. For systems with a large number of
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particles the relation /(1 = &) 1is the equivalent of the partition
coefficient of the particles in the two phases. However when the
system contains only a small number of particles this thermodynamic
concept loses its usual significance, In elther case o and (1 « &)
are respectively the probabilities for a particle to be adsorbed and
desorbed.

This assumption is a simplification which implies the following
consequences. In the first place we take the 1sotherm of adsorption
83 a linear isotherm. In the second place we suppose that the total
time a particle spends adsorbed is not a random variable. This ap-
proximation is valld for a very large number of adsorption~desorp-
tlon events occuring during the transit of the particle through the
adsorbent. It is important to observe that the stochastic character
of the retention time ls the theoretical basis of the Giddings treat-
mentu 5

II. MATHEMATICAL TREATMENT

During 1ts path through the adsorbent a particle from the solute
can be in two essentlally distinct states, adsorbed or desorbed. In
consequence its motion along an axis parallel to the flow of the sol-
vent (X-axis) must be described by two sequences of equations., One
sequence 1s valld for those intervals of time during which the par~-
ticle is in motion in the solvent. The other is valid for intervals
of time in which the particle remains adsorbed.

As a first approximation we shell assume that the column is in-
finite, that is, the dominion of the x variable is =« ¢» s + 0oL

The initial conditions for one particle are

x=0 for t=0 (1)
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In the solvent the particle is submlitted to a force acting along
the X~axis which c¢an be resolved into three components. One compon=-
ent is the dynamical friction between the particle and the surround-
ing media, which is given by:

- cedx/dt (2)
where dx/dt 1s t.e velocity of the particle along the X-axis and ¢
the dynamlical friction coefficlent, This constant depends on the
size and shape of the particle., In the usual cases where the dimen=-
slons of the perticle are comparable to thogze of the molecules of the
solvent the friction ceoeffilcient is not the Stokes law coefficient7o

A second component is the force F which drags the particle to-
gether with the solvent., If v is the linear velocity of flow along
the X~axis, we can write:

F=c¢.v (3)

These two components give a systematlic contribution to the mo-
tion of the particles. A thifd component will give a fluctuating
contribution which 1s characteristic of the brownian movement. This
fluctuating part X(t) is the instantaneous component al ong the X-
axls of the force exerclsed by the molecules of the solvent on the
particle over and above the viscosity.fﬁrcee Regarding X(t) the
following assumptions are madea’g’loz
e = X(t) ia independent of the velocity of the particle.

b = X(t) varies extremely rapidly compared to the variations of dx/dt.
It follows that during the interval of time At, dx/dt changes re-
latively slowly while X(t) fluctuates strongly. In other words, there
18 no correlation between X(t) and X(t + A+t) except when At is

very small.
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¢ - The mean value of X(t) for intervals of time sufficliently large

is equal to zero.
The sum of the three components 1s equal to the instantaneous
force which acts on the particle of mass m and we can write:
mdax/dta = -c,dx/dt + F + X(t) (4)
This equatlon is velid for the intervals (¢, , t2n+1) during
which the particle is in motion. The eguation of motion (4) is the

8,9,10

Langevin stochastlc equation if the intervals of time (t )

| 2n*%2n+1
between two consecutive adsorptions are large when compared with the
intervals of time between consecutive collisions of the particle with
the molecules of the solvent. This requirement is largely satisfied
in the usual conditions of chromatography.

The initisl conditions for () are:

x = x2n for t = t2n

(8)

dx/dt = v,, for t=t

2n
where X5 is the ordinate from the active site wiere the particle was

desorbed.in the beginning of the interval (t ) and Vo, 1s

en’ Pan+1
equal. to the velocity along the X-axls with which the particle was
desorbed. According to the assumpﬁions made in part I the mesn value
of the valociti_e.s_v2n for = large number of desorptions is equal to
BATS, since.vzn i1s . the component along an axis of a vector uniformly
distributed,inhaliuspace.

The sequence of equations for a particle fixed on the adsorp-
gion sites is
t

X = X, for t t (6)

n on -1 ¢t 4ty

For the expliclt integration of equations (4) and (6) it is
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convenient to introduce a new variable defined by

b=t for b, { t & %

Cev - g’(tzv "tayop) foT oty &F & by

= o for by L1 & b4 by (7

T

It can readily be verified that when the particle is in motion

dx/dt = dx/d%
(8)

a®x/at® = a?x/aw?
The fluctuating force X(t) in the new time coordinate becomes
X(0) with the same properties of X(t).
The initial conditions (5) must also be expressed in the new
coordinate b . This is easily done by introducing a new instantaneous
force ’f("G) acting on the particle at the instant t2n of the desorp-

n
tion = and consequently at the instant b= tan-—z (tzy'tzv-l) and

imparting to it a veloclty along the X-axis equallto Vo, According
to the assumptions made in part I, y(’(o) will be a fluctuating force
with mean value equal to zero for a large number of desorptions.

In thia way we get instead of equations (), (5) and (6) a sin-
gle stochastic equation:

med®x/d %2 = -c.dx/a% + F + X(% ) + ¥ (%) %)
9

or
modax/d"(o'a = - codx/d%+ F + ¢ (B)
where the fluctuating part ¢ (4 ) = X{G) + ¥(%) has the same
properties as X(t), |
Equation (9) is the Langevin stochastic equation with a driv-

ing force F. We introduce now the following variable:
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X' = X - ve% (10)
and cguation (9) becomes

med®x1 /A% = -c.dxt/d% + ¢ () (11)

8,9,10

The well-known solution of this equation gives the proba-

bility distribution P(x',%) that the particle will find itself be-

tween X' and x' - dx' after a time G :
- 1/2
02
P{x', % )ax! = { ” z 2c%
on kfrm(g-f-ﬂ- -3+le T - W)
cT
_c{" (x'-—é! (l_e Iﬁ—))
vomy | e Sl dx
7 . et _ 2ch
L 2xtm { 2ol | 3the M -g o)

e T A
In the usual situation the exponential ¢"¢ ©/M jg4 quite small
ard returnirg to the variable x we have:

1/2

2
P(x,’”ﬁ) = (......9_...._} exp [-C(x - V"fa) de (12)
L hrkT % 4 kT %

At this point it 18 convenient to pass from the probability
distribution in x and % to the probability distribution iﬁ X and ¢t.
As we have assumed a probability distribution in t arises only be-
cause the particle has spent a fraction of the time t in movement.
Consequently the distribution in t must be equsl to the distribution
in G, since 0 corresponds to the fraction of the time t during
which the particle was in motion., From the previocus definitions this

fraction is equal to (1 -~ )t and equation {12) becomes:
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Pix,t)dx = [ S J exp [-c.(x = v(1 = d)t) :] dx (13)
UnkT (1 =)t L kT(1 - a)t

Passing from probabilities to frequenclies we find:

l%’é nl: €« : ] oxp [-Ic(x = y(] - o) t)2 ] dx (1l)

LaxT (1 - o)t b kT (1 = &)t

where Z is the total number of particles from the solute which take
prart in the process and dZ2 the number of such particles that will be
found in the interval (x,x + dx) at the time t.

It follows from the previous definitions that the probabllity
Pa(x,t) fdr a particle tc be in the solution (desorbed) in the inter-
val (x,x + dx) after the time t is given bys

Ps(x,t) dx = (1 = &) P(x,t)dx

Substituting in (14) we obtain:

1/2
wdi"’ = [—(-————H L q] oxp [ e (x - v(1 - “)"’)E]dx (15)
LrkT ¢

b k{1 - &) ¢t

where dZ8 is the number of particles that are in the solution .at the
time t in the interval (x,x + dx).

Equations (13), (14) and (15) are the fundamental relations
f'or the chromatographic process in an infinite column and we shall

nivw analyse some physical consequences.
IIT. CONSEQUENCES

The general equation (13) is valid for systems with an extreme-
iy low number of particles or even with a single particle. However,

1% is known that the deduction of (13) from the stochastic equation
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( 4) reguires that certain statistical requirements must be fulfilled
wil tiiout which it 1s not possible to specify a probability distribu-
tion. Suppose that the solvent contains a single particle of the so-
lute . The validity of equation (13) requires that the time of contact
sclute-solvent with the adsorbent must be large enough to ensure that
a large number of adsorption-desorption events will occur., In these
conditions the prediction of the position of the particle at the in-
stant t in the adsorbent can be made from eguation (13) with the usual
atatisticéi,estimativeso It should be noted that in jon-exchange
experiments with Mendelevium the elution position of this transcurium
glement has been determined with a single atom of the elementlle

We shall now consider other consequences which follow from equa=-

tions (1l) and (15),

For a chromatographic column (or paper) with constant cross-
section 3 we have the following relations:
Ve = S.v.t ' (16)
where Vt is the volume of solvent that has passed through the column

until the time t.

The volume of column from the origin x = 0 to the length x is

VX =35 « x
Introducing the variables V., and Vx in (15) we found
1/2 2
: . -P(V_ -(1 - a)v
%ég I: SoF ] exp (X t) ax (17)
LrET (1 = &) V KT (1= @)S.V
t t

Since (dZ/dx).(m/S) = C

where ﬁx is the total concentration of particles (adsorbed and in the
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solvent) in the segment of column between x and x + dx, we find by
substitution in {(17):
1/2 2
F ~F(V, - (1- V)

C. =M exp (18)
% YnkT (1= @) 8.V, YT (1= @) SeV,

where M is the total mass of solute,

It can be seen that independently from the values of the constant
parameters F, T, & and S, the function represented by (18) has a bell-
shaped form with increasing flattness as Vtrincreases. It is important.
to point that the retention of the particles by the adsorbent sites
have a strong influence in the dispersion of curve (18). The pre-
sence of the factor (1 = O) 1s“res§onsable for thls influence,

In order to obtain the concentration in solution CS in the seg-
ment of column between x and x+dx after passing a volume Vtof solvent
wo must start from equation (15) and making the above mentioned sub-

stitutions we get:

/2 T p(v_ (1~ a)v.)?
C,6 =M Fi- «) exp ( X ﬁ) {19)
h.‘ltk‘rsyt l;kT(l" Q)Savt

The value of x at the time t corresponding to the maximum con-
centration (peak of the elution band) is gilven by:
Ve = (1 -0 vt,x (20)
or explicitly by
x= (1 =«)vet (21)
In the case of chromatography in a strip of paper we have

Vet =X + 37 (22)

where x + y is the linear distance travelled by the front of the
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solvent.
Substituting (22) in (21) we obtain:
l - = {/% +y = constant {23)
g relation which is equivalent to Martin and Syhge's expresaion for Rf,
For a chromatographic column the relation (20) takes a more con-~
venlent form introducing the volume V; sweep by the peak of the elu~
tion curve until the length [, V¢ Ve 1s now the number of "column
volumes" of solution which it is necessary to elute before the peak
of the band attains the ordinate ! of the column., According to ex-
pression (20) we have:
Viig My = 1/(1-a) (2L)
Remembering that o/(1l- &) is equivalent to the partition coef=

ficient Dy,we obtain the well-known relationlzz

D= (Viyy Mg ) -1

The maximum concentration in solution Cs - at the instant t is

3

obtained from (19) which, taking into account (24 ) glves:

1/2
cSm=VP:[.[E°iTJ (25)
9 9 ot o
Introducing (24) and (25) in (19) we obtain:
1/2 - g 12
=F (Vv =V,.)
CS = v-}ii_ N [ -—-F—"_a_} exp t_ﬂpﬁ t (26)
t,0 LnkT LKT Vo o oV

Expression (26} may be uszed as an approximation for the calcu-
lation of the concentration of soclute when the elution is made through
a column of finite length { ,

From equation (26) it is possible to derive, as a particular

case, a relation that was deduced by Glueckauf from the plate theoryB.
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Agsuming that the column up to the length 0 1s divided in N equal
sections of height Al , we clearly have:

b= n.al (27)

Introducing this relation in equation {26) we get:

2
=FN.AL(V, =V )
Gx L Cs m° exyp ' Bl % (28)
s o V o ¥V
BT o Vo o oV
where :
1/2 1/2
o =M (X / Fo AL / (29)
5,m vt,E 2% ' | T2kT

Equations (28) and (29} became identical to those derived by

Glueckauf 1f we make
Al = 2xr/F (30)

which i1s always possible since in equation (27) AL 1s not uniquely
determined,

According to Keulemans and Kwantesl3-the height of the equi-
velent theoretical plate is given by the sum of three terms, one of
which is equivalent to expression (30}, resulting from the contri~
bution of diffusion. The other two terms arise from physical charac~
teristics of the chromatographic process which has been eliminated

in our model due to the simplifications assumed,
IV. PROBABILITY DISTRIBUTION AS A FUNCTION OF TIME.

Expression (12) or its equivalent (14) and (18) gives the dis~-
tribution. of the particles in the chromatographic system for a fixed
value of the time t, This expression is of particular interest for

paper chromatography, since in this case the variable which is di-
rectly obaserved 1is the dlstribution of the solute along the paper

strip.
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However for other systems 1t is convenient to expréss the pro-
bability distribution (or the concentration distribution) of the so-
lute as a function of the time t, for a fixed length x., Such 1s the
situation, for 1nstance; when the elutlon of the sclute 1s observed
through a columm. The curve thus obtained expresses the concentra-
tion of the solute at the bottom of the column (length ! ) as & func-
tion of the eluted volume, or, at constant flow rate;, as a function
of the time ¢t.

In terms of the previously described model the problem i3 as
follows, In an infinlte column a particle is initially at the level
x = 0, After the time t it attains, for the first %time, the level
x= 0. What is the probability Jdistribution in t for a given x = £ o

An exactly analogous problem is the so-called problem of the
first passage, which has been correctly solved for the first time by
Schroedingerlh. This solutlion, applied to our problem, gives the

Tisllowing expression:

(e 1) = b.e1/2 R SRR [ (RS EX S'2T L P
lxkT (1~ ) bt (1 -a} ¢

v (317
where the aymbols have the seme meaning as stated ausve,
The mean time of elution is easily calculsted from equation
{31)s _
t = -—-—L~—~* {32)
(1““ a-) oV

As 13 apparent t is the time required for the maximum of the
probablility curve (12) in x t0 pass by x = L.
The value t . of the time for which m(t, ) is maximum expres=

s2d as a function of the mean time T is

t . =T+ 305402 (33)
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where @ is the variance of distribution (12). For very large values
of the elution time (large variance) the difference between tmax and
% becomes. significant, which obviocusly indicates an incereasing as-
symetry of the elution curve.

It is important to observe that the distribution in time (31) is
very different from that derived by Giddings and Eyring. This 1s due
to the fact that in Gildding and Eyring'as treatment the stochastic vari-
able is the time of retention whereas in our model is the displacement
of the par ticle.
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In pege § equation without numbers
P(x‘,t} ax? = sss0ashooo § m-@z' (x' _m(l"-’%)) 2

« &Xp
2m VQQGUBD oINS I T POHDEDEYETDE
In equation (12); instead of P(X,T) = .ccceos
let us read P(x,t) dx ES ooeo,c.fg_.ueoo

| | /2
In equation(13), instead of P(x,t) d&x = [Ankr &-»'c) t] esoe lot us read

o [ ¢ V-
Plx,t) dx = | goppiimmrn [ oens

In equ&ti@n (14)9 instead of Q‘Z& = [Aﬂkrcli-“j t ] seeoss lot us read

/2
diéz[kaT%uujt] )
~Fo LV, o V)

In Wtion (26)9 Iingtead of eeve eXp [m vt ¢ N v‘ ]em« let us read
]

[mFe?.(Vg Q@vgbz ]
20 OXp KTV R
.0 °'%

In equation (31) let us reads
o e V2 g
PN | -G
(t, ;) = [41.&:1- (i‘_d) ] 9. & ) OXPsss
In equation (33)3 ingtead of % = t+ 362/422 sy let us read
max

e 342 =
£ =t = L

max 40

In page 15, first line; instead of reading ",..of distribution (12).", let
us read %,., of distribution (B’}.“a

In page 14, 23rd line, instead of reading ".,. probability curve (12} in..."
let us read “eaopmbability curve (13) in...%.






