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In this manuscript we introduce an additional condition to the criterion recently presented in this
journal by C. Beck et al. [Phys. Rev. E 72, 056133 (2005)] in order to extract the update scale
of time of the intensive parameter, β in superstatistical time series. With this new condition the
criterion previously presented turns out to be effectivelly capable of evaluating the actual long time
scale. In addition it transforms the criterion into a valuable way to verify, or not, the superstatistical
nature of the process under study.

Nesta Nota de F́ısica introduz-se uma condição inicial ao critério recentemente apresentado por
C. Beck et al. [Phys. Rev. E 72, 056133 (2005)] para extracção da escala de actualização do
parâmetro, β, em séries temporais superestat́ısticas. Com esta nova condição esse critério torna-se
efectivamente capaz de determinar a verdadeira escala. Adicionalmente, transforma o critério numa
ferramenta capaz de verificar, ou não a Natureza superestat́ıstica do processo em estudo.
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Recently, C. Beck and E.G.D. Cohen have introduced
a theoretical framework in order to describe complex
driven non-equilibrium systems. This framework which
is named superstatistics [1] considers that such systems
are described by the superposition of dynamics on dif-
ferent time scales. In other words, this kind of systems
is assumed to be as a composition of smaller space-time
cells in local equilibrium, thus obeying Boltzmann-Gibbs
(BG) statistical mechanics. From one cell to another,
an intensive parameter, β, changes its value and within
each cell the value of β also changes according to a cer-
tain distribution, p (β), after a time interval T [1]. This
time scale is considered to be much larger than the lo-
cal time scale related to local equilibrium. Hence, in the
long-term, the probability density function associated to
an observable, O, of the non-equilibrium system comes
from BG statistics associated with the small cells that
are averaged over the various values of the intensive pa-
rameter,

Pstationary (O) =

∫

PBG (O) p (β) dβ. (1)

As a paradigmatic example [2] we can indicate the case
of a Langevin equation,

dv = −γ v dt + σ dWt,

(Wt represents an ordinary Wiener process) where the
σ, more precisely β = γ

σ2 , is associated with the inverse
of the temperature. If we consider that β(σ) value is
updated, at each cell, on a time scale greater than the
time scale γ−1 needed by the system to reach local equi-
librium, then the long-term velocity distribution will be
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given by Eq. (1) where

PBG (u) =

√

β

π
exp

[

−β u2
]

.

Specifically, if p (β) is a Gamma (or χ2-) distribution,

p (β) = 1
b Γ[c]

(

β
b

)c−1

e−β/b then

Pstationary (u) ∝
[

1 + (1 − q) β0 u2
]1/(1−q)

,

where β0 = b c and q = 1 + 1
c . Consequently, the long-

term distribution maximises the non-extensive entropy
proposed some years ago by C. Tsallis [3],

Sq =
1 −

∫

[p (x)]
q

dx

q − 1
(q ∈ ℜ) . (2)

The superstatistical framework has been successfully
applied not only on the dynamical foundations of non-
extensive statistical mechanics [2], but also on a wide
broad of problems like interactions between hadrons from
cosmic rays [4], fluid turbulence [2, 5, 6], electronics [7]
and economics [8–11] among many others [12].

Taking into account its construction, two obvious ques-
tions arise in the context of superstatistics: Which is the
distribution p (β) associated with the intensive parame-
ter? Which is the time scale, T , of evolution of β? At-
tempts to answer the latter question (which leads into a
correct answer for the former) have been lately presented,
one by analysing the self-correlation function of traded
volume in financial markets [11] and other, in fact previ-
ously presented, for the case of velocity differences time
series, ∆v~r (t) = v~r (t′) − v~r (t) (~r represents a certain
position) in a turbulent fluid which is the proposal we
upgrade herein. In their proposal [5], Beck, Cohen, and
Swinney (BCS) have introduced the following procedure:
(i) Divide the time series into N equal time intervals of



size τ (the length of the signal is N τ); (ii) Define the
local kurtosis κ (τ) as

κ (τ) =
1

N τ − τ

∫ N τ−τ

0

〈

(u − 〈u〉)4
〉

t0,τ
(

〈

(u − 〈u〉)2
〉

t0,τ

)2 dt0, (3)

where 〈. . .〉t0,τ represents the average over an interval of

length τ starting at t0; (iii) Compute κ (τ) for several
interval lengths τ ; (iv) The time scale of evolution

T corresponds to the interval length τ for which

κ (τ) corresponds to the kurtosis of the Gaussian,

i.e., κ (T ) = 3.
In the sequel of this manuscript we show that the con-

dition (iv), although necessary, is not sufficient by itself.
In addition we introduce an extra condition to turn out
the BCS procedure closed.

Consider a time series, x (t) (〈x〉 = 0 for simplicity),
with a fluctuating parameter β updated at each time in-
terval, T . Inside each interval of length T the distribution
of x is Gaussian. For example, x (t) might be the posi-
tion at time t and β a quantity related with the variance.
Another case might be the velocity difference at a certain
point and the inverse temperature, respectively. For this
case, the local kurtosis κ (τ) given by Eq. (3), evolves
from κ (τ = 1) = 1 to the value which corresponds to the
kurtosis of x long-term probability density function,

P (x) =

∫

p (x|β) p′ (β ) dβ.

For a satisfactory long time series of length L we have,

κ (L) ≈

∫

x4 P (x) dx
(∫

x2 P (x) dx
)2 .

Applying the local kurtosis method, κ (τ) increases to-
wards the value of κ (L), since as we augment τ , we im-
prove the local statistics. Nevertheless, an interesting
feature emergences, due to the superstatistical nature of
the time series, if we change Eq. (3) by

κ (τ) =
1

N

N
∑

i=1

〈

(u − 〈u〉)
4
〉

i,τ
〈

(u − 〈u〉)
2
〉2

i,τ

. (4)

When we are able to divide the time series into a set
of intervals which are pure Gaussians, i.e., a sole β, we
obtain a singularity with value 3 for the local kurtosis.
However, that does not simply occur at τ = T as con-
dition (iv) indicates. The equality κ (τ) = 3 happens
whenever T/τ is a integer greater than or equal to 1. Ac-
tually, τ = T , corresponds to last interval length value
for which the local kurtosis has a singularity equal to 3.
This occurs because for intervals that verify

T/τ = Integer (T/τ) ≥ 1, (5)

we only have a replication of the number of intervals
which are associated with the a intensive parameter β.
For T/τ = 1 we stop having this replication and thus we
obtain the true long time scale T .

For τ = 2 T, 3 T . . . , n T ≤ L we still have singulari-
ties, but larger than 3 since they correspond to an aver-
age kurtosis of 2, 3, etc. Gaussians related to different
β’s. Moreover, singularities, whose value is greater than
3, also occur for other multiples and submultiples of T .
Regarding that, we have a succession of singularities for
the local kurtosis, which are obtained when a intervals
verifies the condition

τ × r = T, (6)

where r is a positive rational number.
In Fig. 1, we present an excerpt (upper panel) of a

superstatistical time series of a random variable locally
associated to a Gaussian whose variance follows the dis-
tribution

(σ) =

√

2

π

σ

5
exp

[

−
σ4

200

]

,

and T = 250 (σ plays the role of β for this case). As it
can be seen in the lower panel, the local kurtosis presents
a succession of singularities at τ verifying condition (6)
and particularly the singularities related to condition (5)
which equal 3 (Gaussian kurtosis). This includes the last
singularity with value 3 which concurs to T . Applying
the BCS criterion we would have T = 48 [14]. The utilisa-
tion of Eq. (4) instead of Eq. (3) is fundamental for this
behaviour. Using the latter expression, since the time
intervals (or windows) move continuously (thus overlap-
ping), we always have a mixture Gaussians within the
windows even for τ = T . For the former expression only
non-overlapping time intervals, allowing only windows of
pure Gaussians when we are on the superstatistical scale
of time.

The use of BCS criterion by itself, without taking into
account the singularity structure of κ (τ) vs. τ , might
also cause misleading conclusions about the superstatis-
tical character of a time series. In Fig. 2, we present,
a time series which is both locally and in the long-term
(inexistence of any fluctuating parameter) associated to
a q-Gaussian distribution [13]

P (x) =
Γ[ 1

q−1 ]
Γ[ 3−q

2(q−1) ]

√

q−1
σ2π(5−3 q)×

[

1 + q−1
(5−3 q) σ2 x2

]
1

1−q

, (7)

with q = 1.3 and σ = 1, i.e., a fat tailed distribution with
finite and constant variance which optimises Tsallis en-
tropy (2) for q = 1.3. It is visible in Fig. 2 (lower panel)
that if we apply the local kurtosis method we do not ob-
tain the singularities structure of a superstatistical time
series verified in Fig. 1 (lower panel), simply because this
time series is not of superstatistical kind. The application



FIG. 1: (color online) Upper panel: Excerpt of a time series
where the elements, x, are associated with same Gaussian
distribution within a interval of length T = 250. The vari-
ance σ, related with intensive parameter β, varies according
to the probability density function referred on the text. Lower
panel: κ (τ ) vs. τ . It is visible the succession of singularities
in accordance with condition (6) and that the last singularity
whose value is 3 coincides with the real length of the interval
contrarly to first value of τ which equals 48. The singulari-
ties for small values of τ which verify condition (5) are not
visible, because they are masked by the statistical effect of
small τ . This effect also introduces error in the kurtosis of
the singularities with κ (τ ) = 3 which are sligthly below that
value.The full time series x(t) has 107 elements.

of the BCS criterion as it stands might lead into an er-
roneous classification of the process as superstatical with
a β-scale of 12.5 (approximately). This example empha-
sises the importance of our additional condition. Despite
the fact that Eq. (7) is the Lagrange Transform some
other function f(σ̄), that does not mean that the under-
lying dynamics related with distribution (7) presents a
superstatistical character, as we have shown.

To conclude, in this manuscript we have introduced
a complementary condition, based on geometrical argu-
ments, in Beck-Cohen-Swinney criterion to determine the
intensive parameter evolution time-scale, T , for super-
statistical processes. This additional condition, which
closes the BCS criterion, connects the last singularity
with value 3 in κ (τ) with the time scale T . Furthermore,

FIG. 2: (color online) Upper panel: Excerpt of a time se-
ries with 107 where the elements, x, associated to a non-
superstatistical time series with a probability density function
which is a q-Gaussian distribution with q = 1.3 and unitary
variance. Lower panel: κ (τ ) vs. τ . For this case we do not
have the succesion of singularities like it appears in a super-
statistical time series. The BCS condition κ (T ) = 3 not only
leads to a specious value of T , but also to a classification of
the stochastic process as superstatistical. The inset presents
the region where κ (τ ) equals 3, τ ≃ 12.5. The saturation of

κ (τ = ∞, L = ∞) occur at
“

15−9 q

7−5 q

”

q=1.3

= 6.6.

we have shown that the presence/absence of a succession
of singularities in the local kurtosis of a time series is
fundamental to the classification of a process as super-
statistical, since it represents a coarse-grained effect and
hence relevant on the construction of a dynamical sce-
nario departing from statistical aspects of a system. Last
of all, let us refer that the complimentary condition intro-
duced herein also has clear consequences in the question,
“Which is the distribution associated with the intensive
parameter β?”. Since it brings an accurate answer to the
typical time scale T , it will certainly lead to correct ex-
perimental measurements or numerical evaluations of β
for natural systems and consequently to its probability
density function.

Before ending, let us emphasise two points which are
important in experimental applications of the method.
The first one deals with the fact that, generally, the initial



time for measurements does not coincide with an update
of the intensive parameter. Regarding that, the method
must be applied successively. At each time, the previous
initial time must be neglected until the singularities pro-
file is obtained. Last of all, it is important to refer that
difficulties in find the scale of time T can happen either
when this value is smaller than the minimum precision of
the measurement instruments or T is smaller enough to
be covered by the statistical error effect on the kurtosis
computation. For these cases new methods must be, in
principle, introduced.
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