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ABSTRACT

The purpose of this note is to show that, under wmild assumptions, obstacles

to holomorphic continuation of vector-valued mappings are the same as in the

case of scalar-valued functions.

To appear in Indagationes Mathematicag.
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We denote by E and F two separated complex lTocally convex spaces;
by ?? a completion of F containing it; by H(U;F) the vector space of all
mappings defined on the non-void open subset U of E with values in F which
are holomorphic when considered as having its values in ?} by wF the vector
space F endowed with the topology o(F,F') defined on F by its topological
dual space F'; by QF the algebraic dual space of F', where the natural

/~ A
vector space isomorphism i:F —> wF is a completion mapping when the

two spaces in question are respectively endowed with the weak topologies o(F,F')

s
and o(wF,F').

Once E is fixed, we say that weak holomorphy plus slight holomorphy
imply holomorphy on E if, for every F, we have that f ¢ H(V; F) whenever V
and W are connected non-void open subsets of E" with WcV, fe H(V; wF) and

£ | We HMW; F).

Once F is fixed, we say that it is confined if, for every E, we
have that f'l(F) = U whenever U is a connected non-void open subset of E,
fe H(U;‘?) and f'I(F) has a non-void interior. To check this requirement,
it suffices to take U as the open disc of center 0 and radius 1 in E=¢C, to
assume that f e H(U;'F) and that 0 is interior to f'l(F), and to conclude

that £ (F) = U.

LEMMA. wF s confined if and only if F is confined.

Prof. Necessity being trivial, let us prove sufficiency. Denote
by U the open disc in C of center 0 and radius 1, aAd take f ¢ H(U;'ﬁF).
Assume that we have f(V)<i(F), where V is the open disc in C of center 0
and some radius r, 0 <r < 1. Forevery ¢ ¢ F', we have f¢ e H(U3C), where we
define f,(x) = f(x)(¢) for any xe U. Set g-= il (F|V).  Then
dog = f¢ [V e H(V;C) forevery ¢ e F'. Hence ge H(VfF}. Set
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a, = +gM@) e P
m!

for every m e N. Then

.Q.T f(m) (0)

~ m
a =
[o(a,, 07) | —

< sup |f, (t)]
Tt <o ¢

forall ¢eF', meN, peR and 0 < p< 1, where 1; is the continuous extens-
ion of ¢ to 1i Hence the sequence (am pm), m e N, is bounded in G for every

such o, Thus g may be holomorphically extended to U be defining

+00
9(x) = ] a x
m=0

m

for every x e U, so that g e H(U,15. We conclude that g(U)< F because
g(V) F. Forevery ¢ e F' we have f¢ = ¢ o g since both functions agree on
V. Thus f(U) = i[g(V)] < i(F). QED

Let U, V and W be cennected non-void open subsets of E, with WeUnV.

If F#0, we say that V is a holomorphic F - valued continuation of U via W

if, for every f e H(U; F), there exists g € H(V; F) such that f =g on W.

PROPOSITION. Assume that weak holomorphy plus slight holomorphy imply
holomorphy on E, that F is confined and F #0. Then V is a holomorphic F -
valued continuation of V via W if and only if V is a holomorphic C - valued

continuation of U via W.

Proof. Necessity being easy, let us prove sufficiency. Let

f € H(U; F) be given. For every ¢ € F' we have that ¢ o f € H(U; C).
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There is a unique 9y € H(V; C) such that ¢ o f = 9 on W. For every xe V,
consider g(x) e WF  defined by ga(x)(¢) = g¢(x) for all ¢ € F'. Thus we get
g € H(V; WF) such that g(W) = i[f(W)] < i(F). The lemma implies that

g(V) < i(F). We then obtain i o g € H(V; F) for which f = 1"19 g on

W. QED

I want to thank Richard Aron for the conversation which led me to the
above proposition when E and F are Banach spaces [l]. Henri Hogbe-Nlend and
Martin Schottenloher called my attention to the idea of dropping an additional
assumption that I had included in the statement of the proposition; the proof
remained unchanged. Schottenloher [4] has found another approach to the question
treated here via the ¢ - product of Laurent Schwartz. For further sources on

holomorphic continuation, we quote [2] and [3] .
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