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ABSTRACT

The static magﬁetiéAresponses of a general hybridized and
codpled three—-band ﬁetal are calculated within the framework of the
Hartree-Fock approximation. The magnetic responses, which are bbtai
ned through "partial static susceptibilities”, aré discassed in ge-
neral and applied to consider specific cases, namely, actinide me-
tals and transition metal systems. Concerning actinide metals, we ob
tain the magnetic responses for these metals described by three -
bands (s,d,f) and the case of spin-orbit splitted f-bands is redu-

ced also to a three-band problem (which may be formally incorpora-
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ted in two caupled fl,f2 bands). Transition metals are considered
inéluding d-band degeneracy (Hund's coupling effects) together
with s-d hybridization. One discusses briefly the role of s-d mi-
xing in providing negative exchange couplings to magnetic rare
earth moments (ESR experiments) in presence of s-d interband ex-

change effects.

In thfs work, we consider a class of coupled metallic
systems which cover transition metal-like systems, actinides and
intermefal]ic compounds. The term coupled originates in the fact
that the above mentioned class of systems involve in generai se-
veral bands (or sub-bands in degeneracy is taken into account).
The nature of the coupfing between these bands may be associated
to host hybridizations (s-d, s-f, d-f) or more naturally to the
Coulomb interaction terms (where one includes also intraband Cou
Tomb ferms, which in general -play an important role in the magne
tic properties). In what follows, the presence of impurities (mag
netic or not) is excluded and consequently only translationally
invariant systems will be considered.

The class of systems of interest here; three-band he—

tals, is described by the following model Hami]fcnian, which in

the Wannier notation is
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where C;ic(clib) are creation (annihilation) operators of elec -
trons with spin o (o= 4 or +) in the A-band. ng) is the hopping

amplitude defined in terms of the band energy as

) = L o) e [k (aioy)]

where eé“) is thé Bloch dispersion relation for the u' th band.

-

The mixing matrix g]ements VMl are assumed to be k-dependent,i.e.

Vau(BiBg) = ] V() exp[ik- (B;-Rp)] -
The interaction parametérs are the following: UA denotes intra-
atomic intraband Coulomb energy, U%u and Jln being intra-atomic
interband Coulomb and exchange energies respectively. The Hamil-

tonian (1) is 2 generalization of previously discussed model Ha-
miltonians as applied to specific cases, namely, transition me-

ta151,2,3 4,5

, actinide metals and intermetallic compoundss.

In the literature, two ways of dealing with this class

5, namely, the self-consis-

of Hamiltonians (1) have been used]’
tent determination of the <n£l)> occupation numbers or the mag-
netic response method2 (static in general, but in some cases ex

tended to include frequency dependence).

As far the Tirst method is concerned, the effect of

s-d hybridization] (transition 1ike metals) and d-f hybridiza-
tion5 (actinide metals) in the Hartree-Fock descrinption of the

magnetic behaviour of these metals was discussed in a quite de



tailed way.

The second approach2 was used to discuss the possible
connection between microscopic and macroscopic (phenomenological)
description of the magnetic response‘of hybridized systems, and
the criterion for magnetic (Hartree-Fock) instabilities in pure
actinide meta]s7. Taking into accounf the frequency dependence
of the external magnetic field, the evaluation of the Korringa
re]axation8 in s-p coupled systems is possible. A clear genera-
lization of Yafet's work8 for more complex sistems is to extend

2 term of the resistivity9 in coupled

the computation of the T
systems, assuming as usually that conduction is mostTy perfor-
med by the s-electrons. The study of g-shifts in pure metals or
intermetallic compounds fiqu also an application (see ref. 2)
of the method of the linear response function.

In this work, we intend, discussing the general Hamil
tonian (1), within the framework of the linear response method,
to generélize some previously obtained resﬁlts of magnetic ins
tability, thus connecting this method to previously developped
numerical analysis of the density of states of an hybridized
three-band model]o. This work10 in particular, suggests, as is
included in the Hamiltonian (1), the possibility of studying
the low temperature band description of actinide metals in pre
sence of spin-orbit coupling. (To do this we consider in (f) .
two f-character bands f] and f2 and one d-character band, i.
8. A = f], f2’ d, see below). This program féces with the usy
al difficulty‘of how to deal with the electron-electron cofre-
lation included in‘(l). We will assume, throughout this work,

that the bands are large enough and that the correlations are



not so strong. So, we assume that the approximate validity of
the Hartree-Fock scheme is fu1f111ed
We recall briefly the method used in previous publi-

2’3: Let hé ) exp (-ig.gi), be the static, g-dependent s

cations
external magnetic field acting on the X-electrons; the magnetic

interaction may be written as

%%%ag = - % AZ °hgx)"$g) exp(-iq.R;) - (2)
. 10 ’

The complete Hamiltonian of interest is then

= 7 .
: 7 'déhost * Vmag (3)
One must calculate the one-=electron propagators G (m) =
ot . .
= <<€y 343 © rjo >> to first order in the external magnet1c fi -

eld (linear response), Coulomb correlations being treated in the
Hartree-Fock approximation. The first order correction to the

one-electron propagators is defined as

A c AN A1
Gijo( ) = gijo(w) G1Jé )( )

The zero order X-) prdbagators (hgk)=0) are easi?y obtained in

the Bloch representation, and read

AX 1 1 1
gkk O'(w) TT kk' (k)‘ = Zﬂgkc(w) :(B#AaU)
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e

(4.a)

while the cross u-) propagators turn out to be
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(B#A,u).

In equations (4)we have introduced the renormalized Hartree-Fock

energies,

E§2)=E£A)+Ux<n£2)>+ ugx {Ulu<n£g)>+ (Ulu-dxu) <n§U)>} (5.3)

and we have defined

v (k)2 | -
eiy®) = el ;—%QEiET— : - (5.D)
e

(Note that we have used in equation (5.a) the fact that the host

is translationally invariant (h( ). =0) and so ngg) = <n(x)>)

To obtain the first order correction, one retains,from
the general equation of motion for the propagator G?gc(w), only
the terms proportional (directly or implicity) to the external
fields. One gets, in the Blach representation and assuming a pa-
ramagnetic host, “
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where we have introduced the”f1uctuation numbers

q

Ano(l) - Z An?(l) exp i(g-&').gil 5‘Aﬂz£t2 ’
q 1 -7

An?(x) being the first order correction in the occupation numbers,
namely, Anc(k) = <n$§)>(]) - <n(k)> .

i
Equation (6) defiues a self-consistency problem which

must be solved using a classical prescription]]
+oo
g T . |
<BA> = fwlf<A;B>>m] = 3 I duf(w) [}<A;B>>m+i5-<dh8>>m_i$] s 8+0 ,

(f(w) being the Fermi function).

He refer the reader tourefs. 2 and 3, where this kind of self-con
sistency problem has been solved in detail, for more particular

situations. Once the calculations are performed and remembering

that Ang(l) - 7 £ | (1)

-
& ’w_‘5+g,5;o(w{J , the total X-magnetization is



given by

n*(g) = x* (@) h{M) 4 ;Axku(g) ), (7.2)
H

the Hartree-Fock "partial static susceptibilities" (response
functions) being defined as
A
- m”(u)
A A )\ X
() = =gy » M) = any(e) - any(w) (7.5)

X
‘ ]
In equation (7.b), mA(u) is the magnetizatfon induced on A-states
by a magnétic_fie]d acting on p-states.

One should not that the response functions show a gene
ral characteristic of coupled systems: é]though starting from
constant "bare" coupling interactions, they acquife an explicit
g-dependence associated to the susceptibilities involved in their
definitions (see below).

For the general Hamiltonian (1), the Hartree-Fock con
dition for a magnetic instability of wave-vector q 1is given

by the poles of the denominator

D(q) = [} Ueff(q)XA(Q)][} ?}(q)x (qﬁjl} ”égz(ﬂ)xg(g{} _
{[} ?}(q)x (q)] Jgy(9) JAB(Q)XB(Q)XA(Q)}

- Agudux(ﬂ)dxs(ﬁ)deu(S)Xu(ﬁ)XA(S)Xs(S) , (8)

where in the last term.the sum is performed for a fixed w3 and
A #u, B, u# B. The "susceptibilities" and the effective cou -

plings which appear in equation (8) are defined explicitly in

{



the Appendix.

This denominator is common to all "pértial static

susceptibilities" (cf. equations 9a-9b).

The static respohses,i.e. the “partial static suscep-

‘tibjlities" for our general three-band problem (see equations 7a-

7b) are given by

(Q)-

] e
M) {fo(sx)

{[ u{tdia)x, ()] [1- ué?}(s;)xB(g)] -

Jus(g)dsu(g)xu(g)xB(Q)l x,(q) +

J
(2)+xg {2 (V] [1-ul4) xga)] 95400) +

+ 3,,(9) Jus(g)xu(g)} xaa) +

+ {[i (1) (q) 4y 2)(q:}[i ueTf(q)xB(gi]JAu(g) *
+Jl8(g)dsu(g)xp(g)} X5 (9) (9.a)
X (q) = I— [1 uitl(a)xg(a)]9, ,(a)xy (a) +

D(Q) l

+ J,4(9) JSU(Q)XA(Q)XB(Q)1 x,(a) +

)

-ultd(a)y, (q)] q)xA(Q) ;

+ JAB(S)JuS(Q)XA(g)xu(g)} [‘”(qm‘z’(q)‘ +
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| (8)
D(g) [ | Eff Q)Xu(gil[: effl2)xg(a ]

Jus(g)a3u<g)xu<g)xs(g{} M @ i ]
| (9.b)
(A# u#B).
In what fb]]ows, depending on the particular problem which will be
considered bellow, some comments and discussions about these "par
tial static susceptibilities” will be done.
At this point we recover some previously obtained re -
su]ts7. We recall that in ref. 7, actinide metals are described
by a two-band model in terms‘of d and f non-degenerate bands, whe
re Coulomb repulsions (through the interactions Ud Z (d) (d)

it 1%

f f f d f d k|
Us § Sf) $+) > Z {ns In ( )+ n( ) S )} ) and k- -dependent d-f
hybridization are taken into account.

ARs far the denominator D(gq) is concerned, one has in S

- this particular case

0(g)=1- ueff(q)xf(q{][} 0] (0, qi] 046(9)pq(D)xg(@)xg(a) =

=1 - alfl(a)xs(9) . ~ (10)
where
(D) ' (1)
Ugexsq’ (9) U
uifhta) - 1o AR 224 yld) gy <y, Joe 4N ‘e (11.a)
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(1) 0y | ( 1)

UgXsd (q) fde (Q)l

Jo,{q)=U 1+ 3 Jdgela)=Uyp? 14 ————1 (11.b)
| { )

) (a) ( ‘”(q)x”’(q)“1
Jers(a)=Uprly ““T“T (UgUs-U5s)xg(a) |- X(q) Xq(q) _}
xgl)(g)+x§})(g)
Ugs (12)
Xf(ﬂ)

Again we stress, and this is a common feature}of coupled
and hybridized band problems, that, although we start with "bare”
constant couplings (cf. equation (1)), we obtain q-dependent effec
tive couplings in the final expressions.

The Hartree-Fock criterion for a magnetic instability

of wave-vector q is

D(g) = 1 - Jgfz(q>xf(g) = 0 ' (13)

Two interesting limiting situations, concerning the con

dition for occurrence for magnetic instabilities, may be mentio -

ned, viz,.

(i) If d-f hybridization is absent, the bands remaining coupled

through the correlation interband term Udf’ D(g)turns out to be

0(9) = [1-Uexe(a)] [1-0gxg(a)] V2 xgtare (o) (14.2)

(11) On the other hand, if Udf = 0, but Vdf # 0, one has



o(@) = [1 - vexetw)] - dxd<q)] fxdf’<q) (@) . (sey

where two-band effects appear due to d-f.mixing associated to
the simultaneous existence of Coulomb intraband repulsions.

7 can be refined in order to describe the

This model
role of spin-orbit coupling in pure actinide metals at low tem-
peratures. So, we adopt now our three-band model*'(cf.‘equation
(1)), specialized to déscribe a metallic system cbnsisting of
a single d band and f bands, where spin-orbit coupling sp1its‘
them into two f-character bands f] and fzf.

Recall that in the two band simple situation>of two
non-hybridized bands f] and’f2 (Vf]fz = o but Uf] # 0, Uf2 # 0,

f]f # 0), the denominator of the magnetic response is.given

2
by, (cf. equation 14.2a)

. e ) 2 -
D(q) = E Uf]xfl(q)] E UfZsz(Q)] Uf]fz)(f](q))(fz(q) (_14';)

Now, if in our spin-orbit éplitted case, and within
the framework of a three-band problem, we persist in keeping a
“formally result to the above (14.c) one may obtain, after some

-algebra, an expression of the form
(fy) {f5)
D(g)=(1- ¢¢ (a)x¢, ()(1-T 2 (a)x¢(9)- af £, (@ (D, (9))

(15)

In this particular case, we disregard, for simplicity, inter-
band Coulomb and exchange interactions amcng electrons with

same spin.

The case of actinide impurities dissolved in transition me -

tals, in presence of spin-orbit coupling of the f-level is dis

cussed iIn ref. 29,
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. ) :
In equation (15), we have arbitrarily chosen Jef} to have exac

tly the same form as in (12), whereas it turns out that in the

(f )
definition of 3 a term of the form UdXd(q)/Xf (q) is absent.
"
Jf £ (q) is a rather comp11cated express1on descr1b1ng an effec
12

tive 1nterband‘1nteract1on between fl,and fz bands.

An interesting remark at this point is that, if ihtra-
~-d-band correlation Ud is neglected, i.e. if the d-band acts on
ly as a source of d-f hybridization, the effective intra-band

. () (2) .
couplings Jeff (q) and Jeff(g)become symmetrical, nawe]y

1 1
) ( x§d:(g)x§f:(g)

2
(g) = U +U o x,(q) ¢1 - +
Joft £.70df Xd e (D)%)
1

(1) (1)

Xf;d(a) + *df (q) , | -

+ Uge. s i=1,2. (16)
xfi(g)

We stress that in the general case, where U, s (cf.
equations (14.c), (15», ve have arbitrarily chosen one of the
f-character bands, say f] band, to be the one where J(:f) is de-~
fined via equation (12). Automatica11y, the symmetry between the
two definitions of Ji:})(g) and Jéig)(g) associated to the pre-
vious correlated two-band description of an actinide metal 1is
broken, which is expected because of the intrinsic three-band na
"ture of the problem in presence of correlations within the d band.

Let's consider now transition like metals, described
in a simplified way by two non-degenerate s and d coupled bands.

In a previous'workz, "partial static susceptibilities"” were de-

rived either from a microscopic or from a macroscopic {(molecu-
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lar field approach) point of view, and a comparison between the
se apbroaches was obtained. In what follows, and in the same

spirit as inZ, we intend to give an improved version of such an
'analysisz’]s;ﬂ
In fact, some experimental evidence (through ESR mea-

surements of Gd and Eu)]z’]3

14,6,2

of the validity of the previous ex
planations may be tontested by the argument that s-d ex-
change interaction was neg]ected in the comparison between the
microscopic and macroscopic approaches as performed in ref.2.
This stems from the fact that exchange interaction tends to
align s and d magnetizations parallel, contrary to s-d hybridi-
zation. In this case, since competitive mechanisms do operate,
a criterion of validity of. the discussion contained in ref. 2
must be given..

We intend to include the effect of interband exchan-
ge Jsd and verify in which conditions and for pure hosts s-d
mixing acts to provide antiparallel alignements of s and d mag
netizations as suggested in ref. 14 and required in the model
developped in |

Considering explicitly, in thé model Hamiltonian which
describes the transition metal like host, s-d interband exchan
ge (through the interaction term - Jsd gcngg) ngé)) the parti-
al static susceptibilities obtained via the microscopic approach,

as a particular case from expressions (8) aand (9), are

x14a) = S o(2) xg(0) (17.2)

N

Y
x|

Q) = [1-Ugxg(@)] Spicrol@legla)  (17.5)
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>
——
S~
‘ .

xq4(9) x (Q)‘
5 ?13 S 2 g) Spiere(@) (17.¢)
de ) J ,

= \]"‘J

ds
q

d. Xd(Q) Xg (Q) (])
where
S;}cro(9)=]-udxd(9)'ds& {[%gl)(9)+x§;)(3il+dsd xs(a)xq(a) -

- x(l)(q ])(Q):]\ | (18)

In the above expressions we have neglected terms in fourth order
in mixing.
On the other hand, the partial static susceptibilities

cbtained via the macroscopic approachz’]5 are

x39a) = x{N) s pela) (19.a)
*(q)= x{°)(q) {1+asd<q>ads<q) macro(g)}

(9.

x*(a) = - Ty (x$ @) S, 0 (a) (19.c)

x*Ua) = - T ) s () (19.d)

where

Sr;;cro(g) =1 - I\ddX((i )IQ) Te. (S)'Eds(ﬂ) ’ (20.a)
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845(8) = age - 2@ S (20.b)

Tyq(2) = egq A" (@) (20.c)

In equations (19-20), Add = (geuz)-] Ud is the molecular field coe

. . . . . _ _ 2,-1
fficient associated to intra-d-band correlations, Ads-lsd-(geus)
Jsd dgscribe; interband exchange, where as CGeg and Gy (both of
them > 0) are phenomenological coefficients associated to s-d mi
xing.

By equating the macroscopic and microscopic crossed

susceptibilities, assuming Smicro = Smacro and using definitions
(20.b-20.c) we arrive at
5 (o)
ay4(9) _ X4 (q) O (2n)
Gq(9) x{°1(q) |

where we have neglected mixing corrections in the susceptibili-
ties XA(S) s (A = s, d) thus originating the susceptibilities
x{®)(q). |

From (21) one sees that the signs of ads and Esd are
the same; thus one needs to discuss only one of them.

The condition for positive coupling (Esd > 0) can be
derived using the definitions (20.b-20.c). From (20.c) one has

for g = 0 (g-shift measurements)
) : -
@gq > Agg X% (0) - (22)

Since Xgo)(O) = geugn(s)(eF), n(s)(eF) being the density of sta



tes associated to s-electrons, the condition reads

agy > dsd n{s) (e ) (23)

From the study of transition metals, the I coeffici-
ent is known to be of the order of 0.1. Thus, in order to have
positive coefficients (and so antiparallel s and d magnetizations),

we must have

3. gnt) (e) < 0 (24)

sd_

Now, we summarize our conclusions and make soﬁe final.
comments. _

The general static magnetic responses ("partial suscep-
tibilities"”) obtained in tﬁis paper (cf. equations 8 and 9), assu
ming the Hartree-Fock approximation, enable us to recover some pre
viously obtainad results for pure metallic systems described by a
two band model (e.g. transition like meta]sz, actinide meta]s7) as
far magnetic instabilities are concerned. The general approach de
velopped in this work may pg used also to discuss the influence
of hybridization on hyperfine properties like Knight shift experi
ments. ) '

A similar three-band problem was discussed previou51y3.
However, in that paper3,.emphasis was given on the spin polariza
tion induced by a magnetic rare earth impurity embedded in a tran
sition 1ike metal. The host was described by a single s’band hy
- bridized with two d-character sub-bands, thus emphasizing both s-d
hybridization and d-degeneracy on the spin polarization. Moreo-

ver, the full k,k' dependence of the exchange 'in'cer'-action]6 bet-
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ween rare earth spin moment and conduction states was taken into
account.-In the model Ham11t0n1an for the host adopted 1n3, Cou-
lomb and exchange interactions (Hund's coupling) among conduc -
7tioﬁ states was cohsidered, thus exhibftfng a clear feature of
the degeneracy of the d band.

17 show the importance of Hund's

Recent calculations
coupling in the magnetic solution of degenerate d band metals .
So, our present work may be regarded also as a complementation

of a previous one3 in two aspects, namely

(i) one may obtain a q-dependent magnetic instabi]ity criterion
for the pure transition metal, where s-d mixing effects and

Hund's coupling role are simh]taneousiy considered;

(ii) one may derive "partial static susceptibilities" which in-
clude this coupling and to discuss its importance on physical
quantities like Knight shifts.

We recall that previous discussions about ESR experi-

ments in pure metals and intermeta111csz’6, together with some

experimental resu'lts]2 13 suggest the importance of s-d hybridi
zation in ana]yzing effective exchange interactions among con -
duction (s,d) electrons and rare earth spins. Recent band éa]cg
lations for Gd meta]‘s, suggest that Anderson-Wolff-Schrieffer
transformation is irrelevant as far the sign of the effective in
teractions are concerned. This remark18, reforcing the idea of

the role of s-d mixing in providing negative exchange couplings,
| seems to be important in pure metals. The case of dilute alloys

constitute, however, a different and delicate problem.

Cne of the questions that may be raised with respect



to thié approach for the description of these ESR experimen -

télz’]B, is the existence of s-d exchange couplings which provi

de parallel coupling between s and d magnetizaticnsl9

(See our
discussion tﬂ?bughout this work). One of the particular results
which we obtain from our general formulatibn is to provide a
criterion for the antiparallel alignement between s and d magne
tizations, (cf. equation 24), together with a more detailed
justification of a previous microscopic ~ macroscopic compara-
tive calculation concerning coupled s-d hybridized systemsz. In
particular the proof of the validity of the ratio adsxasd = Xd/Xs
in presence of s-d interband exchange (cf. equation 21) may pro
vide also a more refined answer to these questions. (For a detai
led description of the phenomenological approach see also ref.
15). |

The case of actinide metals, as another part%cular ap
plication of our general problem, éomplements a discussionlo of

the one-electron properties like density of states. In ref. 10,

homothetic bands] and model density of states in presence of s-f,

10

d-f, s-d hybridizations were used. The final result shows the

role of hybridization in deforming initial non-hybridized s, d

and f'bands. The conclusions of that ca1cu1ation]0

although qua-
lTitative and without any attempt to self-consistency, confirm
(within a Stoner-like criterion) the previous self-consistent

calculation performed ins.

We want to stress that one of the advantages of the
method employed throughout this paper is that it provides magne
tic instability criterions for general wave-vector q . Beside

this, equation (8), generalizes this criterion, previously ob-
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tained for a two band prob‘lem7 and shows the role of s-d, s-f
and d-f hybridizations in modifying the susceptibflities invol -~
~ved (cf. the Appendix).

For paramagnetic actinide metals, and including the
frequency dependence, a refined version of the calculation perfor

med ing

for the resistivity at low temperatures could be made. In
that calculation, conduction is mostly performed by s electrons
and the scattering by spin fluctuations, (contrary to the case

discussed in20’2]

where only d states are present), would be pro
vided by coupled and interacting d-f electrons through "partial
dynamical susceptibilities”.

If NMR results are available, Korringa relaxation may
be computed in the same spirit of Yafet's work8 suitably adépted
to discuss actinide metals. |

Returning back to our "static problem": another possi-
ble application in actinides would be the calculation of the
Knight shift, if hyperfine coupling parameters A(z) and AC

1ab1e22 are adequate.

b avai

Concerning the role of spin-orbit coupling in splitting
the f band into two fl and f2 bands, the general formulation pre
sented in this work provides a natural way to deal with the még
netic responses in this situation. Although this specific pro -
blem exhibit clear features of a three correlated (Hartree-Fock)
band problem, it is possible, by suitable redefining the quanti-
ties involved (cf. equations 15-16), to reduce it to a two band
one.

It is obvious that all the conclusions which we afriw

ved throughout this work are based on the assumption of the va-



1idity of the Hartree-Fock approach. The present article has
the intention to explore 2 more general situation supplied by
this simplest approximation. He stress that a numerical effort
would be profitable (following the same homothétic band scheme
used inlo) to get conclusive numerical results in all cases whi
ch were discussed here.

The narrow band limit must be discussed separately ,
and in this situation more complex algebraic problems are invol
ved23. In this case, the methods to be used to deai with elec-
tron correlations must be or the classical Hubbar624 approxima

tion or the most refined Roth25

25

linearization approach. The
last method™", however, present some difficultieszs which could
be circumvented.

Finally, we would like to make some remarks concern-
ing the validity of the Hartree-Fock approach (molecular field
approximation) adopted here. Besides well established criteri-
ons of validity, (large bands, small Cou]omb correlations), re
cent progress in the Renormalization Group Theory festrict»the
validity of mean field approaches. More particularly, recent
developments toncerning the phase-transition character of the
MVott-Anderson localization problem ﬁave appearedzg. In this
context, the high temperature behaviour of actinide meta1527
has been the subject of studies, involving the simultaneous
presence of temperature induced disorder and Coulomb correla-
tions.

As emphasized in 28, the localization problem, usual

ly viewed as an one-electron problem, must be complemented by

introducing correlations among electrons, with implications



on the magnetic response behaviour, which is the main subject

- of this work.

The role of "details” like hybridization, degeneracy ,
~etc., perhaps may be conjectured as a source of "marginal beha-
viour" as viewed within the framework of Renormalization Group

Theory.
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APPENDIX

i) DEFINITION OF THE "SUSCEPTIBILITIES" (cf. equations (8),(9)).

(ka) = - =5 {%;ig<m> Eg*(w)} : . (A-1)
1 1 G 1 1 =AX l -
X{u)(.lsaﬁ) ""‘QTT" J’w{ 95+g(w) w-El((gaBT m-El(J"B) QE (w) | (A;,Z)
(2 .1 4 f;xx 1 1 1 1 A 1
Xxuzﬁ’ﬂ)’ 2T T w [9k+q(w) w_Eégagj @'Eéfé w-EéB) w—Eéu’B) 95 (N)j

(A-3)
X, (3) = { Xy, (k»q) | | (A-4)
K () = Dy, tera) v, 00 x{) (k) (A-5)
2 B} . . | 2) }
K (2) = 20, (49) Vo (krg) Vo, (K) ¥y (6) X2 (kag) (A-6)
V(A# u # B)

ii) DEFINITION OF THE GEMERAL q-DEPENDENT EFFECTIVE COUPLINGS
{cf. equations (8),(9)).

(X} qy= I 1 (1) {
Uars(q)= U,81+ oYy T g Q)+ =T )
eff*l A UAXA(S} N {: Ap Apiip Y2 A vag /Xy

2’(3{]}

u

(A-7)



(@) =(u,,-T,

vwhere

Note

exchange intera
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1 (2)
- Uu[ﬁ§u)(g)+xxu (9)]

(UAQ”JAH)XX(S)

u (A-8)

(x # u # B)

Jlu = U - d

Au Au

that when both intra-atomic interband Coulomb and

ctions are present, the contribution to the inter

band Coulomb repulsion coming from electrons with the same spin

cancels out tha

t one from opposite spins.



-25=-

REFERENCES

10.

11.

12.
13.

14.

15.

16.

17. J.D. Patterson and D.E. Kleppin, Phys. Stat. Solid 87,K97(1975).

18.

R. Kishore and S.K. Joshi, Phys. Rev. B2, 1411 (1970).

A. Troper, X.A. da Silva, A.P. Guimaraes and A.A. Gomes, J.
Phys. F.: Metal Phys. 5, 160 (19753).

A. Troper, and A.A. Gomes, Il Nuovo Cimento 28B, 171(1975).

M.A. Continentino, L.C. Lopes and A.A. Comes, Notas de Fisi-
ca XIX, 105 (1972).

R. Jullien and B. Cogqblin, Phys. Rev. B8, 5263 (1973).

A.A. Comes and A.P. Guimaraes, J. Phys. F.: Metal Phys. 4 ,
1454 (1974).

M.A. Continentino and A.A. Gomes, Notas de Fisica XX,63(1973);
M.A. Continentino, M.Sc. Thesis, Pontificia Universidade Ca-

tolica, Rio de Janeiro.
Y. Yafet, Phys. Rev. B7, 1263 (1973).

R. Jullien, M.T. Beal-Monod and B. Coqblin, Phys. Rev. Lett.
30, 1057 (1973).

P.M.bBisch, M.A. Continentino, L.C. Lopes and A.A. Gomes, to
appear (1975). ‘ '

D.N., Zubarev, Uspekhi fiz. Nauk 71, 71 (1960) English Transla
tion: Soviet Phys. - Uspekhi 3, 320 (1960).

E. Burzo, Int. J. Magnetism 3, 161 (1972).
A.P. Guimaraes, C.' Larica and W. Vanoni, to appear.

B.R. Coles, D. Griffiths, R.J. Lowin and R.H. Taylor, J. Phys.
C.: Solid St. Phys. 3, L121 (1970).

A. Troper, and A.A. Gomes, to appear in Notas de Fisica (1975).

R.E. Watson and A.J. Freeman, Phys. Rev. 178, 725 (1969).

———

B.N. Harmon and A.J. Freeman, Phys. Rev. B10, 1979 (1974);




19.

20.
21,

22,

25.
26.
27.

28.

29.

-26-

L. Hodges, H. Ehrenreich and N.D. Lang, Phys. Rev.. 152, 505
(1966).

D.L. Mills and P. Lederer, J. Phys. Chem.Solids 27,1805(1966).

A.B, Kaiser and S. Doniach, Int.J. Hagnetism 1, 11 (1970).

R. Jullien, A.A. Gomes and B. Coqblin, Phys.Rev.Lett. 29, 482
(1972).

P.M. Bisch, M.A. Continentino, L.C. Lopes and A.A. Gomes to

appear.
J. Hubbard, Proc. Roy. Soc. A276, 238 (1963).

L.M. Roth, Phys. Rev. 184, 451 (1969).

L.C. Lopes and A.A. Gomes, to appear (see references therein).
P. Lederexr, private communication. .

G. Toulouse and P. Pfeuty, C.R. Acad. Sci. (Paris) Tome 280,
33 (1975).

R. Jullien, E. Galleani d'Agliano and B. Cogblin, J.Low.Temp.
Phys. 10, 685 (1973). |



