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ABSTRACT

We investigate an algebraic-geometry approach to field theory. We try to
prove that it is possible to understand Einstein's gravitational equation as a
consequence of the self interaction of the fundamental I~fields of the assumed
Clifford-algebra., Furthermore, the anti-symmetric object of the algebra obeys

a set of equations that has the same structure of Maxwell"s equations.

1. THE FUNDAMENTAL OBJECTS _

Let us consider a set of objects e® that can generate a universal Clifford
algebra (C-algebra) over a four dimensiocnal differentiable manifold V,. For the
well-known property of the C-algebra

{e?, e’} @
is a miltiple of the identity of the algebra, where as usually

{M, N} =MN+NMNM 2)

* This work has been supported by the "Coordenagas do Aperfeigoamento de Has~
soal de Nivel Superior" (CAPES) and by the "Centro Brasileiro de Pesquisas
Fisicas.
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It is well-known 2 that the dimension of this algebra is 2*. We will represent

the elements of the Basis as the set

1
Ty
L.=%( T,~T,T) (3)
B 2 B B "o N
T8 = p(x) M popop , where ¢(x) is such that
o "B AT
Ty rs normalizes I'°, that is 'S % = 1

5 . HVPC
Fa [°> = ¢(x) e Pa Pu Fv Fp Pc

where the indice a,8 has a tensorial character. This means that if we make a
transformation of coordinates

x2 > x'% = fa(xB) (%)

the Pa behave as a vector, the I’ as a scalar and Ea as an antisymmetrical

8
tensor of second order. In our choice of the representation of the algebra, the

elements of the basis have a two-indice property. Let us write

rfB (5)

a
where A, B may assume the values 1, 2, 3.or 4. We assume that there is a group

of internal transformation with a space-time dependence, that is, the I''s may

suffer a transformation like

.y > mAB - CD 1 B
oo > 10 =t 1o ot B (6)

where MAB is not a constant.

The fundamental property of the C-algebra

{PH(X)’ Pv(x)} =»2‘guv(x) ik | (7)
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defines the symmetric metric tensor gw(x) .

Il is the element identity of the algebra. We have furthermore
{I'u(x), r’(x)} =0 (8)

2. THE SELF INTERACTION
1

We will admit that the I''s satisfy an equation of the type

Tyl = [Ugtx), T, (x)] (9)

where the brackets, as usually, means the commutator and the symbol | means the

covariant derivative defined by

= - f € 1.
rajt.s = Fals {ae} I, + [‘[8, r,] (10)
©ol
¢ axB
{ ;’B} is the Christoffel symbol
Tg is the internal affinity.

The origin of the expression (9) rests on the assumption that the co-wela-
tion, at separate points, between tha .f"s, -even in the existence of the group of
transformation (6), does not introduce any new field. This is equivalent to ag-
sume that the inte;’nal affinity may be expressed as a function of the objects of
the C—algebr,;ax- inS/ E

1

The object Uﬁ’B(x) as obtained in has the form

V38 o = {1 o @B an

A straightforward calculation shows that the covariant derivative is not com

mutative and that we may write
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- €
Togln ™ Tajplle = Reegr T * [Bans Ty (12)

where ’
lixeBA is the Riemann _(curvature) tensor

R&B is the internal curvature.

3. THE GRAVITATIONAL FIELD

From equations (9) and, (11) we obtain

r - T @ - g 3
Tolgi ~ Tafays’ & (1%)
So, we have ,
' 0B & o _
Roegy &8 I+ [mm, ra] gr =0 (14)
or ‘ .
€ €Y _ .
Rgy I€ + [Hiex, r_] =0 (15)

What can we say about the form of the intetnal curvature ? It is an easy mat

ter to prove that

IS, =0 | (16)
T lafie = © -
From this and fraom the consideration that

™ lele ™ T 8o I‘%B’ FS] a7
we obtain

” [RQB, r’] = 0 ' (18)
The most general expression of the internal curvature obtained as ‘an element

of the Clifford algebra and satisfying equation(18) has the form

- ' 5 € -
RQB = Sdﬁ. 1+ PQB r + BGE T PB BBE T I‘a (19)
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where SaB’ P 8 and BaB are puve tensors that satisfies the symmetry conditions
SOLB + SBG 0 (20)
PaB ¥ PBa 1 0 (2D

If we put expression (19) into (15) we obtain two separate equations

PaB =0 (22)

RQB-«ZBgaa—thaa:O (23)
where

B=B, ¢ (24)

ap

From these considerations we see that the expression (9) induces a relation
between the contracted riemannian curvature (Rici tensor) and a tensorial field.
If we assume that the divergence of the tensor field BGB(X) is null then we ar-
rive at a contradiction. So, we cannot identify Ba.s directly as a conserved
energy-manentun tensor. If we assume otherwise that

BaB = M 8&6 - N TGB (28)
where

o -
T B“a =0 (26)

then, expression (23) assumes the form

1 2y
ROLB-ER‘GB =-kT0LB (27)

for a particular choice of the functions M and N,

We see that relation (25) (where Tue is the energy-momentum tensor) implies
that equation (23) is just Einstein's equation of gravitational theory.
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4. THE ANTISYMMETRICAL OBJECT
Let us see what are the relation that equation (9) gives for the antisymmetric
al product

_ 1 )
zaB =5 (Pa 1"B l"B I‘a) (28)

A straightforward calculation can show that

- - 1 5

zaBMA =2 {gaA FB &g L} (1 +I°) (29)

If we define ‘
1

ogp} = 7y Zaga = Zarlg * Zerfe ~ Zgalp * Zrafe T Eaglod

then (29) gives (30)
Let us evaluate now the divergence of the E:BB. Wé obtain
Qb L 5
ZB”OL-GI‘B (L+7r°) (32)

If we define the current JéB as

- 5 [
Jg = 6 Tg (1+I°) {33)
we obtain the continuity equation
JB =0 (34)

8

Equation (31) shows that we may introduce a potential ﬁﬁB such that

_fAB _ 4 AB
Zﬁ?“”aus 08 o (35
A choice for this potential may be
@a = (consﬁant) Ty : ‘ (36)
We see that these relations are just Maxwell's equations applied object

that has an internal structure besides the tensor character of the usual electro-

magnetic field.
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