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ABSTRACT

The quantum average of the Wilson Loop is computed
through Fourier analysis of the potentials and functional inte~
gration over the coefficients. Simple results are obﬁained in
the abelian case as well as in the N » « limit of the non-abeli

an theory



INTRODUCTION

The Wilson Loop (WL) has apparently all the relevant
information contained ingauge fields. The difficulty-with this .non
local gauge invariant guantity laies in finding equations of mo
tion, solving and interpreting them. A fruitful and simple meth-

(1112}

od is the 1/N expansion introduced by t'Hooft . Evolution e
gquations in this approximation have been found by Makeenko and
Migdal 31 141 |

It seems of interest to introduce the Fourier analy-
sis of the Gauge potentials to see what kind of operation it in-
duces on the WL, after performing the corresponding functional
integration.

In this paper we aré going to compute the WL aver-
age for non-abelian gauge theories in the N+« limit, aiso for
comparaison we find that average for the Abelian case, by calcu
lating the influence of a single frequency and heurisfically per
forming the integration, as indicated in the text

I. Abelian Case

We shall consider ia single Fourier component
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As the longitudinal component of «
in (3) we write

" does not appear
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In order to compute the WL we need

§ Au dz¥ = f

. - uv
sen kex (aukv avku)dc

where, Stokes theorem and form(2) have been used. Taking
~account (4) we have

into
§ Au dz¥= fiai (7)
where ﬂ
fl==[ sen k-m(eikv—siku)dcuv (8)
and the domain of integration is any surface whose border is
the loop. |

From (5) and (7)
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When passing to the limit for an infinite box and proceeding

heuristically (see below), we have, summing up for all frequen
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from (8), we have:

i,? _ _uv_po, i i i, _ 4 _ [SRVIeYs}
(£7) =f""f (auk\)—e\)ku)(epkG eckg = 4f f 5uo kvkz

Assuming that the loop is in the (1,2) plane the only

non zero component of MY ig

£7 = f (14)

so that
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inteqrating now over all frequencies, as was done in ref [6] it

is easy to obtain for example the static potential for any num-

ber of dimensions, i.e.:

II. Non Abelian Case

Now, we shall start from the beginning with

complete Fourier representation for the potentials
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where

au=:ai(k)T@; Ta are the N?-1 generators of SU(N)

Due to the reality condition
o L
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For the field strength we have:

the
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where the commutators terms will be neglected, as g’= N

From (20) we have, then

using (4), (21) can be written

n *Q
j : 5 Ak a, a
jooouwv J 1

To compute the loop we need iaussdorf- Campbell theorem
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Taking into account that TrA =0 and Tr[A,B} =0 we have, for
+

the dominant contribution in the N>« limit
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Again, from (4) ({(and also f ( k) = fpg(k))
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Egg. (22), (23} and (27) allow us to write, for the

joop average
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Formulae (29} and (30) deserve some comments, as in

(21) we neglected the commutator terms which are of order 9.
2

g
{(g? = -35) while for the loop, we kept a term of order §7 .

However, this is a consistent procedure, as if we want to com-
n
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going back now to eg. (30} we write
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In order to compute this determinant, we shall first simplify

the notation:
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note now that the matrix clements are linear functions of g*,

i.e., (see (33))
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The value of A is obtained from (37), setting g*=0,

(from (23} and (36})):
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We will sce below that this factor drops out from the final re

sult.
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ries of determinants .
€x Jrgr
dn N ‘ GSm
a‘é’j‘? L Py g g M4 Mo ... .o
172" " 'm 1t1 22 dg?



n

So,

Finally

and

From (29)

’ag'/;\? =y ket —— £ £ (6™0)”
g gz =0 n" k (2”) nN m
© K #m “t
PR n, \?
B=1 (k’@nk)22 1 fm ‘fm (87%)
k? m o (2M) "y k2 §7k
m

A r 3!’1 i
lrer v S ) £k (43)

L N 4

2 { n * 2
A=A(e —T— | dk}ﬁ o)l (44)
(2i)'’ N ¢
and (34)
2
I(f) g [ a% , = (N?-1)
W = = -+
O i g5 0010 (45)
Putting g’::qé/N and taking limit N~ o

g’ 1 f.z

MR (46

In g?=0 all rows reduce to the diagonal element except

which is given by (38)

which coincides exactly with (12) for the Abelian case .



DISCUSSION

Form (46}, iaz well as {12)) shows the - result of
Fourier analising the gauge field in the N-» « limit. One inte-
grates in the exponential the contribution of each frequency,
coming from the loop form factor |[f|? divided by k?. However,
some remarks must be made about the approximations used in the
non-abelian case. The abelian case is exact. In form (19) we
have neglected the commutator term, which may be a good appro-
ximation in the N+ o limit. But for finite N this clearly is
not true fork values near the origin in which case the commutator
term becomes dominant over the curl term. A similar statement
must be made about (23} and (24) nevertheless it is not trﬁe
that the calculaticn is completely U{1) in character, as the e

valuation of (32) requires the computation of a determinant for
an infinite matrix. Purther, for any finite N, the result form
(45) is different from that of the abelian case (form (16}).

With an uniform treatment of all frequencies the non
abelian case turns out to give the same answer as in the abeli
an one. (Which implies Coulomb-like potentials for n-dimensio-
nal spaces). For a more exact calculation, the low frequencies

(8]

should be separated and treated differently i.e.: the order

N of the group should be ccnsidered a big, but finite number .

Then we have to consider two regions k*:ﬁéf and k > Nl

being a length characterizing the loop)and a different calcu-

(L

lation should proceed in the two regions. In other words, one
should be careful with the order of the limits k-~ 0 and N»® ,

as they do not commute.
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