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ABSTRACT

A particular type of exact solutions of Einstein—¥awwell's eguations
corresponding to stationary cylindrically symmetric electrowac fields
is presented here. The solutions are linear cosbinations of stati¢

fields with constant coefficients.
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1. INTRODUCTION

In general relativity for regions in which there is only an elec-

tromagnetic fields,

Ru 8m Tu
with 47T Y=-F PP+ g VA | ,
u Ho y M pA . (1.2)

where Puv, the electromagnetic field tensor satisfies = the Maxwell's

equations
Y=o (1.3)
3V
F =0 (1.W)
[e83Y]
Perjés(l) discussed some properties of stationary electrovac fields and

obtained the field equations in a special coordinates. The only possible

solution of the equations is obtaiined‘by gravitational radiation theory.

In this work we} Stﬁdy the solutiqn of stationary electrovac fields fol-
lowing the method first introduced by 1ewi§2) to obtain the solutions
for the axially symmetric gravitational fields. Using Weyl-like canonical
coordinates we givé here a special class solutions cbtained from the
linear combinations of Weyl'és)_ static fields. The solution admits a
very simpie interpfetafion that an observer in canonical space (r,8,2)
describes the static fields of the canocnical space (r',0',2') wusing a
reference system which rotates with constant angular speed. For vanishing

rotation one gets the static field only.
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2. THE SOLUTIONS

We consider a stationary- cylindvically symmetric line element
as? = fat? - e?V(ar® + az?) - 1dp” + 2mdp at (2.1)
where f, ¥, 1, and m are functions of r only. We shall - nutber the ‘co-
ordinates t,r,z,¢ as 0,1,2,3 respectively. We assume that only surving
components of ¥ are F(s - I‘lsévm £°%:= = £19), Then from equations
(1.1) and (1.2) it follows that. 4
O +r¥=0 (2.2
RO + R3 =D {2.2)
One can now introduce Weyl-like osnonical ceordinate system in this
stationary case such that Van ‘Stodql‘xu)

£ 422 = pl i (2.3)
If one makes a linear transformations (Lewis) of the coordinate dif=
ferentials such as
dt = at! coshu - de sinhu, d6=d6 coshu - dt' sinhu (2.4
withf:Fcosh2u—Lsirm2u, 1=Loosh2u~Fsi11h'2u(25)
=L (L - P sinh2u
2
the fundamental quadratic form (2.1) transforws into
as? = F at'? - 2 (ar? + azd) - L d ¢'2 (2,6)

in Weyl's canonical system. |
In general the transformation (2.4) is purely local. In our case, we cho=
ose u as constant.Now let |

coshu = vy and sinhu = yw (2.7)
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where vy and w are constantes such that

From equations (2.3) and (2.5) we have

f1+m2=r2=FL

We now choose

F=e?®andl = o? e 2@

where o is a function of r only. Equation (2.5) takes the form -

f-= YZ(eZa ~w?r? é-2oe)’ 1= *12(1*2"e'-2m-~in2 eza), m = Yzm(r'2 e

The field equations may now be explicitly written as:

vy - Yy - 2(1—ral)‘=,/=§ (1 F01 + F?l

o0l 31
Pyt = - (ETFyy + FFy)
2 5 N 1 8
Y —5;— l—ml(l + wafv-- v’_g (FO -F01 F | F3l)

Y2 -2 E‘ o (1 + wz):l = /g (%1 F‘31 -l Fa)
oar )

L\(2 w~§-— a - Zml)] = /=g ol Fyp
2 or . o '

' N 31
_1_Y2w_a_]'_?1—2ml>] = /g " Fyy
or

Fram equations (2.15) and (2.16) one obtains

1 3.
P Fa + FON gy = 0

S

0l
where B is a constant.

(2.8)

(2.9)
(2.10)

200 _ 20y (9, 58)

(2.11)

(2.12)

(2.13)

(2.14)

(2.15)

(2.16)

(2.17)

(2.,18)
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We consider now too cases:

_ 1
ABE
’ (2.19)
and B) B=w
Case A) B = —é—- In this case the observer J.n camm.cal space (ry¢,2)

describes the pure static magnetlc fa.eld in canonical space (r',¢',z
using a reference frame which rotates with angular speed w.

To cbtain the stationary field we consider equations (_1.3):

/g Pl = A | ' (2.20)
where A is the constant of integration. |
From equations (2.15), (2.16), (2.18) and (2.20) we have
! 2

20, -
e (all+-;—)-

which on integration gives

SRR (2.21)

where a and ¢ are constants of in:egration satisfying the relation

a:= A2 (2.22)
u(l-c)z
From equations (2.12), (2.15), (2.16) and (2.20) one obtains
Ty + ¥ = -%— -‘-;-;- (orey - 1 = —-%;--(ml)
wich on integration gives
Yy=a+Blogr +D (2,23)

where B and D are constant of integration.
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Substituting the value of o from equations (2.21) we get -
B = c(c-2) (2.24)

Substituting o in expression (2.52) we get

F= Y2 [(rz e K e br'z-c)-2]
‘L = YZEZ(rC + brz—c)-2 - 0_)2 (rc + brz-c)zj (2.5b)
m =y wE'z(rc + b2 - (° 4 br2-c)2]

and from (2.21), (2.23) and (2.29)

b= K pcle=2) [rc + br?—c:lz

If we take A=0, the solution immediately goes to the solution gi-
ven by Lewis for gravitational fields. The constant ¢ then may be
interpreted as the line density of mass distribution along the Z-axis.
If the constant w = 0, the solution goes over to the solution of

axially symmetric magnetic field given by Ghosh and Sengupta(S) .

Case B) B = w, In this case the static field in the canonical space
(r',¢',2') is purely radial electrotatic field. From the equation(1.3)
one gets.

Pl - p (2.25)

Equ. (2.15), (2.16), (2.18) and (2.25) Yield

) = -2 — (2.26)
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wich on integration gives
2 - =2 s
e =[r © 4+ br°] : (2.27)

where b and ¢ are integration constants satisfying the relation.

B2

be

D =

For b = 0 i.e. B = 0, the solution again goes over to lewie solution,
When w = 0, the solution is equivalent to a number of already  Known
solutions for a static, cylindrically symmetric radial electrostatic
field Miherjee'®, Bonnor’”), Raychaudhuri(®:

3. CONCLUSION

We have considered only two classes of exact solutions of the
stationary electrovac fields oormspmdﬁng to the cbeerver's two modes
of description of the static fields - either the static axlally sym=
metric magnetic field (2.5b) or the static ¢ylindrieally symmetric
radical electrostatic field (2.27). Of course arother - class of
solutions may be cbtained when § is different forwm w. In this case the
solution would correspond to the chserver's descriptions of statie
axial magnetic field as well as radial electrostatic fisld.
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