NOTAS DE FÍSICA

VOLUME XX

NO 17

ON VECTOR-VALUED VERSUS SCALAR-VALUED HOLOMORPHIC CONTINUATION

by Leopoldo Nachbin

CENTRO BRASILEIRO DE PESQUISAS FÍSICAS Av. Wenceslau Braz, 71 - Botafogo - ZC-82 RIO DE JANEIRO, BRAZIL

1973

ON VECTOR-VALUED VERSUS SCALAR-VALUED HOLOMORPHIC CONTINUATION*

Leopoldo Nachbin

Centro Brasileiro de Pesquisas Físicas
and

Universidade Federal do Rio de Janeiro
Rio de Janeiro, Brazil

(Received 13th September 1973)

ABSTRACT

The purpose of this note is to show that, under mild assumptions, obstacles to holomorphic continuation of vector-valued mappings are the same as in the case of scalar-valued functions.

To appear in Indagationes Mathematica.

We denote by E and F two separated complex locally convex spaces; by \widehat{F} a completion of F containing it; by H(U;F) the vector space of all mappings defined on the non-void open subset U of E with values in F which are holomorphic when considered as having its values in \widehat{F} ; by wF the vector space F endowed with the topology $\sigma(F,F')$ defined on F by its topological dual space F'; by \widehat{wF} the algebraic dual space of F', where the natural vector space isomorphism i:F $\longrightarrow \widehat{wF}$ is a completion mapping when the two spaces in question are respectively endowed with the weak topologies $\sigma(F,F')$ and $\sigma(\widehat{wF},F')$.

Once E is fixed, we say that weak holomorphy plus slight holomorphy imply holomorphy on E if, for every F, we have that $f \in H(V; F)$ whenever V and W are connected non-void open subsets of E with W \subset V, $f \in H(V; WF)$ and $f \mid W \in H(W; F)$.

Once F is fixed, we say that it is confined if, for every E, we have that $f^{-1}(F) = U$ whenever U is a connected non-void open subset of E, $f \in H(U; \widehat{F})$ and $f^{-1}(F)$ has a non-void interior. To check this requirement, it suffices to take U as the open disc of center 0 and radius 1 in E = C, to assume that $f \in H(U; \widehat{F})$ and that 0 is interior to $f^{-1}(F)$, and to conclude that $f^{-1}(F) = U$.

LEMMA. wF is confined if and only if F is confined.

Prof. Necessity being trivial, let us prove sufficiency. Denote by U the open disc in C of center O and radius 1, and take $f \in H(U; \widehat{wF})$. Assume that we have $f(V) \subset i(F)$, where V is the open disc in C of center O and some radius r, 0 < r < 1. For every $\phi \in F'$, we have $f_{\phi} \in H(U;C)$, where we define $f_{\phi}(x) = f(x)(\phi)$ for any $x \in U$. Set $g = i^{-1}o(f|V)$. Then $\phi \circ g = f_{\phi} \mid V \in H(V;C)$ for every $\phi \in F'$. Hence $g \in H(V;\widehat{F})$. Set

$$a_m = \frac{1}{m!}g^{(m)}(0) \in \widehat{F}$$

for every $m \in N$. Then

$$|\widehat{\phi}(a_m \rho^m)| = \left|\frac{\rho^m}{m!} f_{\varphi}^{(m)}(0)\right| \leq \sup_{|t| \leq \rho} |f_{\varphi}(t)|$$

for all $\phi \in F'$, $m \in N$, $\rho \in R$ and $0 < \rho < 1$, where $\widehat{\phi}$ is the continuous extension of ϕ to \widehat{F} . Hence the sequence $(a_m \ \rho^m)$, $m \in N$, is bounded in \widehat{F} for every such ρ . Thus g may be holomorphically extended to U be defining

$$g(x) = \sum_{m=0}^{+\infty} a_m x^m$$

for every $x \in U$, so that $g \in H(U, \widehat{F})$. We conclude that $g(U) \subset F$ because $g(V) \subset F$. For every $\phi \in F'$ we have $f_{\phi} = \phi \circ g$ since both functions agree on V. Thus $f(U) = i [g(U)] \subset i(F)$. QED

Let U, V and W be connected non-void open subsets of E, with WCUNV. If $F \neq 0$, we say that V is a holomorphic F - valued continuation of U via W if, for every $f \in H(U; F)$, there exists $g \in H(V; F)$ such that f = g on W.

PROPOSITION. Assume that weak holomorphy plus slight holomorphy imply holomorphy on E, that F is confined and $F \neq 0$. Then V is a holomorphic F-valued continuation of V via W if and only if V is a holomorphic C-valued continuation of U via W.

Proof. Necessity being easy, let us prove sufficiency. Let $f \in H(U; F)$ be given. For every $\phi \in F'$ we have that $\phi \circ f \in H(U; C)$.

There is a unique $g_{\varphi} \in H(V; C)$ such that $\varphi \circ f = g_{\varphi}$ on W. For every $x \in V$, consider $g(x) \in \widehat{WF}$ defined by $g(x)(\varphi) = g_{\varphi}(x)$ for all $\varphi \in F'$. Thus we get $g \in H(V; \widehat{WF})$ such that $g(W) = i[f(W)] \subset i(F)$. The lemma implies that $g(V) \subset i(F)$. We then obtain $i^{-1} \circ g \in H(V; F)$ for which $f = i^{-1} \circ g$ on W. \underline{QED}

I want to thank Richard Aron for the conversation which led me to the above proposition when E and F are Banach spaces [1]. Henri Hogbe-Nlend and Martin Schottenloher called my attention to the idea of dropping an additional assumption that I had included in the statement of the proposition; the proof remained unchanged. Schottenloher [4] has found another approach to the question treated here via the ε - product of Laurent Schwartz. For further sources on holomorphic continuation, we quote [2] and [3].

ACKNOWLEDGEMENT

Thanks are due to Ministério do Planejamento (FINEP) and Indústrias Klabin, Rio de Janeiro, GB, Brasil, as well as to National Science Foundation, Washington, D.C., U.S.A. for partial support.

REFERENCES

- 1. L. NACHBIN, Concerning spaces of holomorphic mappings, Rutgers University, U.S.A., 1970.
 - L. NACHBIN, Recent developments in infinite dimensional holomorphy, Bulletin of the American Mathematical Society, vol. 79, 1973, to appear.
 - Ph. NOVERRAZ, <u>Pseudo-convexité</u>, convexité polynomiale et domaines d'holomorphie en dimension infinie, Notas de Matemática, North-Holland, Netherlands, 1973, to appear.
- 4. M. SCHOTTENLOHER, ε Product and continuation of analytic mappings, Comptes
 Rendus du Colloque d'Analyse, Rio de Janeiro 1972, Hermann, France, to appear.

* * *