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ABSTRACT

The free and internal energies and specific heat of the g~
state Potts ferromagnet are discussed. A real space renormali-
sation group approach is presented which recovers a considera-
ble amount of exact particular results for all dimensionaliti-
es (hypercubic lattices). The square lattice case is calcula-
ted in detail by using self-dual clusters (which provide the
exact critical point for all g). Comparison with Onsager re-
sults (q=2) is satisfactory; the general tendencies for q#2
(1<g<4) are exhibited, and the bond percolation limit (gq>1) is

worked out with some detail.



During recent years an increasing amount of efforts
is being dedicated to the study of the g-state Potts model;
this is fully justified if we consider its intrinsic theoreti
cal interest on one hand, and its experimental applicationson
the other (for a recent and excellent tutorial review see Wu
1982). Because of their relative simplicity, the planar lat-
tices ferrcmagnets are the most intensively‘studied and con-
jectural (exact) proposals for both the thermal and magnetic
critical exponents (respectively Y1 and yH) are al-
ready available. In what - concerns the critical
frontiers, those with the anisotropic square, triangular and
honeycomb 1lattices are well established (see Wu 1982 and
references therein); futhermore a conjectural (exact)cri-
tical frontier has recently been proposed (Tsallis 1982) for
the anisotropic 3-12 lattice (which contains the Kagomé 1lat-
tice as particular case) and its dual; finally, approximate va
lues for the critical points of a great variety of planar and
non planar lattices are available as well (see Tsallis and de
Magalhaes 1981, de Magalh3es and Tsallis 1981 and references
therein). However quite little is known about the thermal var

iation, for all temperatures, of relevant quantities (except-

ing of course the =2 case which corresponds to the spin - %%
Ising model). The present work is dedicated to a real space
renormalisation group (RG) calculation of the square spe-
cific heat  for all temperatures, and follows along the 1i-

nes of Martin and Tsallis 1981a,b. Let us anticipate that the

present treatment does not exhibit clear indications of the



q=4 crossover to first-order phase thansitions (Baxter 1973)
and is therefore restricted to 0<q <4.

We consider the following ferromagnetic dimensionless

Hamiltonian

Hv“"i”=K<iZ,j> (@ 85,5, (53702008

(1)
where K>0, v is an arbitrary additive constant, and <i,j> runs
over all pairs of first-neighbouring sites of a given d-dimen-
sional lattice; we note H;({Oi'}) the renormalized lattice

Hamiltonian (associated with a linear expansion factor b>1).

The partition function invariance implies

{oi}

) expl:GY+MY({oi}] ={§i} eXP[MY({Oi})] (2)

where both sums run over all spin configurations, and G_ is the
usual additive constant (see for example Neimeijer and van
Leeuwen 1976). From Eq.(2) immediately follows, in the thermo-

dynamical 1limit, the relation

_ ~d
fY(K)-gY(K)-+b

fY(K') (3)

where fY is the dimensionless free energy per site and ngGy/N,

N being the number of sites of the original lattice.

From now on we shall be concerned with the hypercu-
bic lattices (d=1, d=2 and d=3 respectively ' refer to the line
ar chain, square and simple cubic lattices). Generalising a-
long the lines of previous works (Reynolds et al 1977, 1980 Yeo

mans and Stinchcombe 1979,1980, Chaves et al 1979, 1980,Tsallis



and Levy 1980, 1981, Levy et al 1980, de Magalhaes et al 1980,
Curado et al 1981, Chao et al 1981, Martin and Tsallis 198la,
b) on bond percolation, Ising and Potts problems,we shall choose,
in order to construct our RG recursive relations, the family
of two terminal clusters (Qr more precisely two-rooted graphs)
which is illustrated in Fig. 1 (note that the d=2 elements are
self-dual, a fact which makes them very suitable for the square
lattice, self dual itself). To be more explicit we shall renor
malise a b-sized d-dimensional two-terminal cluster into a sin
gle bond, whose terminal spins will be noted Ma and “B(UA’“B =
=1,2,¢..,9). At the clusters level, the analogous of Eq.(2) is
given by

exp (L, + K (qéuA’qu)] = ) }expLKmnuAqunb] (4)

{ci

2

where ny = b%+(b-1)2(d-1)b%"2  is the total number of bonds of

the cluster, the sum runs over all the internal spins configu-
rations, and HUA“B equals the sum of all two-spin interactions
of the cluster. For example, for the cluster of Fig. la, wehave

II = §
HAUR UA’Ulﬁ-6UA,02+601,02+601,UB+602,UB and, from Eq.(4),we

obtain

L1 Y1
K —-a— «KVL*‘WZ (5)
_ 29K
Wy = eSqK+2(q—1)e 9 +(q-1)qu+(Q‘1)(Q‘2)
W, E2e3qK+2e2qK+5(q—2)qu+(Q'Z)(Q'3)

Y Y2
Ly—-SYK4-?r n W1+ tn w, (6)




These equations recover, for q=2 and y=-1, those appearing,in
Martin and Tsallis 198la (page 5647); Eq.(4) recovers, for q=2,
v=-1 and d= 3, the vanishing magnetic field Eq.(6) of Martin
and Tsallis 1981b (note, in both cases, the nomenclature identi
fication L;ssKé). Eq.(4) provides, for any d>1, a function K'(K)
which presents two trivial (stable) fixed points, namely K=0
and K=, as well as a non trivial one (noted KC and unstable),
which, for d#1,2,», depends on b; in the limit d- 1(d~> =), KC
diverges (vanishes) thus yielding the exact result for all val-
ues of b and q; for d= 2, KC=-%T Ln(1+Y/q) thus yielding the e-
xact vTresult for all values of b and q (this is a consequenceof
the already mentioned self-duality); finally for 1<d<2 (d>2
but finite), the present apprqach presumably underestimates
(overestimates), for any finite value of b, the real critical
temperature, and hopefully tends, for all values of q, to the
exact result in the limit b~ (numerical support to this specu
lation can be found in de Magalhaes et al 1980 for q=1, and in
Martin and Tsallis 1981 b for q= 2).

Let us now relate gY(K) and L;(K) by introducing a

new function D(K) (which has to be found) through the following

equation
Ky =D(K)L'(K 7
g, (K) = D(X)L (K) (7)
By substituting this into Eq.(3) we obtain

- ' -d '
fY(K)-D(K)LY(K)'*b £, (K") (8)

If we perform now the transformation y - y+X, X being an arbi-



trary real number (i.e. if we translate the zero energy), the
hypercubic lattice free energy transforms as fY(K) - fy+A(K)=
fy(K)i-dXK (see Eq.(1)). Consequently gy transforms as
gy(K)->gY+A(K)= gY(K)+-dA [K-b_dK'(K)] in order to  preserve
Eq.(3). Analogously the preservation of Eq.(4) implies that
L, transforms as L} (K) > L, (K) =1L (K)+ A[npK-K' (K)]. Final-
ly, following along the lines of Martin and Tsallis 1981b, we

impose that Eq.(7) is preserved in form (i.e. D(K) does not de

pend on A), and immediately obtain that

-d,,
D(K) = nd K-b_lK (X) (9)
b K-n_ "K' (K)

which univoquely determines the function D(K); It can be shown

that, in the limit K-+ 0 (K> %), K'«KP d-1

(K'b K). Consequen-
tly, while K grows from zero to infinity, D(K) decreases (mo-
notonically) from d/nb to d(b—l)/(bnb-bd).‘Furthermore,in the
limit b~ o, nbmdbd, therefore D becomes a pure topological num
ber (D“Jb-d) for all temperatures.

We have now all the elements for establishing,through
succesive derivations of Eq.(8), the complete set of operatio-
nal recursive relations which numerically provide, as functions
of the inverse temperature K, the free energy, the internal e-
nergy (mdfy/dK)and the specific heat per site C=kBK2(d2fY/dK§

(C independs on y); these relations are (besides Eq.(8))

y _ dD {(+D Y +b_d vy dK' (10)



dK qu dK?.

o dK12

df ! d2L! _ d2f N2 dfy  q2p0
v_ a4 Ly+2 D ap L md Y(dK> o SIS
K2  aK® K g aK?

The analysis of relation (4) and the use of Egs.(8)-
(11) yields (through tedious and quite complex graph considera

tions) the following general results for K= 0:

1

d -
£,00)= -2 A0 ) pyq B2 spng (exact);  (12)
nb(l—b )
d(1ey)- =1 g if b=z
df, (d+3)*?
aTrL:O - (13)
d(1+y) (exact) if b>3 ;
(- dla-1)~ S92 Foazisden)2(d+3) (q-2)]nq if b=2
(d+3)°
S AR G D I L B R P VN (14)
dK? =0 (4d+5)°
\ d(gq-1) (exact) if b>4

and, for b>5 (because of their complexity and relative irrele-
vance, we have not looked for the analytic expressions corres

ponding to b < 5),

a’f

Y _ - 12(b-1) (d-1)
—_— = d(q-1 -2 15
dK*® k=0 (a-1) La-23+ b2+(b—1)2(d—1):|l )

B 5 d(g-1) (q-2) (exact)




and finally

j j cexact
d’ £, i d’ £y

s . s + 0(jd/b) (16)
K=

K=0

therefore, in the 1limit b=, all derivatives are exact at K=0.

Analogously we obtain, in the limit K=o,
fYﬂ:d(q+y)K (exact) (17)

The trivial case gq=1 (to be not confused with the non trivial
limit q~+1 which will be discussed later on and which is iso-
morphic to bond percolation; Kasteleyn and Fortuin 1969) de-
serves a special mention: the present RG yields, for all val-
ues of b and K, sz d(1+y)K hwich is the exact result for all
dimensionalities. Finally, in the case d=1 we obtain, for all
values of b, K and q, fY= ﬂn{eYK[qu.+(q_1)]},which is the ex-
act result.

For the case d=2 (square lattice) we have numerical
ly worked out equations (10) and (11) (together with Eqgs.(4) and
(9)) for b=2,3,4,5 and q=2,3,4 as well as q=>1; the results
are presented in Figs. 2-4 and Table 1 (we recall that the pres
ent RG yields, for all values of b and ¢, the exact critical
point KC). In Fig.2 we compare the q=2 RG results with Onsagers
exact result; in particular, in Fig.2.b we exhibit how the pre-
sent procedure (based on Eq.(9)), which is the natural exten-
sion of the one we introduced in Martin and Tsallis 1981b for
the d> 2 Ising model, is superior to the one we had used in

Martin and Tsallis 198la for the d= 2 Ising model ( note the



disappearance of the slightly negative values for the specific
heat in the high-X region).

The present results (particularly Eqs.(12)-(17), Figs.
2 and 3 and Table 1) strongly suggest that the RG approach here
in introduced converges, in the limit b > =, towards the (still
unknown for q# 2) exact free and internal energies and spe-
cific heat, for all values of K. However it might occur that
this is true only for the low-K region (see Eq.(16)); indeed
the apparent absence (up to b=5) of RG indications for the ex-
pected q> 4 first-order phase transitions could be related to
convergence anomalies in the neighbourhood of the critical point
{or to a need for a larger RG parameter-space).

In Fig.4 we have presented, as a function of the bond
independent occupancy probability p = 1-e" ¢ [0,1] (see Kasteleyn
and Fortuinl969), the non trivial percdolation quantity
Cp = kgl(aC/aq)q:1 = éiT C/k (q-1). Let us give
some details on the bond percolation 1limit (g~»1); we recall that
two sites of the lattice are said to belong to the same cluster
(do not confuse with the same word used in the sense of Fig.l)
if and only if they are connected by occupied bonds (each iso-
lated site is considered as a cluster as well). It is well
known (Kasteleyn and Fortuin 1969, Fortuin and Kasteleyn 1972,
Stephen 1976 and Wu 1977) that the average number of <clusters

f(K) =1_ " :f
59 }q=1 with p=1-e” K and f(K)_ v &

where K= gk. Consequently Eq (8) implies

per site is given by n (p) = [

q:

. KK(p) - ~ ~ =
+ [3fEK ) oK J } where D(K) =D(K) and L'(K)ffLY=O(K)~

1
oK 0q q=1



Furthermore by using Eqs. (12)-(15) we obtain

0, (0) - abd(1-p7") (o) | .

2 (exact); (19)
nb(l-b )
~d|1+ —d=1 if b=2
dn (d+3)*
P - (20)
P p=0
-d (exact) if b > 33
2
/- 2d(d-1) (d“+2d-1) if b=2
(d+3)°
d*n
E = ﬁ - l?éigll% if b=3 (21)
dp -0 | (4d+5)
0 (exact) if b>4;
dsn (p) >
p - 12d(d-1)(b-1) (bre) >0 (exact) if b>5
dp’ p=0 b2+ (d-1) (b-1)

(22)

The use of Eq. (16) leads to the fact that, in the limit b » o,
the exact derivatives (dan/dpJ)p*O are recovered for all val-
ues of j and d. For d=1, the trivial exact result np(p) =1 -p

is obtained for all values of b. In Fig. 5 we presentnp(p) for

the case d=b = 2.



- 10 -

Let us conclude by recalling that we have treated,
within a real space renormalisation group framework, the spe-
cific heat (and related quantities) associated with the square
-lattice q-state Potts ferromagnet. Although we cannot prove
that the present approach tends (at least for the high-tempera
ture region), in the 1limit of increasingly large cells, towards
the (unknown for q#2) exact result, several positive tests (some
d=1 results as well as Fig.2 and Eqgs.(12)-(17) and consequen-
tly Eqgs.(19)-(23)) are encouraging in that sense (at least as
long as the first-order phase transitions, existing for suffi-
ciently high q, are not involved). Therefore results like those
exhibited in Figs.3-5 can possibly be considered as reasonable ap
proximations of reality.

We acknowledge interesting discussions with ACN de Ma-
galhaes, EMF Curado and G Schwachheim. One of us (HOM) is very
grateful to H Vucetich for useful remarks about computation pro

grams; the other one (CT) acknowledges a Guggenheim Fellowship.
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CAPTION FOR FIGURES AND TABLE

Fig. 1 - Examples of two-terminal clusters (or two-rooted
graphs); o(e) denotes terminal (internal) sites or

nodes. (a) d=b=2; (b) d=b=3; (c) d=4 and b=2

Fig. 2 - Specific heat as a function of the inverse reduced
temperature for the d=2 Ising ferromagnet (q=2); the
arrows indicate the critical point (exact). Onsager:...
present RG:——; Martin and Tsallis 198la RG:

. (a) influence of the RG cluster size b;

(b) beneficial effect of the present RG procedure
(Eq. (9))

Fig. 3 - RG specific heat as a function of the inverse redu-
ced temperature for the d=2 gq-state Potts ferromag-

net (... for b=2, ¥q; for b=5, 4 and 3 if =2, 3 and 4

respectively) ; the arrows indicate the criticadl points(exact);
the downwards arrow indicates the critical point associated with
the limit q+1 (C vanishes for all K, in this limit).

Fig. 4 - The d=b=2 RG percolation 'specific heat"

szzkgl(ac/aq)qzl as a function of the bond occupancy
probability p = l—e_K; the arrow indicates the criti-
cal point (exact).

Fig. 5 - The d=b=2 RG percolation "free energy" (i.e. average
number of clusters per site) an(afo/aq)qél as a func
tion of the bond occupancy probability pEEl-e_K; the

arrow indicates the critical point (exact).



Table 1 - Present d=2 RG critical values (and comparison with
exact results whenever available) for the average
number of clusters per site np, reduced internal
energy df_q/z/dK, bond percolation '"specific heat"

]—& and

Cp, specific heat C and o exponent (C « |K-K_
Cp o« lp—pcl—Oc in the neighbourhood of the critical
pointj; a 1s calculated from 2-a=dv where v=ALnb/
ﬂn(dK'/dK)K . The q=2 exact results are from Onsager
1944 ; the q;Z exact results for a are from den Nijs 1979
conjecture (for q=4 a logarithmic factor in the spe-
cific heat appears as well; Nauenberg and Scalapino
1980 and Cardy et al 1980), and those for (df4v2/mOKC
are from Baxter et al. 1978 ((df_q/z/dK)KC:=vﬁ). We recover
previous results from one and/or the other of the follow
ing references: (a) Reynolds et al 1977, Chaves et al
1979, 1980, de Magalhaes et al 1980; (b) Yeomans and
Stinchcombe 1980; (c) Tsallis and Levy 1981; (d) Yeomans
and Stinchcombe 1979, Tsallis and Levy 1980, Levy et al

1980; (e) Martin and Tsallis 1981a, Curado et al 1981.
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b=2 b=3 b=14 b=5 exact
n,(Pe) 0.1406 - - - -
q-1 l/Cp(pC) 0.8410 - - - -
a,b,c a,c a,c a
o - 0.8553 -0.7594 -0.7254 -0.7106 -2/3
df /dKl 1.3412 1.3465 1.3566 1.3652 |vV2=~1.4142
-q/2 K
q=2 kB/C(KC) 0.5024 0.4059 0.3712 0.3536 0
b,C,d,e c,¢ .C,e e
) -0.2973 -0.2187 -0.1900 -0.1758 0(Ln)
ax . . . - /321.7321
df_q/z/ Kd 1.5420 1.5520 1.5764 3
q=3 |kg/C(K.) 0.0558 0 0 0 0
b,c C c
o) -0.0471 0.0234 0.0495 0.0633 1/3
df_q/z/dK K, 1.6563 1.6691 - - /I =2
q=4 kB/C(KC) 0 0 0 0 0
b,c C C
a 0.1033 0.1688 0.1934 0.2068 2/3

TABLE 1



