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ABSTRACT - It is shown that the exchange contribution to the

electron-proton potential Born term in elastic
electron-hydrogen atom scattering arises as the
non relativistic limit from the exchange of a
proton between the two participant electrons _
calculated from quantum electrodynamics including

properly bound states (as solution of Bethe =

Salpeter equation).
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I. INTRODUCTION

It is currently admitted that the interaction between
charged particles in ordinary non relativistic quantum
mechanics is obtained from the appropriate non relativistic
limit of quantum electrodynamics. Expressions for the inter -
action between charged particles and particles and anti -
particles can be found, for instance, in the book by Lifshitz,
Berestetsky and Pitaevsky (l).

If, beyond, we want to study the interaction of
charged particles with more complex systems of charged
particles such as atoms, we need to include in the frame -
work of the theory a fortiori a suitable treatment of bound
states. The problem for two body bound states in a
relativistic quantum description has been solved formally
more than a quarter of a century ago by Y.Nambu, E.E. Salpeter
and H. Bethe and M.Gell-Mann and F. Low(z). In fact,
approximate solutions in quatum electrodynamics became
available only last year(3).

A pure potential scattering description of the
scattering of charged particles by atomic systems is not
accuraté since polarization effects are needed to be accoun-
ted for. Nonetheless, it is an interesting problem to
investigate for these physical systems how the potential
theory description in terms of the Born series and the non-
relativistic limit of the more elaborate (and fundamental)

theory match.

The introduction of bound states as possible



asymptotic states in a relativistic quantum scattering
theory was first studied by Eden in a series of papers(4)
unjustly not very often mentioned in the current literature
on this subject. There, a modified interaction picture was
introduced that summed up the effect of that part of the
hamiltonian responsible for the bound states, and the
perturbative series was built through the usual methods on
the rest. An expression for the whole two body propagator
allowing for the interaction of the constituents with

(4)

external particles was introduced by Eden and Rickayzen

(5)

Subsequently, Mandelstam extended Eden results to
general matrix elements of fields including bound states,
and an axiomatic treatment was later formulated by R.Haag,
K. Nishijima and W.Zimmermann in separate contributions(6).

The explicit calculation of the Born terms for
electron~hydrogen atom elastic scattering was performed as
an application by Eden and Rickayzen*(4). In terms of
Feynman graphs, they calculated the contributions appearing
in Fig. 1. These, from a S-matrix point of view, describe a set
of three crossed channel contributions coming respectively
from the exchange of a Coulomb photon between the incident
electron and the electron and the proton constituents of the
hydrogen atom (Figs.la and 1lb), and a separate contribution
from the exchange of both electrons (fig. 1lc). In a
potential theory description they correspond rigorously to
the Coulomb interaction Born contribution, to which they

tend when the non relativistic limit is taken.

There is, however, a fourth term in the Born

*
Unfortunately, this article is marred by a lot of misprints
and by an unorthodox way of writing fermion propagators.



term, the incident electron-proton interaction including
exchange. This is a somewhat controversial contribution,
since some authors claim that it can be obtained from higher
orders in perturbation theory(7).

There is also in field theory a conceivable
contribution to this process, since one notices that the
crossed positron-hydrogen atom elastic scattering channel admits
the quantum numbers of the single proton. It would arise
from the set of graphs like the ones depicted in Fig. 2,
where a proton propagates alone "after" interacting with
one electron and "before" interacting with the other. The
corresponding sum of all these diagrams is represented in
Fig. 3, and it is clearly another exchange contribution, the
exchange of a proton between both electrons. A similar
contribution has been known since a rather long time in neutron-

(8)

deuteron elastic scattering . A careless extrapolation of
S-matrix usual arguments would propose that this contribution
would be of order 1/M {M being the proton rest mass),and that it would
contribute mainly backwards.

Instead, when we calculated it, as is shown in the
next section, we found that in thé non~relativistic limit it
corresponds precisely to the fourth contribution in the
potential scattering first Born term mentioned earlier, the
electron-proton scattering with exchange. Moreover, it does
not prefer the backward direction, and it is of the same order
in potential theory as its corresponding radiative correction,
Fig. 1lc). The fact that the exchange of a massive particle in

the crossed channel is somewhat related to a long range potential

warns again nalfve application of ideas born in a framework into



another.

In the next section we shall proceed to the
calculation of this contribution starting mainly from first
principles. The same result comes from the application of
Blankenbecler, Goldberger and Halpern methods(8). The end
section discusses the derivation of this result and possible

applications, especially in rapport with the application in

atomic scattering theory.

2. CALCULATIONS

This section spans in two parts. The first one
is related to the kinematics, and the second with the calcu-
lation of the proton exchange term.

Let pe(p'e) and P (P')be the initial (final) momen-
ta of the electron and the hydrogen atom, respectively. The
usual well known three relativistic channels corresponding
to this process and related by crossing symmetry are'*:
i) s-channel, for the process e + H - e + H, with a total

four momentum K = P, + P, (=p'e+ P') and with s = K2 as a
scalar invariant related to the total energy in the center
of momentum frame.
ii) t-channel, corresponding in this case to the process e~ +
e+ -~ H + H when the four momentum transfer A = P~ p'e is
time like, and with the scalar invariant
t = A2 (< 0 for the s-channel process)
iiihrchannel,corresponding here to the process e+ + H-+e+ + H

when the crossed four momentum transfer Q = p?e - P is

*
We take A = ¢ = 1



time-like, and with associated scalar invariant

u = Q2 (< 0 for the s-channel process)

2 Mé + 2m2 - s -t

where MH is the hydrogen atom rest mass in its ground state
and m is the électron rest mass.

We stop for a moment to give a detailed calculation
that enlights the meaning of the value u = M2 in the non-
relativistic limit. We shall work in the laboratory frame, but
the final result is not modified when taking the limit M -+ «

in this frame or in the center of momentum frame. We then have

P =20, EH = MH and

u=m’+M - 2E'_ M, (1)
or

B' (W = (® + M - u)/(2m) (1")

Taking u = M2 and writing for the mass and binding energy of

the hydrogen atom the definition
M,=M+m-ce¢ (2)
we have:

-1
E'e(u=M2)= [2Mm + n? - 2(M+m)e + e?] (2m) "L [i + mﬁ%] (3)



Taking into account that € << m <<M

2
a2y 1 m _ _ 1 (m-g)
E‘e(u—M) = (m—-e) + ——2—— T (m €) 7 M +
2 2 2
le m ( €
o O (( w) o (50) ) (4)
. ' 2 >, 2 2 . .
Since E c —p'g+tm , wecan develop both sides in the

non-relativistic approximation and find

E'i (u=M?) + 2 m e= 0 (5)
D,2 2

up to orders [ _g ] ’ £ ' n , the last two being
m M M

negligible when M+, as it is taken for the calculation of
low energy scattering in the Born series. The above expression
looks like the non relativistic condition for the existence

of the bound state if Eéz were the square of the relative
three-momentum of the hydrogen atom. In fact it appears as
such in the calculation that follows.

We shalluse the Coulomb gauge(l)

where the photon propagator in momentum space is

2, -1 > =2
Dij(k) = - 4m (k7)) T ( 833 = k.k.lk|™ %)

i,j3=1,2,3 (6a)



DOi(k) =0 i=1,2,3 (6b)

>
DOO(k) = -4 |k| (6c)
and our conventions for Feynman rules are the ones contained
in Ref.l) page 361.
We shall follow the guide-lines that can be

 (9)

found in K.Nishijima's boo . They are ite similar to
y qu

the procedures advanced by Eden and Rickayzen(4) and developed

(5). They lead to the same results as applying

by Mandelstam
formally the method of Blankenbeler et al.(g)which was
obtained for and applied to neutron-deuteron elastic
scattering.

The content is to start from the three body
to three body scattering amplitude, join two particles in a
common two-body propagator in the initial and final state,
and then calculate the residue of the amplitude at the pole
of the two body propagators.

Use will be made of the one particle and two

particle Feynman amplitudes

§ L (x) =< “’o(_). ‘PI;(X) wé+)> (7)

qﬁab(xl,xz) = qf(lZ; ab) =

(+)
(-) H H, (8)
Yo " TE’a(xl) 1yb(xz)j Yap



where Wi is a zero, one or two particle state, + or - refer to
incoming and outgoing states and W?(x) is the Heisenberg field
of particle i. The two particle Feynman amplitude satisfy a

Bethe Salpeter equation
?f(lz;ab) = ?é(l)<¥b(2) + J d3 d4 45 dé6 K;(l,B) Kg(2,4)G(34;56)
& (56;ab) (9)

where K;(z,m) is the complete one particle propagator and G is
the kernel. For a bound state,¥ (12;B) satisfies the

homogeneous Bethe Salpeter obtained from (9) that may also be

written as

41 -1
d1'da2"ky (1,1") Kp (2,2") F (1'2';B) =

d5 de6: G(12;56) F (56;B) (10)

A ladder solution is obtained when solving (9)or (1l0) with a

kernel of the form:
G(12;56) = & (1,5)¢ (2,6) G'(1,2) (11)

where G'(i,]J) is the propagator of a particle or of the proton
(in QED) and 6 (i,]J) is a Kronecker and /or Dirac delta. A
formal solution of Egs. (9) or (10) is of the form:

qf(lZ;ab) =?;(l)?5(2)+ Jd3 d4 d5 deé Kab(12;34)G(34;56)@;{5)?¥(6)

(12)
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where
B (=) H H H H (+)
Kab(12;34) = < WO , T Wa(xl) Tb(xz) Wa(x3) Tb(x4) WO >
(13)

is the two body propagator for particles a and b, that also
satisfies a Bethe Salpeter equation.
Let us then start from the three-particle to three
particle transition amplitude
4

4 4 4 4 4
ls - 1] ey Py e'l>— J d Yo dypdye,dxedxpdxe,

<e;pye

éf’ezwe)‘%z(yp)‘? (Vg ) O¥gi¥p Yooy 0 ) Fo T, ()T )

(14)

Let us now consider that e, /P and e,,p; are propagating together.

2
This amounts to consider the following relationship between the

nuclei of the amplitudes:

o(l:2:...) = o(12:...) +-Jd3 d4 45 d6 G(12,34) K(34;56)0(56:...)
(15)

and we do not consider the inhomogeneous term, since it does

not contribute when considering the propagation of a bound state.
Here the notation makes evident that we have gathered the
coordinates of two particles. Writing the resulting expression

in a condensed way
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<(egpyle’, [S-1f(eypy)ye’y>=
= N , ;e )K(oeizens :e';ep:e’)
J qucypZQie , o(e,p, ) K( )o(ep:e';ep:e

K(eoeieon) Glaonzeqp)F q ?‘ (16)
1"1"%e)'py e’y

Using the formal solution of the two particle Feynman amplitule

we arrive at

1 - 1
<(eypy)y e’y [S-1l(epy)y e'y>
[ .4 4 4 4 4 4 = .
—Jd}kdypd%,d%dxpd%ﬁin 7(EYJ)NYYY.:ep%
F op e Tl ) (17)

It is this last expression that constitutes the starting point

(4)

of Eden and Rickayzen . We now proceed to calculate the
nucleus ¢ by perturbation theory, corresponding the graphs
drawn in Figs.1l) and 3), or, more precisely, to the part of

those drawings linking all knots. We then have, in an obvious

notation:

_ _ .6 u' v' 4 e
015~ ~e d(ye,,xe,)ye Du'v' (ye,yp)yp { J d 'z, KF(ye,ze)
o B € U v
Yo Dag(xe"ze) Yo KF(ze,xe) }Ye Duv (xe,xp) o (18a)

_ 6 ]J' \)l 4 p
o157 ¢ SWerrXer) Yo Dy Wer¥plyp <J 3 2p Kpl¥pe2p )

Ygl Dug(xe.,zp) us K?(zp;xp)} yg Duv(xe,xp) y; (18b)

)



6 u!

= - e H p v

01p= "& Ko (Ygrrx)vg D(x rx,) Yp Kp (Y, %) Yo Dyynyr (Yer¥p) vy
e o B
R (Yar%g) Yor DoglXaryar) Yo (18c)

o, = e4 S(y _+%X_y) Yu' D (y )Y Kp (y X )Y D _(x_,x_.)

3 e'e' Te “u'v''le'Yp''p TF ! uv - p’fe
Yo 8(y e X)) (184)
P e'%e

We shall now concentrate on this last contribution, since the

(4)

former three can be found in Eden and Rickayzen .

If we introduce 03

the Bethe Salpeter in its ladder form for QED we arrive at

in Eq. 14), and use

<(e2p2)H e'2 |s-1| (elpl)H e'l> =

_ 4 4 4 4 4
_J d Ye d Yoo d xp d Xq d Xg

. e p
Fovo)F vy v BKG (¥ )RR (v,.x)

Flegng i) Fu(x ) (19)

*
Going into momentum space we need the following representations

;Fep0<lx2;H) = exp{ -i P(uexl+upx2)} (27r)_4

J d4pr exp {—i pr(xl-xz)}Wn(pr)

G (x) = ¥_(k) e M

Notice that Eq.(19) is true in a more general framework than QED
perturbation theory. In fact, it will subsequentely, appear that
one would obtain the result of Blankenkecler et al. ( for the
proton pole in n-d scattering



with He = m(m + M)'-l ¢ U = M(m + M)—l, and P and P, turn out

to be the total and relative four momenta of the particles in
the hydrogen atom. ForlK;I"lwe use the usual representation and

after performing some trivial integrations we get:

el >=

' -—
<(e2p2)H e; |s-1| (elpl)H 1

=< e(pl) H(P') [s-lle(p,) H(P)>
=i(2ﬂ)46(P'+p'e— P - pe)W(pé)?h(pe— Hg P')(ﬁe— m)

(B - B, - M (B- m) Yy(pl -u, P) ¥(p,) (20)

Notice that in Egs. (19) and (20) we have the Dirac operator
operating on free particle spinors. We shall show next that
they don't do any harm. Remark that the only approximation up
to now has been the use of the general ladder approximation

(without the instaneous limit).

If we now go into the non-relativistic limit,

in the laboratory systemn,

p= (m,,0)

The relation between the solution WH%pr) of the Bethe-Salpeter

equation and the solution of the non-relativistic Schr&dinger

equation is, following Salpeter(lO):
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¥u(p) = - (2v1) "% W - E.(p)} { m - E () + p, + i8 7t
. -1 >
(W-m-p, +1 s} ¢ (p) (21)

with W=m - ¢

In our case, for instance,

> >y 2 2 2 1/2_ =>,2 2 ,1/2
E,(P) = |(pe Hg P) 7+ m | = | oS+ m I
m m ©
— | I = L — _
pr4— Ee MH . m (m+M) Ee m + € M + 0 (( M ))

and we see that in the limit as M >~ a zero appears in the
first denominator of (21) that cancels the apparent zero of
the numerator for the ingoing free electron. This is not,
however a property of the limit, as may be shown by using the

L(8)

procedure of Blankenbecler et a or considering the relation-

ship of a vertex function and the relativistic wave function
for a bound state.

The final result that obtains is, in the limit

<e(pl) H(P') |s-1] e(pe) H(P)> =
= -i(2n? 5(®' +pl - P - p) 6.(B) ¥_(BL)(F - B’y - M)
we(pe) ¢s(pe) (22)

Notice that the three momenta of the external electrons became

relative momenta of non-relativistic hydrogen atom wave functions



- 15 -

(recall Eq.(5)).

Upon introducing the correct normalizations

v () = (2m) /2 nl/?

1/2 (4a)3/2 (1 + 52 a2)—2

() = 7
with a the Born radius

a= (m e?y 1

and calculating

>, 2
g - M - -M > - b
P ée MIPy~-El -MZ (e + —5—)
o2 52 2 Sy 1
=~ 7m (L rpe @) Be =18 1+ 0=
Eg. (22) reduces to the result
<e(pé)H(P') ls-1| e(pe)H(P)> =1i 16 a §(P'+ p'e - P - pe)

2,-3

(1 + p2 a%) (23)

This, as taken above, is the Born term for electron-proton
potential with exchange in the scattering of electrons off
hydrogen atoms. Notice that the singularity results from the
hydrogen wave function. Were the potential a short range one,
we would obtain a simple pole, as is normal in S-matrix

theory.



3. SUMMARY, CONCLUSTIONS AND DISCUSSION

We have given a systematic procedure to calculate
perturbatively the scattering of electrons by hydrogen atoms
(and possibly other composite targets) starting from the full
relativistic quantum theory, and to obtain its non-relativistic
limit keeping under close control the approximations made. The
procedure is not limited to electromagnetic interactions neither
to the perturbative calculation. It condenses a number of
results scattered in the literature, although it is not new

(9).

and comes from the application of the ideas of Nishijima

It may prove useful to calculate contributions needed in the
application of dispersion relations to electron-atom scatteringgll)
When applied to the exchange of a proton, in the
sense 'of Figure 2, in electron-hydrogen atom scattering it allows to show
the identity of this contribution and the exchange Born term
in the non relativistic limit for the electron-proton potential
contribution. A triple pole results from the long-range forces,
as distinct from the simple pole obtained with short range
forces. Moreover, the singularity is a dominant one for the
process, providing, as is well known, an exceedingly 1large
contribution at very low energies. Another interesting feature
is the fact this contribution and its first order radiative
correction, the exchange electron-electron potential Born
term, are on the same footing. This looks similar to the
problem of identifying contributions to radiative corrections
in bound Coulomb systems.
A number of applications seem to open, especially
in atomic scattering for processes where an electron may be
exchanged (p-H, H; - He scattering,etc)and are currently under

study.
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FIGURE CAPTIONS

Figure 1 - Diagrammatic description of contributions to electron-

Figure 2 -

Figure 3 -

hydroacen atom scattering. Straight lines correspond to
charged massive particles, Wiggly lines to photons and
the striped bands represent the bound (hydrogen atom)
state. Large dots indicate the usual interaction

vertices of quantum electrodynamics. Same conventions
are adopted in figures 2 and 3.

Feynman diagrams contributing to the case of a proton
first interacting exclusivelly with one electron and
then interacting exclusively with the other.

Diagram describing the exchange of the proton between
the two electrons in the collision between an electron
and a hydrogen atom. It may be understood as the sum

(in the bound state theory sense) of the Feynman
diagrams of Figure 2.
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