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‘Abstract

Within a real space renormalisation group framework, we
discuss the criticality of a system constituted by two (not
necessarily equal) semi-infinite ferromagnetic gq-state Potts
bulks separated by an interface. This interface is a bond-diluted
Potts ferromagnet with a coupling constant which is in general
different from those of both bulks. The phase diagram presents
four physically different phases, namely the paramagnetic one ,
and the surface, single bulk and double bulk ferromagnetic ones.
These various phases determine a multicritical surface which
contains a higher order multicritical line. Particular attention
is devoted to the discussion of the critical concentrafion Ppo-
Here, Pe is the concentration of the interface bonds above which
surface magnetic ordering is possible even if the bulks are
-disordered. An interesting feature comes out which is that Pe
varies continuously with J,/J  and J,/J_. The standard two-dimen-
sional percolation concentration is recovered for J;=J,=0. From
the analysis of the various fixed points obtained within the
present formalism,a very rich set of critical universality classes

emerges.

Key—words: Surface magnetism; Potts model; Renormalization group;

Diluted magnetism.
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I - INTRODUCTION

- During the last decade some effort has been dedicated to the
understanding of surface magnetism (see Binder 1983 for a recent
review). Two main problems can be formulated, namely the free

surface problem (semi-infinite bulk) and the interface or defect

one (two semi-infinite bulks separated by an interface). The former
has received most of the attention through various theoretical
approaches such as mean field approximation (Mills 1971, 1973 )},
series expansions (Binder and Hohenberg 1974), renormalisation
group (Burkhardt and Eisenriegler 1977, Lipowsky 1982), Bethe
approximation (Aguilera-Granja et al 1983), effective field theory
(Sarmento et al 1984), and Monte Carlo (Binder and Landau 1984).
In spite of its technical difficulfies, some experimental work has
also been performed (Pierce and Meier 1976, Alvarado et al 1982).

On the other hand, almost no attempts are available in the
literature concerning the more general problem, namely the inter-
face one (Lam and Zhang 1983, da Silva et al 1985).

The dilution of the surface brings out interesting features
as recently shown (Kaneyoshi et al 1983), within an effective
field theory, for the Ising semi-infinite ferromagnetic bulk. In
the present paper we focus the general interface problem (with
not necessarily equal semi-infinite bulks) for the g-state Potts
simple cubiec ferromagnet (q=1 and =2 recover respectively the
bond percolation and the Ising problems) assuming the (1,0,0)

surface (square lattice) to be bond diluted.
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The approach is a real-space renormalisation-group (RG) one, which
follows along the lines of Tsallis and Sarmento 1985, where the
pure (non diluted) free surface Potts problem has been investigated.
Qur effort is dedicated to the analysis of the phase diagram' and
the various critieal universality.classes.

In section II we introduce the model and the formalism; in
section III we present the results; finally, in section IV, we

conclude.

Il - MODEL AND FORMALISM

We consider the following Potts Hamiltonian:

H=— % 3 & .
<12’:J> Jijsui’ci (ci = 1’2’_._..,q’ui) (1)

where the sum runs over all pairs of nearest-neighbouring sites on

a simple cubic lattice containing a (1,0,0) interface (see fig.l);
Jij equals Jl and 32 (Jl> 0 and J2>.°) for the bulk-1 and bulk-2
respectively, and equals JS when both i and j sites belong to the
interface. Finally Jg is a random variable whose probability law

is given by

P(Js) = (1-p) & (JS) +p 8 (3, -3 ) (2)

(a)

with p € [0,1] and J, > 0.

Let us introduce the following convenient variables (thermal
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transmissivities, Tsallis and Levy 1981 and references therein):

-qu/k T
-1 -e
tp = ——ai kgt ¢ (0.1
1 + (g-1)e (r =0,1,2,s) (3)
as well as
1+ (g-1)t,
in 2
. 1 -t
0
ﬁz—go—--la - -1 (4)
1 n l + (Qfl)tl
1-1

where kB and T respectively are the Boltzmann constant and the
temperature.

To treat this problem we shall construct a RG operating
in the (t,,t;, P} -space (or equivalently in the (kBT/Jl, 357375
JO/Jl,p)-space); Let us first of all take care of the bulk RG
equations, by using (Tsallis and Sarmento 1985) the Migdal-Kadanoff-
like cluster (hierarchical lattice two-terminal graph) indicated in
fig(?_aj. We obtain (Tsallis and Levy 1981):

-9
1 - ti
1 -
3
1l + (q-l)tl
' - : = z.f 5
ty = = STt (5)
1 -ty :
1+(q-11 3
1 +(g-1)ty
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and

t2 = f(tz) (6)

On the other hand, equation (2) can be rewritten as follows:

P(ts) = (1-p) & (ts) +p & (ts-to) (7)

If we associate this distribution with each one of the nine
surface bonds of figure(2(b)), we obtain the following cluster
distribution:

3.3 (o) 3 3.2 (1)
Po(tg) =.(1-p )78 (t-t77) + 3p7(1-p7)° & (t -t {

e 3p801-p%) & (£ -t2)) 4 % 5 (2 -t03)) (8)
where
3 n 3 3
) 3 3
R 3 -t 1-t5
Jny [ 1+(a-1e] | 1+(g-Dt3 C1+(g-1)t2
= — 3 (9)
3 | 3 3 2
1 -t 1 -7 1 -t
2
1 +(qg-1) 3 =3 S
+(@-Dtg | [W(a-1)t] | | 1+g-D) ¢

with n= 0,1,2,3.

In order to avoid analytically untractable parameter prolife-

ration in the successive renormalised distributions, we approximate
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distribution (8) by the following binary one:

Pr(t,) = (1-p') § (t) + p' & (tg - t!) (10)

where p' and té are to be determined.

Td do so we shall preserve the first and the second momenta, i.e.,

<ts>P, = <tS>F,c (11)
2. .2
<tg>py = <tS>Pc (12)
hence,
prty = (1-p3)3t(°) + 3p3(1-p3)2t(1) + 3p6(1-p3)t(2)
9:(3) _ cer b -
+ P t = F(to, tl, tz,p) (13)

« 071012 s et by, ty, ) (14)
hence,
ty = G/F (15)
and

Equations (5), (6), (15) and (16) close the problem as they
completely determine the RG recurrence (in the (tysty,t,,p)-space)

we were looking for.
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III - RESULTS

The RG flow diagram for p=1 and g=2 is indicated in Fig.:(3).
It exhibits (for all values os q actually) the following features:
i) Five different phases are respectively charecterised by five
fully stable fixed peints, at (tl'tz’to) = (1,0,1) (bulk-1 ferro-
magnetic phase; B8F,), (0,1,1) (bulk-2 ferromagnetic phase; BF,),
(1,1,1)(double-bulk ferromagnetic phase; BF12),(U,D,1)(surface
ferromagnetic phase;SF), and (0,0,0)(paramagnetic phase; P);
ii) A multicritiecal line is present which ends (on both sides)at
the surface-single-bulk multicritical points (semi stable fixed
points) SB) and SB,; this line contains also (for t1=t2) a high-
order multicritical point (fully unstable fixed point) noted 5By,
for bigger and more sophisticated clusters than the diamond-like
used herein it might happen that the SB12 and 812 fixed points merge
(see da Silva et al 1985 for a discussion of this point);
- 1ii) At t1=t2=0 a semi-stable fixed point is found (noted S) which
corresponds to the pure bulk- disconnected two-dimensional case;
at t2=0 (tl = 0) we also found the semi-stable fixed points Bl(Bz)

characterising simultaneous magnetic ordering in the surface and

in the bulk-1 (bulk-2), and Bi (Bé) characterising bulk-1
(bulk-2) disordering while the surface still retains its order;
at t0=t1=l (t°=t2=l) we find the semi-stable fixed points 01(02)

corresponding to bulk-1 (bulk-2) disordering, while the surface

and bulk-z'(bulk—l) remain ordered; finally, at t,=t, we found

two other semi-stable fixed points, noted 812 and Biz, respectively
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characterising simultaneous interface and double-bulk ordering,

and double-bulk disdrdering while surface order still rémains;
iv) wvarious universality classes are present, which concern bulk
as well as interface quantities (such as correlation lengths,
magnetizations at various "depths" with respect to the interface,
etc); one universality class is the standard Potts three-dimensi-
onal one (e.g., the bulk-1 and bulk-2 magnetizatlons are characte-
rised by the critical exponent B3D(q), no matter the values cf
Js/Jl or 32/31); another univérsality class is the standard Potts

two-dimensional one (e.g., the interface magnetization is
| characterised on the P-SF critical surface, by the critical expo-
nent BZD(q); it occurs when 4 > Ac, wheré Ac is the value of A
above which interface magnetic ordering is possible even in the
absence of bulk magnetisation); another two universality classes
correspond to A <« ﬁc (e.g., the interface magnetisation is cha-
racterised, on the F'-BF1 and P-BF2 critical surface, by the expo-
nent Bl(q), and, on the P-BF12 critical line, by the exponent
BEB(q); here EB stands for "equal bulk"); the last two universa-
lity classes correspond to A::ﬁc (e.g., the interface magnetisation
is characterised, on the.P-SF-BFl and the F'—SF‘-BF2 multicritical
lines, by the exponent BSB(q), and, through the P-SF-BF,, super
multicritical point by the expenent BSEB(q); here SB and SEB stand
for 'surface-bulk' and ‘surfaceé-equal-bulk', respectively.

Let us now describe the effects of the presence of random

impurities (in the interface) on the thermal critical behaviour of

the system., From equations (5), (&), (16) and (17) we find that the
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critical behaviour of the system depends on whether q is greater

or less than a gq*, where g* = 3.64 in the present apnroximation.

We refer the reader to figs. (42) and (4b) where we illustrate

this situation by showing the RGC flow diagrams associéted with

p <1l in the (to - tl - p) - space (with t2=0), for g9=3 (q<q*)

and g=4 (g>g*), respectively. It exhibits the following features:
i) for q < g*, a semi-stable fixed point is found, namely (t,,t ,p)
= (0,1, 0.682) which corresponds to the diluted bhulk-disconnected
two-dimensional case, that is, the percolation point (noted SP).

It should be noted here, that the direction of the flow is from the
SP point to the pure $ point. Hence, the critical behaviour of the

system is stable with respect to randomness. Also, as t1 increases

from-tl=0, the critical concentration continuously decreases from
its maximum value P.=0.682 down to p = 0.614 {for qﬁ})'Wherertiﬂ
attains'its;crit;cal value t%;

ii) for q > g*, an additional semi-stable fixed point is found,

~ namely (tl, t p) = (0,0.640,0.9) for q=4, referred to as the

o’
random point (noted SR), which emerges from the pure one S
characterising a crossover between pure and diluted bebhaviour.
Notice that now the flow line is reversed and goes from the S
point to the random one SR. Hence, the critical behaviour of the

system has become unstable with respect to randomness .

The switching of universality class which occurs at g=q*
{pure system universality class for g < g*, and random system
universality class for g > g*) is consistent with the Harris 1974

criterion for Bravais lattices, as well as with similar though
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more complex phenomena (Costa and Tsallis 1984).ocurring for
hierarchical lattices.

In fig (5) we illustrate the phase boundaries in the (T-3,/3,)
-space associated with both free surface (figs.(5a-b)) and inter-
face cases figs.(5c-d)); the critical lines between the P and SF
phases are shown for various values of q (fig.(5a)) and p
(figs.(5b-d)). Typical phase boundaries and a few representative
flows are shown in fig.(6), for q=2, in the (to-tl)-space for
both free surface.(fig.(sa)) and interface cases (fig.(6b)); the
critical lines scparating the P and SF phases are indicated for
several values of the concentration p. The interesting behaviour
of the critical concentration Pe {(above which surface'magnetic
ordering is possible even if the bulks are disordered) as a
function of the bulk coupling constant is shown in fig.(7), for
several values of g , for the free surface (fig.(7a)) as well
as for the interface case (fig.(7b)). Note that, when 3,=3,=0, one
recovers the standard two-dimensional bond-percolation concentration.
The fact that p, varies continuously with qﬂﬂéand32/31 shows that
the (free or interface) surface may sustain long range order for
concentrations lower than the ordinary two-dimeﬁsional percolation
concentration (this is due to surface correlations through the bulks).

Finally, in fig.(8) we illustrate the behaviour of Ac as a
function of q and p, for the free-surface model (figs.(8a),(8b)) as
well as for the interface model (figs.(8b),(8d).In dll the cases, the
qualitative behaviour is roughly the same and &C diverges as

q-+ 0and as p » Pe: In particular for the pure Ising free surface
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model, we find ﬁc(pure) = 0.74.. This value may be compared with
0.6 obtained from high-temperature series expansion up to eighth
order (Binder and Hohenberg 1974), with 0.5, the Monte Carlo result
(Binder and Landau 1984),and with 0.30 obtained from a variational
approach (Plascak 1984). The usual mean-field approximation yields
ac=0.25.
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IV - CONCLUSION

This paper discusses the criticality of a system constituted
by two semi-infinite ferromagnetic g-state Potts bulks (with
exchange interactions Jl and Jz) separated by a bond-diluted Potts
interface (with exchange interacfion JS). Using renormalisation-
group methods based on Migdal-Kadanoff-like clusters (diamond-like
hierarchical lattices), we estimate the phase diagrams (for various
values of q), which exhibit a very‘rich set of universality classes
as described in the last section. A study of the g-evolution | of
the critical behaviour of the system , reveals interesting features.
The increase of the number of states of the model corresponds to a
decrease of the critical value Ac(p). Furthermore, as g is increased
over a limiting value q¥*, we find that the impurities drive the
pure system to a new critical behaviour, i.e. to a new set of cri-
tical exponents. This type of behaviour is consistent with the
Harris criterion. Another interesting feature that appears, is the
fact that the presence of a disordered bulk reinforces the "effective"
surface percolation. More specifically, the interface critical
concentration p,(3,=J, # 0) is higher than the free surface critical
concentratidn pc(Jl £0, J, = 0), which in turn is higher than the

pure surface percolation critical point. Furthermore Pe varies

continuouysly with Jl and 32.

All the results that we have presented in this work are valid
in the second order phase transition region, that is, q<qc(2) = 4
for d = 2 and g < qcfﬁ)z 3 for d = 3. However, as the transitions
in the range qc < q < 4 display small latent heat, one can retain

these results as a rough approximation over the entire range UO<g<4.
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The present approach pmovides, in spite of its simplicity, a
clear overall pictﬁre of the criticality of a quite complex
system. From a quantitative point'of view,we have obtained results
which are only roughly satisfactory whenever comparison is possible.
An exception to this general trend is the values for ﬁc'which seem
to be quite accurate. Errors in our results stem from two sources:
the use of small and simple clusters and the use of the binary
approximation for the renormalised distributions. It seems that
the errors coming from the binary approximation are small in
comparison with the errors originated by the use of small RG-cells
(Stinchcombe and Watson 1976, Yeomans and Stinchcombe 1978).
Therefore, to improve significantly the résultS'obtaided here
from a quantitative point of view, one must use more sophisticated

clusters. We are presently working along this line.
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FIGURE CAPTIONS

Cell of two semi-infinite simple cubic lattices separated by
an interface with coupling constants 3 (full konds ),J2

(dotted bonds ...), and J  (dashed bonds ---).

Renormalisation group cell transformation: (a) for the bulks
(transmissivities t, and t,); (b) for the interface (trans-
missivity t ). Here, o denotes the terminals -and e deng

tes the internal modes, which ar%hdecimated.

Flow diagram of the two-state Potts bulks and - . (pure) in-
terface in the tl'tz'to‘ space, showing fixed points and
typical flow lines. m denotes trivial (stable) fixed points;
® denotes critical (semi-stable) fixed points,and o denotes the multicri-
tical (unstable) fixed point. Five phases are possible: bulk-1l
ferromagnetic phase (BFl), bulk-2 ferromagnetic phase (BF2),
double bulk ferromagnetic phase (BFlz)? surface ferromagnetic

phase (SF), and paramagnetic phase (P).

Flow diagrams in the tl'to' (1-p) - space, for the free-surface
problem (t,=0);

(a) the critical curve tg (p) is shown for g = 3 = g*. It

flows from the percolation point S$P=(0,1,0.318) to the pure
point S = (0,0.616,0), indicating that the system is stable

with respect to randomness.
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Fig.5 -

fFig.6 -

Figa? -

~14-

{b) g=4 > g*, and the presence of the random point SR indicates

that the system is unstable with respect to randomness.

Phase boundaries in the (T - Jo/Jl) - space, using the renor-
malised variable TC/Tgn, {here Tzn denotes the ordinary three-
dimehsional transition temperature) illustrating critical lines
between the P and SF phases for:

(a) typical values of g, for the pure free-surface model

(p=1, J,=0).

{(b) typical values of p for the two-state free surface model
(g=2, J,=0).

(¢) typical values of p for the two-state interface (different-
bulk) model (g=2, 3,=3;72)

(d) typical values of p for the two-state interface (equal-
bulk) model (q=2, J2=Jl)..

Phase boundaries in the to' t1 - space illustrating critical
lines between the P and SF phases for various values of con-
centration = p =~ for:

(a) free-surface model, t,=0

(b) interface (equal-bulk)model, t, =t

Dependence of the critical concentration Pe upon the bulk
interaction strength for several values of q for the:
(a) free surface model, J, = 0.

(b) interface model
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Fig.8 - Dependence of 4, upon:

(a) q, for selected values of concentration p, for the free-
surface model (32=0);

(b) gq, for selected values of p, for the interface model
(equal-bulk) model (J;=3,).

{(c) p, for selected values of q for the free-surface model
(3,0). |

(d) p, for selected values of q, for the interface (equal-

bulk) model (Jl=J2).
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