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Abstract. Generalized superymmetries going beyond the HLS scheme and admitting the
presence of bosonic tensorial central charges are constructed and classified in terms of
the division algebras R, C, H and O. The eleven-dimensional M -algebra falls into this
class of supersymmetries. Division-algebra compatible constraints can be introduced and
fully classified. They can be used to construct and analyze various dynamical systems, the
simplest examples being the superparticles with tensorial central charges which generalize
the Rudychev-Sezgin and the Bandos-Lukierski models.
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1. INTRODUCTION
The generalized supersymmetries going beyond the Haag, �Lopuszański and Sohnius classi-

fication [1] were first introduced by D’Auria and Fré in 1982 [2]. The fermionic supersymmetry
generators are, essentially, square roots operators. Their anticommutators produce a r.h.s.
which is totally saturated and has to be expanded in terms of higher-rank bosonic tensors. It
was recognized, see e.g. [3] and [4], that such supersymmetries are related with the dynamics
of extended objects like branes.

The eleven-dimensional M -algebra, given by

{Qa, Qb} = (AΓµ)ab Pµ +
(
AΓ[µν]

)
ab

Z [µν] +
(
AΓ[µ1...µ5]

)
ab

Z [µ1...µ5].

(1)

is an example of such a generalized supersymmetry. We recall that, in Minkowskian eleven
dimensions, the fundamental spinors are 32-component, real (Majorana) spinors. The satu-
rated bosonic r.h.s. is in this case given by the most general 32 × 32 symmetric matrix with
528 bosonic real components, expressed in terms of 11 vectors, 55 rank-two and 462 rank-5
antisymmetric tensors (11 + 55 + 462 = 528).

The “generalized momenta” Pµ, Pµν , Pµ1...µ5 entering the (1) r.h.s. can be associated to
“generalized coordinates” Xµ, Xµν , Xµ1...µ5 , while the supersymmetry generators Qα should
be associated to the Grassmann superspace coordinates θα. This kind of structure can be
used to introduce a class of models, first produced by Rudychev and Sezgin in [5], known as
“superparticles with tensorial central charges”. These models realize a generalization of the
Brink-Schwarz superparticle since they allow the presence of bosonic tensorial coordinates.
It was later proved by Bandos and Lukierski in [6], see also [7], that a different formula-
tion of the Rudychev-Sezgin models in terms of complex generalized superalgebras (the basic
ingredients being complex supersymmetric charges), describes towers of massless particles
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with higher helicities. A previous proposal by Fronsdal [8] of using tensorial coordinates to
produce a tower of higher spin particles was concretely implemented in the Bandos-Lukierski
framework. In this talk we discuss the following items. We point out at first that, since
spinors can be introduced in association with each one of the four division algebras (real and
complex numbers, quaternions and even the non-associative algebra of the octonions), see e.g.
[9], generalized supersymmetries can be introduced in association with each one of the above
division-algebras in each space-time supporting the corresponding spinors. Later, division-
algebras compatible constraints on the bosonic r.h.s. can be produced [10] and classified [11].
An immediate application of the classification of the (constrained) generalized supersymmetry
concerns the construction of generalizations of the Bandos-Lukierski models and the analy-
sis of their equations of motion, with the possibility of introducing dynamically-compatible
constraints. In the Conclusions some other examples of dynamical systems currently un-
der investigation, which are based on the present classification of (constrained) generalized
supersymmetries, will be mentioned.

1 Division algebras and generalized supersymmetries

The four division algebra of real (R) and complex (C) numbers, quaternions (H) and octo-
nions (O) possess respectively 0, 1, 3 and 7 imaginary elements ei satisfying the relations

ei · ej = −δij + Cijkek, (2)

(i, j, k are restricted to take the value 1 in the complex case, 1, 2, 3 in the quaternionic case and
1, 2, . . . , 7 in the octonionic case; furthermore, the sum over repeated indices is understood).

Cijk are the totally antisymmetric division-algebra structure constants. The octonionic
division algebra is the maximal, since quaternions, complex and real numbers can be obtained
as its restriction. The totally antisymmetric octonionic structure constants can be expressed
as

C123 = C147 = C165 = C246 = C257 = C354 = C367 = 1 (3)

(and vanishing otherwise). The fact that the structure constants are antisymmetric implies
that the anticommutators between imaginary elements is a specific realization of the basic
relation of the Euclidean Clifford algebra ΓiΓj + ΓjΓi = −2δij . As a result, matrices with
division-algebra valued entries satisfying the basic relations of Clifford algebras in differ-
ent space-times can be produced [9]. They act on corresponding, division-algebra valued,
spinors. The generalized supersymmetries are known as “real”, “complex”, “quaternionic”
or “octonionic” according to the nature of the supersymmetry charges.

If the real spinors Qa have n components, the most general supersymmetry algebra is
represented by

{Qa, Qb} = Zab, (4)

where the matrix Z appearing in the r.h.s. is the most general n × n symmetric matrix
with total number of n(n+1)

2 components. For any given space-time we can easily compute
its associated decomposition of Z in terms of the antisymmetrized products of k-Gamma
matrices, namely

Zab =
∑
k

(AΓ[µ1...µk ])abZ
[µ1...µk], (5)
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where the values k entering the sum in the r.h.s. are restricted by the symmetry requirement
for the a ↔ b exchange and are specific for the given spacetime. The coefficients Z [µ1...µk] are
the rank-k abelian tensorial central charges.

In the above formula the matrix A is the generalization of Γ0, needed to introduce barred
spinors. Another useful matrix is the charge conjugation matrix C, which is used in order to
construct rank-k antisymmetric tensors which are all hermitian or antihermitian in the a ↔ b
exchange (see [9] for details). When the fundamental spinors are complex or quaternionic
(let us limit ourselves to discuss this associative case, but the generalization to octonionic
spinors can be made, see [9]) they can be organized in complex (for the C and H cases) and
quaternionic (for the H case) multiplets, whose entries are respectively complex numbers or
quaternions.

The real generalized supersymmetry algebra (4) can now be replaced by the most general
complex or quaternionic supersymmetry algebras, given by the anticommutators among the
fundamental spinors Qa and their conjugate Q∗

ȧ (where the conjugation refers to the principal
conjugation in the given division algebra. We have in this case

{Qa, Qb} = Pab ,
{
Q∗

ȧ, Q
∗
ḃ

}
= P∗

ȧḃ, (6)

together with {
Qa, Q

∗
ḃ

}
= Raḃ, (7)

where the matrix Pab (P∗
ȧḃ is its conjugate and does not contain new degrees of freedom) is

symmetric, while Raḃ is hermitian.
The maximal number of allowed components in the r.h.s. is given, for complex funda-

mental spinors with n complex components, by
ia) n(n + 1) (real) bosonic components entering the symmetric n × n complex matrix Pab

plus
iia) n2 (real) bosonic components entering the hermitian n × n complex matrix Raḃ.

Similarly, the maximal number of allowed components in the r.h.s. for quaternionic
fundamental spinors with n quaternionic components is given by
ib) 2n(n + 1) (real) bosonic components entering the symmetric n × n quaternionic matrix
Pab plus
iib) 2n2−n (real) bosonic components entering the hermitian n×n quaternionic matrix Raḃ.

The previous numbers do not necessarily mean that the corresponding generalized su-
persymmetry is indeed saturated. This is in particular true in the quaternionic case. Some
further remarks are in order. We can expand the r.h.s. of (6) and (7) in terms of the an-
tisymmetrized product of Gamma matrices only when the division-algebra character of the
Gamma matrices coincides with the division-algebra character of spinors.

2 Constrained generalized supersymmetries

In this section we investigate and classify the set of consistent constraints that can be imposed
on the complex generalized supersymmetries.

Saturated complex generalized supersymmetries (i.e. the ones admitting as bosonic r.h.s.
both the most general symmetric matrix P entering (6) and the most general hermitian matrix
R entering (7)) contain the same number of bosonic degrees of freedom as the corresponding
saturated generalized supersymmetries realized with real spinors. In this respect the big
advantage of the introduction of the complex formalism, whenever this is indeed possible,
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consists in the implementation of some constraint that cannot be otherwise imposed within
the real framework.

In [10] the two big classes of hermitian and holomorphic generalized supersymmetries
were introduced and discussed. This result was further extended [11] with a presentation of
a whole new class of division-algebra related constraints that can be consistently imposed.
The bosonic r.h.s. can be expressed in terms of the rank-k totally antisymmetric tensors
(denoted as Mk). It is clear that any restriction on the saturated bosonic generators which
allows all possible combinations of the rank-k antisymmetric tensors entering the r.h.s. is
in principle admissible by a Lorentz-covariant requirement. It is worth noticing that we are
limiting our discussion on the generalized supersymmetries which can be loosely denoted as
“generalized supertranslations”, see [10]. Supersymmetries of this kind present no Lorentz
generators. However, they can be regarded as building blocks to construct superconformal
algebras, out of which the generalized superPoincaré algebras, admitting Lorentz subalgebras,
can be recovered through an Inonü-Wigner type of contraction. It requires the introduction of
two separated copies of “generalized supertranslations”. The implementation of super-Jacobi
identities is sufficient to detect the remaining generators and close the whole set of algebraic
relations defining the associated superconformal algebra. Therefore, all the information about
such superconformal algebras is already contained in the generalized supertranslations, the
subject of the present investigation and classification. On the other hand few particular
combinations of the rank-k antisymmetric tensors have more compelling reasons to appear
than just arising as a hand-imposed restriction on the saturated bosonic r.h.s. They can
indeed be present due to a division-algebra constraint based on an underlying symmetry. It
is expected that restrictions of this type offer a protecting mechanism towards the arising
of anomalous terms, in application to the supersymmetries realized by certain classes of
dynamical systems. This is an important reason to analyze and classify these constraints.
Their whole class is presented in the table below. It consists of all possible combinations of
restrictions on the P, R matrices of (6) and (7) (e.g. whether both of them are present or
just one of them, if a reality or an imaginary condition is applied). The entries in the table
below specify the number of bosonic components (in the real counting) associated with the
given constrained supersymmetry realized by n-component complex spinors. The columns
represent the restrictions on R, the rows the restrictions on P (an imaginary condition on P
is equivalent to the reality condition and therefore is not reported in the table below). We
have

P\R 1) Full 2) Real 3) Imag. 4) Abs.

a) Full 2n2 + n 3
2(n2 + n) 1

2(3n2 + n) n2 + n

b) Real 1
2(3n2 + n) n2 + n n2 1

2(n2 + n)
c) Abs. n2 1

2(n2 + n) 1
2(n2 − n) 0

(8)

Some comments are in order. The above list of constraints is not necessarily implemented
for any given supersymmetric dynamical system. One should check, e.g., that the above
restrictions are indeed compatible with the equations of motion. On a purely algebraic basis,
however, they are admissible restrictions which require a careful investigation.

One can notice that certain numbers appear twice as entries in the above table. This
is related with the fact that the same constrained superalgebra can admit a different, but
equivalent, presentation. We refer to these equivalent presentations as “dual formulations” of
the constrained supersymmetries. Dual formulations are expected in correspondence of the
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constraints

a3 ↔ b1,

a4 ↔ b2,

b3 ↔ c1,

b4 ↔ c2. (9)

It is worth stressing that in application to dynamical systems, which need more data than
just superalgebraic data, one should explicitly verify whether the above related constraints
indeed lead to equivalent theories.

The inequivalent constrained generalized supersymmetries can be listed as follows

I (a1) 2n2 + n, k = 3, l = 1
II (a2) 3

2 (n2 + n), k = 3, l = 0
III (a3 & b1) 1

2 (3n2 + n), k = 2, l = 1
IV (a4 & b2) n2 + n, k = 2, l = 0
V (b3 & c1) n2, k = 1, l = 1
V I (b4 & c2) 1

2 (n2 + n), k = 1, l = 0
V II (c3) 1

2 (n2 − n), k = 0, l = 1

(10)

The integral numbers k, l have the following meaning. For the given constrained super-
symmetry the bosonic r.h.s. can be presented in the following form

Z = kX + lY, k = 0, 1, 2, 3, l = 0, 1, (11)

where X and Y denote the bosonic sectors associated with the V I and respectively V II
constrained supersymmetry.

In association with the maximal Clifford algebras in D-dimensional spacetimes (with no
dependence on their signature), the X and Y bosonic sectors are given by the following set
of rank-k antisymmetric tensors

X Y

D = 3 M1 M0

D = 5 M2 M0 + M1

D = 7 M0 + M3 M1 + M2

D = 9 M0 + M1 + M4 M2 + M3

D = 11 M1 + M2 + M5 M0 + M3 + M4

D = 13 M2 + M3 + M6 M0 + M1 + M4 + M5

(12)

Formula (11) specifies the admissible class of division-algebra related, constrained bosonic
sectors.

3 Real superparticles with tensorial central charges.

Let us at first introduce the superparticle models with tensorial central charges, based on
real generalized supersymmetries. It consists of an extension of the first-order formalism of
Brink-Schwarz used to formulate the ordinary massless superparticles.
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The most general action S involving real spinors is constructed as follows [5] in terms of
the real superspace coordinates Xab, Θa conjugated to the superalgebra generators Zab and
Qa of (4) (Xab is symmetric in the a ↔ b exchange). We have

S =
1
2

∫
dτtr

[
Z · Π − e(Z)2

]
, (13)

where

Πab = dXab − Θ(adΘb), (14)

while eab denotes the Lagrange multipliers whose (anti)symmetry property is the same as the
one of the charge conjugation matrix Cab, i.e.

eT = εe for CT = εC. (15)

By construction

(Z)2ab = ZacC
cdZdb, (16)

namely the charge conjugation matrix is used as a metric to raise and lower spinorial indices.
The massless constraint

(Z)2ab = 0 (17)

is obtained from the variation δeab of the Lagrange multipliers.
A symmetric charge conjugation matrix (ε = 1) allows us [5] to construct a massive model

by simply performing a shift Z → Z + mC in the action (13).

4 Complex superparticles with tensorial central charges

As discussed before, constrained generalized supersymmetries can be introduced for spinors
which are at least complex. In order to introduce the action for the superparticle with complex
spinors we should mimick, as much as possible, the real formulation. The bosonic matrix Zab

is now replaced by the pair of matrices Pab and Raḃ (respectively symmetric and hermitian)
entering (6) and (7). They can be accommodated in a symmetric matrix P (PT = P) as
follows

P =

(
P R
R∗ P∗

)
. (18)

The supercoordinates conjugated to Pab, Raḃ, Qa and Q∗
ȧ are given by Xab, Y aḃ, Θa and

Θ∗ȧ.
It is convenient to use the notation

Π =

(
dX − ΘdΘ dY − ΘdΘ∗

dY ∗ − Θ∗dΘ dX∗ − Θ∗dΘ∗

)
. (19)

We will also need the matrix

P2 = PCP, (20)



CBPF-NF-018/05 7

whose indices are raised by the metric C. There are three inequivalent available specific
choices for C which are discussed below. The (anti)-symmetry property of P2 coincides with
the (anti)-symmetry property of C.

The Lagrange multipliers enter a matrix

E =

(
e f
g h

)
. (21)

In general, for any U (for our purposes U ≡ P2) s.t.

U =

(
U V

λµV ∗ U∗

)
(22)

with UT = λU , V † = µV (therefore UT = λU), the reality of the term tr(EU) requires

g = λµf∗,
h = e∗. (23)

A reality (imaginary) condition imposed on either U or V implies a reality (imaginary)
condition for the lagrange multipliers e and f respectively.

We are now in the position to write the action S for the superparticle with bosonic
tensorial central charges and complex spinors as

S =
1
2

∫
dτtr

[
PΠ − E(P)2

]
. (24)

As in the real case, a massive model can be introduced in correspondence of a symmetric C
through the shift P → P+mC in the action (24). For what concerns the metric C, it has to be
of the same form as P (see (18)) entering the action (24), with an upper-left (anti)symmetric
block and an upper-right (anti)hermitian block. More specifically, C should be presented as
in formula (22), in terms of two (an (anti)symmetric and an (anti)hermitian) scalar matrices
respectively denoted as U and V . Since U and V are both scalars, their available choices
are therefore given by U ≡ C̃, V ≡ Ã, where, essentially, see [11] for details, C̃ denotes the
charge-conjugation matrix C and Ã the generalization of Γ0.

It is convenient to denote with ε, δ = ±1 (C̃T = εC̃, Ã† = δÃ) the (anti)symmetry and
(anti)hermitian properties of C̃, Ã respectively.

Without loss of generality, three possible choices for C are at disposal. They are given by
i)

C =

(
C̃ 0
0 C̃∗

)
, (25)

in this case C is (anti)symmetric in accordance with the sign of ε;
ii)

C =

(
0 Ã

ξÃ∗ 0

)
, (26)

where ξ is an arbitrary sign (ξ = ±1); in this case the (anti)symmetry property of C is
specified by the sign of δξ;
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iii)

C =

(
C̃ Ã

εδÃ∗ C̃∗

)
, (27)

the (anti)symmetry property of C is specified by the sign of ε. It should be noticed that in this
last case an (anti)symmetric matrix P2 ( P2 = PCP) is only possible, for both non-vanishing
P, R entering P, if the condition

ε = δ (28)

is matched.
The above three sets of choices for C completely specify the available actions for the

superparticles with tensorial central charges and complex spinors.

5 Constrained superparticles with tensorial central charges

The analysis of the constrained generalized supersymmetries can be applied to the dynamics
of the complex superparticles. The equations of motion of this class of models can be easily
derived from the action (24). It is sufficient here to present the constraints arising from the
variations δe, δf of the lagrange multipliers entering (24). Such constraints will be denoted
with the symbols “X”and “Y ”, respectively. In correspondence with the three above choices
for C we get the following constraints
i)

X = PC̃P + RC̃∗R∗ = 0,

Y = PC̃R + RC̃∗P∗ = 0; (29)

ii)

X = ξRÃ∗P + PÃR∗ = 0,

Y = ξRÃ∗R + PÃP∗ = 0; (30)

iii)

X = PC̃P + εδRÃ∗P + PÃR∗ + RC̃∗R∗ = 0,

Y = PC̃R + εδRÃ∗R + PÃP∗ + RC̃∗P∗ = 0. (31)

The analysis now goes as follows. One can check whether the constrained generalized su-
persmmetries indeed apply to the the different classes of complex superparticles models (i.e.,
whether the constraints are compatible with the equations of motion) and whether the du-
ality relations between constrained generalized supersymmetries are indeed satisfied in the
dynamical setting. The detailed list of results is rather complicated and has been presented in
[11].We will not report it here in full generality. Instead, we are limiting ourselves to furnish
a table specifying, in association with the given choices of C the dynamical compatibility of
the constraints discussed and introduced above for generic choices of the spacetimes. We
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get

i ii iii

I yes yes yes

IV (a4) yes yes no

IV (b2) yes yes yes∗ (ε = 1)
V (b3) yes yes yes∗ (ε = 1)
V (c1) yes yes no

V I (b4) yes∗ (ε = −1) yes no

V I (c2) yes∗ (ε = −1) yes no

V II yes∗ (ε = −1) yes no

(32)

The “∗” denotes which choices are consistent only for a specific value of ε.

6 Conclusions.

The understanding of generalized supersymmetry is of preliminary, capital importance, for
investigating the dynamical content of the M -theory, which should be based on a particu-
lar example of generalized supersymmetry, the so-called M algebra. We pointed out that
generalized supersymmetries can be classified according to their division-algebra property.
We can therefore speak of real, complex, quaternionic and even octonionic generalized su-
persymmetries. In the real case the conjugation acts trivially as the identity operator. In
the remaining cases, however, the conjugation acts non-trivially and allows to reexpress the
single generalized superalgebra relation as three separated relations (two of them mutually
conjugated). On these relations we saw that we can impose on the bosonic r.h.s. division-
algebra compatible constraints. We are therefore allowed to speak of constrained generalized
supersymmetries. We have further seen that, in several cases which have been listed, the
one and the same constrained generalized supersymmetry can be presented in different, dual,
formulations. The classification of these superalgebras, presented in [11], was reviewed. Gen-
eralized supersymmetries should appear as symmetry algebras of the M -theory, see e.g. [12].
It is therefore quite important to analyze some given examples of dynamical models based on
generalized supersymmetries. Within our framework we reformulate the superparticles with
tensorial central charges, first introduced by Rudychev-Sezgin and, in a complex formalism
case, by Bandos-Lukierski. We proved that complex tensorial superparticles admit three dif-
ferent inequivalent formulations associated with the choices of the metric used to raise and
lower the spinorial indices. We finally investigated under which conditions the constraints
on generalized supersymmetries can be consistently applied on the equations of motion of
the associated tensorial superparticle models. We should mention that there are at least
two other classes of systems, which are currently under investigation, that can be analyzed
in the framework here presented. The first class of dynamical systems corresponds to the
tensionless strings and branes, see [13]. The division-algebra framework for generalized su-
persymmetries can provide the consistency conditions for the existence of these models (the
so-called brane-scans). Another very important class of models, somehow “orthogonal” to the
tensorial superparticles (since they they admit only particles with spin less or equal than two)
is given by the higher-dimensional Chern-Simon supergravitiesin any given odd dimension,
whose possible relation with the M -theory has been pointed out in [14].
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