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ABSTRAGT. A first order correction to the estimator of true scattering that

accounts for small energy losses is derived. Energy values
obtained from scattering measurements performed on pions, starting at Srum
and 12 mm residual range, show excellent agreement with values taken from
range-energy tables when the original observations are treated according to

the prescriptions developped throughout.
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The estimate of the average projected angle of multiple
scattering of fast charged particles has been the object of many
investigations; most of that work, however, has been restricted
to the case in which the particles lose a negligible amount of
kinetic energy along the extent of path where measurements are

taken.

That condition is met approximately in a number of
situations but it is not rare the event in which serious
systematic errors are introduced by neglecting the energy losses;
in that case; trends will be different for different laboratories
since they depend ultimately on the distribution of path lengths
employed.

In this paper an approximated method to correct the estimator
of true scattering for small energy losses is derived; the
treatment is semi-empirical and requires a knowledge of
the exponent of the range-energy relationship and the residual
range. The discussion is limited te Moli%re—d?Espagnat“s

estimator but other estimators could be handled similarly.

In Section I a short account of Mbli%remdespagnat”s theory
of estimation is given; Section II deals with the derivation
of a corrective term to the egtimator of true scattering in the
presence of small energy losses. In Section III results of 150
scattering measurements taken on pions stopping in the same
emulsion sh%et, at 8§ mm and 12 mm residusl range,; are presented

and compared with the results of previoug sections.
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I. Moliere-d 'Espagnat's Method.

In this Sectlion a brief presentation of Moliére-d'Espagnaﬂs
method of estimation is given 1’2; we mention only thepoints that
were found necessary to provide the grounds upon  which the
arguments of Section II are developped. Further details or
clarification should be sought for in the papers of references

4

1 to 4. We follow very closely Solntseff's notation.

It can be shown that the joint distribution fuﬁgtion of n
finlte differences of order r of observed ordinates of points
on the trajectory of a fast charged particle can be written as

(Gaussian approximation):

=% . .
f(x)a% = {(Zr)nLQI} exp{— % 5&4}“1A§} %% (1)

+
where x is the row vector (x, Xpy eeey xn),‘x_ its transposed

and x; 1s the r®H_ gifference of ordinates yys defined by
x; & oy ¥y (2)
with
i} k Kk o o

cigi""k""l’/a = ("l) CI" k = 0, 1, cee T (3)

{ = 0 e

i3 ir |i-il> /2
if p is even, and

c =(-0%c¥, x=0,1, ... 1

i,1+k=(r+1)/2 r? y Ly 0

cyy = 0 if J<i-(r+1)/2 or j >i+(r+1)/2-1

if r is odd; C? in (3) and (4) are the combinatorial numbers
r! /(r-k)! k!.
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Furthermore, in (1), A"l is the inverse of the matrix of
moments, {\;_, (the matrix of the mathematlecal expectations of xixj),

and |A| its determinant. The matrix of moments consists of two

additive, independent contributions,j__\‘(S) and {_\:v):
ﬁ(S) is the matrix of moments of the rth-differences in absence
of noise and A () is the corresponding matrix in absence of
genuine scatte‘ring. The elements of A (S), Agj), can be writ-
ten as 2
A(S)- (1/2)J‘ x' B, % (L) Qj(l) ag (6)
0

whereas the elements of {‘\,_(”), "g)j’)’ are given by

(») _ o2
AiJ z 1% ik ON (7)

where the coupling factors, ‘)’i(ﬁ), are defined by

V(L) = Zj (~1)¥ c:k P L) (8)
%=0 i+k~r/2

for even r, and

¥ (L) = : (-1 ¢E or(2) (9)
- i+k (r+1)/2
k=0
for odd ;3 | 1is a coordinate of position taken along an axis
parallel to the trajectory and such that &= 0 and A= ﬁT are
the abscissae of the beginning of the first cell and of the end
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of the last one, respectively. Finally Oé(ﬂ) is defined by

fn

2(2) -4 if
J js-1 L<is (10)

9,(1) = 0 if s

and s is the cell size.

Furthermore, in (6), X} 1is given by

X; = (zze%/pv)(ar)? (11)

for a particle with charge Ze, momentum p, velocity v, travel-
ling in a medium with N atoms per cublc centimeter and atomie

number z; Br can be obtained from the set of equations:

QT
xZ =f x:Z 08 an (12)
0
Uy
In xZ = f R A AR A LD (13)
0
%Z
B.~ InB, = In = _E (14)
¥ 2

where dne€ =1 and fn%= C is Euler's constant. ‘kﬁ in (13) is

the angle beyond which screening effects become important.

Finally, in (7), oy 1s the standard deviation of the

observed ordinates when genuine scattering can be neglected
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in comparison with noise; we assume that only random noise is
present and that the ordinates due to noise alone are distributed

according to a gaussian law with standard deviation Tyye

We can see from equations (5) through (7) and (11) through
(14) that the whole energy dependence of the process is contain-
ed in,QL(S), through the term xﬂg Br' That dependence can be
made more explicit with the help of the following definitions:

Agj) = (xf Br/z)“l liﬁ) (15)
ais) = APl (16)
A%}) = ;g)/oﬁ (17)
agy = a7 (18)

oZ = 2B /2) aly) (19)

0'5 = crNZAg_);) (20)
M = c;«'ya/c:rs‘2 (21)

Equation (1) can then be written

-%
£(x)al = {( 2ro2 1 [a(5)s A ::a(")l} exP{-g(ng)+

A 2?02 3-‘/2%2 }dnx (22)
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We can see that the whole energy dependence of the process
is now contained in the parameter cébt the estimation of  the
energy oflthe particle can then be done by means of that para-

meter. Before going into this part of the problem it is worth

to mention that the elements of the matrices gFS) and_g(v) were
calculated by authors of references 1 = 4 3 the elements of

the matrix_Q‘S), however, have to be corrected for our purpose,

“'by including their energy dependence. |
The estimation of oéa can be done in the following way:

Let us choose an estimator of the form

R=2, byy Xy Xy (23)
ij
where the number ’oj_;j are left urdetermined for a while. Suppose
we have an infinite sample of trajectories of ldentical particles
and that we compute R according to (23) for each of them. The
matheﬁatical expectation of Ry E(R), is given by

E(R) =Z.bij B(x;x ) (24)
1]

Since, by definition,

(»)

- = a(s)
E(xixj) = Aij = lij + Aij

we can write:

B(R) = Tr(b A) = Tpb AS)) + mr(p a) (25)

where b is the matrix of the coefficients bij and Tr holds for
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"trace! of the matrix.
Suppose, now, that there is a particular choice of the

matrix b, say, R’(S), such that:
rr(p (804 Oy =0 (26)
In this case (23) becomes

ER) = Tr(p (5 p (8)) (27)

Now, from (15), (16) and (19)

&S) - s,zi(S)’ (28)
introducing the result above in (27) the following expression
for csa is obtained

o2= B(R)/Tr (p_(8) 5 (8)) (29)

Ify, now, R* is an estimate of E(R) (R* is usually taken as
the value of R obtained in a single trajectory) equation (29)

provides an estimate of ogzz

c*2

+8 = mye (p (8) 5 (8D (30)

provided elements of the matrix QL(S) are known.

The elements of

Qb(S) have to satisfy (26), being other-

wise arbitrary; therefore we can choose them in such a way as to

make EN(S) as simple as possible Bu Such a choice is:

b(?):la i=1,2, v n
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Using this matrix in (26) we obtain:

b = = [n/{n-1)]/2 ag‘;g +1 (31)
With that choize for Eiﬁ} the estimate of @§ given in (30)
becomes ¢
op” = {“‘Ezga = - 'Z%’u\) / k i”iﬂ a§_si+1) (32)
where X %,xafn and x' = Y xgxy ./ (n=1).

The variance of the estimate {%0) can also be found but actual

computation will be omitted here for the sake of brevity. The
result is
s) (s) (s
s(o3/a3 = {Tmc G PPN RORUNG a"’%*‘
(s) () (s) (”)\7%/3/’;?51?1? pls) 4 (33 (33)
Fr Tr( » \=

where the left hand side is the relative variance of o;,

The estimate of Oy given by (32) should be used in equation
(19) to yield an estimate of pv. However, since the gaussian ap-
proximation that has bsen used throughout is not accurate, this

procedure would give rise to bilased estimates.

It has been shown by Moliere 1 that it is possible to write

an expression for the axact frequency function of the modulus of
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any given rth-difference by means of a series expansion, the
first term of which corresponds to the gaussian approximation.

The mathematical expectation of the absolute value of any given
rth-difference can be computed from that expression and the

result iss

B(lx,1) = (2% o, (1 +0.982 B, = 0,117 B2 + ...)  (34)

By other hand, a cut-off value is imposed on the observed

th-difference greater than that value is

samnple so that any r
removed from the sample. This procedure tends to yield samples
that are more close to the gaussian than the original one, the
closeness depending on the actual cut-off employed. An exact

th-differe‘ﬂces

expression for the joint distribution function of r
in a filtered sample cannot be obtained but a fairly good ap-
proximation to the corresponding frequency function can  be
derived by cutting the exact Moliere's expression at the
appropriate value. With this truncated distribution we obtain

for E(|xi|):

X
B(Jx,|) = (2/m)% o (1 +a/Br + b/BF + ...) (35)

il)
where g and b are numbers that depend on the abtual ent-off

procedure.

X
Therefore we take (2m)* cf as the estimate of the left
hand side of (35) and use the resulting equation to estimate pv.

The equation of estimation can be written as:

1
(2/m)* of =K, sg/z/pv (36)
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where 3
K, = 2Zze” LSAgi)/s3) N Br:] - M, (37)

with

_ L2
M,=1+ a/Br + b/Br + vee | (38)

and g is the cell length.

K, in (37) is the "scattering constant® for r*Pogifrerences.
It depends on the cut-off value chosen and is a slowly varying
function of the cell length and the energy. Kb has been calcu-

lated by different authors 2

and plotted as a funection of
the cell length and v/c for different cut-off criteria. Solnt-
seff ¢ shows how to connect KO with Kr for different orders of

finite difference.

II. Multiple Scattering in the Presence of Energy lLosses.

The results of Section I are valid only if energy losses
are negligible; in the opposite case, says; when losses are heavy
compared to the kinetie energy, the whole problem is meaningless.
However there is the intermediate situation characterized by
small but non negligible energy losses, upon which we focusg
attention in this Section. We will assume throughout that those
losses;are not great enough to invalidate the small angle ap-
proximation, or else, that energy losses and accumulation of
small angles can be considered as independent stochastic proces~

ses.
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In the presence of such energy losses, yé and Br cannot be
considered as constants; they will vary slightly along the track
interval used in the measurement. It is possible to account for
that if an expression for that variation as a funetion of a

~sosition coordinate along the trajectory is available.

The dependence ofmg with a position coordinate along the
trajectory can be derived easily with the help of the range-
-energy relationships

E = aR® = a(R, - 0)F = £ (1~ 1/R )F (1)

where Ro is the residual range, Eo the kinetic energy at Ro
and L is a coordinate of position taken along the trajectory

whose zero is at Roo

By using equations (I.11) and (1) it is easy to show that
- =K
xé(i) = x{0)X(1=-¢/R) (2)

where xé(ﬁ) 1s the value ‘of x! at any position & and xé(O) is

the corresponding value at 1= 0,

Equation (2) provides the required expression for  the
variation of xé wvith a position coordinate along the track; the
variation of Br along the track can also be described by means
of equation (2) since all energy dependence of that parameter

2

cones from the presence of a term in xé in the expressions

for xg and xgo Since, however, Br varies rather slowly with
energy S we prefer to replace it by an averaged value, .Er’

taken over the track interval used, which will be discussed
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later on.

We can now introduce m%(i) instead of ! in the definition

of the elements of the matrix of moments, £§(S)§ to obtain

ﬂT
NG = (B2 | ) oy m a (3)
0

The expression above can also be written

)
oT

NITLOT. Br/Z)J (1-1/B, )" 7 (1) 7,(L) at (4)
0]

where, for simplicity, adg holds for xig(O).
(s)

We now define the elements of the matrix 4'°%’ as follows

CHEENCT S WO (5)

It follows from (4) and (5) that, up to terms in L/R s

Lo
p{S = S v avn) (1 9y @ (6)
0
als)

where the 1 are the same as in (I.18).-

The integration in (6) can be performed with the help 6f
the coupling factors 7,(L) given in (I.8) and (I.9);  explicit
representation of those factors can be obtained by ‘performing
the summations indlcated in those equations and using the

definition of oi(ﬁ) given in (I.10). The expressions for the
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coupling factors thus obtained are:

i) Second Differences:

%L = L= (i-1)s for (i-1) s<l<is

Il

7 (L)

7,(L)

(1+1) s-&  for is ¢ < (i+l) s (7)

0 elsewhsra.

ii) Third Differences:

%) = 1= (1-2)s  for (i-2)s g R<(i~1)s
% A) = (21-1)s =20 for (i-1)sg¢ g < is (8)
Q&(ﬁ) = {= (i+l)s for isg¢ Q| < (i+l)s
% (1) =0 elsewhere.
iv) Fourth Differences:
%) = b= (i=2)s for (i-2)s¢ L < (i-1)s
%) = (31-2)s - 31 for (i-L)s<¢ Q< is
9&(2) = ~(3i+2)s+ 3¢ for is¢ L <(i+l)s (9)
%) = (1+2)s -1 for (i+lls < < (i+2)s
Yy =o0 elsewhere

where g is the cell length.

Here-to-after, unless exrlicit mention is done, we will

consider only second differences; higher order differences can
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be handled much in the same way.

The integration in the right hand side of (6) can be done
without difficulty by means of (7) and the result is:

Af%) = (S)EH Ziks/R]

A'_Sj_) = §Si+ll:1+ (Zi+l)ks/R;‘ (10)
(g) =0 if |i-i|> 1
Now if we define o' by
ois = (x’i Er/z) Aﬁ)- (11)
we obtain
x':(l?) = cr'g (Aﬁj’/z;é?): ot a'gj) (12)

which correspornids to equation (I.28).

2

The parameter g' in (11) contains the whole energy

dependence of the process and is identical - with the parameter

defined by (I.19) except for having'gr replacing B,; it depends

2

on the energy through x', which is the value of xﬂg(ﬂ) for L=0

and through E? which 1s a sort of average value of Br taken over
the track length used and is, therefore, independent of f. There

fore, once an estimate of 6'2

is available, equation (11) will
provide an approximately unblased -estimate of the energy of the
particle at 1= 0, in gaussian'approximation;-

2

The estimate of U'S can be obtained by taking the same
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steps as in Section I3 thus we can show that
oi¥e = ) %2 + by, XX /T (b(S) a'(S:) (13)
s 1 i T 17i+] TA\= = &

(s)

where the matrix a° can be obtained from (10) and (12) and

E§S>

is the same as iIn Section I,y since it is defined by an e-

gquation that does not contain any energy dependent parameter.

On the other hand

1 (p (57 gilst) - Eﬁ_eb(n-l)] [1+(n+1) /R (14)

| s

where pn is the number of second differences and use has been made

of the expressions for ai (s) as obtained from (10) and (12)

(s)

and for b as given in Section I.

By using (14), (13) and (I.31) we obtain finally:

cr';Z = ( ia) X~ - ?;£1+l) R Z(LZ) - aiz))(lﬂnﬂ.)ks/Ro) (15)

which iIs the required estimate of cﬂg.

The relative variance of 6‘; is given by a formula similar
to (I.33) with EJ(S) replacing g‘(S) and m'. replacing .,
where

L I___1+_ (n+l)ks/RJ (16)

The traces of matrices appearing in that formula are
calculated for large n by using the same method as in reference

3) and the result is

1
2

'S(O**)/o4*= (1/2n)%'{2 1040, 31}2(l+nks/R )+0, 18f2(1+2nks/R )r (17)
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Strictly speaking the estimate of energy should be obtained
by using the estimate of o}, equation (15), together with e~
quation (11); however the arguments of the end of Section I still
apply and a better estimate is obtained by means of equatlons
(1.36), (1.37) and (I.38); where B, is to be replaced by ﬁr'

It remains the problem of determining Er' The first step

2 2

for that purpose 1s to evaluate xc and In X, given by (I.12)

-and (I.1%) where the constant value 162 iz to he replaced by

12(1) given by (2); let-x1<
X o _ ~

S

and fin x‘g represent  the new

values of those parameters. We obtain:

x'§ = x§ (1+21ks/R) (18)
ln.x’g = fn xé (19)

Equation (18) shows that X'S. depends on the position  of
a particular cell on the trajectory; this is'not the case with
'xi given by (IQLZ) owing to the property of the coupling factors:
Qi(l) = qi+k(£+k3)‘ Thue the parameter B! that could be obtained
by replacinglxs and Rﬁxxg in equation (I.14) by the correspond
ing values (18) and (19) would also depend upon the position of
a particular cell on the trajectory. We can avoid that dif-
ficulty by defining Er as being the solution of an equation
similar to (I.14) but with x5 replaced by

' <x§> =3 x‘i/n = x‘z EL+ (n+1) ks/R;l (20)
o1

xi remaining unchanged. Since equation (I.14) is thus only
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slightly modified it is easier to compute the corresponding

fractional change in Br rather than solving the equation for Br'

Let X represent the right hand side of equation (I.14);
then
83, = [(B,-4nB,)/(8,-1)[sx (21)

where 8B = dBr/Br and &X = dX/X.
On the other hand, since X, remains fixed,

58X = (2/X) 6xc (22)
Now, taking
dx, = (32 - x2¥/x_ = (n+1)ks/(2 R)) (23)
we obtain from (21), (22) and (23):
BBr = E./(Br—l)](n-l'l)ks/Ro | (24)
and, therefore

Er = Br {1+ E‘/(Br' 1):l(n+l)ks/Ro} (25)

Further, the fractional change in the scattering constant,

K.» can be obtained from (I.37) and (I1.38):
6Kr = 6Br/2+5Mr = (/M - 1/2) 3B, (26)
The new value of the scattering constant is then given by
K.~ K (1 + 6Kr) (27)

From (25), (26) and (27) we obtain, finally
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- 1 2-Mp ‘
K= K ql+— (n+1)ks/R (28)
ror 2M_ B_-1
r r
The value of the scattering constant, Kr’ appearing in
(I.36) should be replaced by E} given above to account for

energy variation along the track. We see that R};>Kf a result
that agrees with the observation made by different authors about
discrepancies among measured and calculated values of the

60

scattering constant

The preceding arguments can be easily adapted with trivial

thanges, to Tinite differences of order greater . -than second. The

relevant results for rth—differences are summarized in the fol-

lowing formulae:

| -1
c’*z = l/(a(v) agg))(a(y) x§ EI§1+1)[;+ (n+r-1)ks/Ré]
‘ (29)
(Z/W)% or¥ = i; sB/Z/pv (30)
_ 1 2-Mp, ”
K, =K, ql+— . (n+r-1)ks/R | (31)
r T 2M, B,-1 0

The relative variance of o; for second, third and fourth
differences has been tabulated by Solntseff 4, for the case 1in
which energy losses are negligible. It can be shown that the
effect of energy losses on the variances can be taken into
account by replacing u, in those formulae by Fr(l+nk5/Ro)’ a cor
rection that holds for r-l«n«R /ks.. -

Higher order corrections to o, and Kr could be derived
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similarly but should be used with reserve because the method
outlined breaks down whenever energy losses are heavy enough to
couple the processes of energy loss and accumulation of small

angles.

I1. GComparison With Experiment.

————

Scattering measurements were performed on pions stopping in
the same emulsion sheet (Ilford, G-5) to provide material for a

check on the results of the previous sections.

HMeasurements were taken with an ordinary Leitz-Ortholux
research microscope with a 12,5x filar micrometer eyepilece and

100 x objective.

The cell size was chosen equal to 37,9 micron for all
measurements; the estimate was based upon second differences with
cut-off without replacement at four times the arithmetic mean. A
computer program, suitable for UNIVAC 1105 systems, was produced
to handle the data. The value of the scattering constant with
cut-off, as obtained from formulae given by Barkas 7 plus a 2%
correction mentioned by Solnseff 4, was 24,43 MéV-degree/(lOOpf%;
the.exponent of the range energy relationship was taken from
Powell et al 8, and the range measurements were done by

&

rectifying the trajectories.
Two groups of measurements were considered:

i) 103 measurements starting at 8 mm residual range;
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ii) 47 measurements starting at 12 mm residual range. In
both cases the measurements progressed in the sense of decreasg~

ing pion energy.

The distribution of path lengths used for each set of
measurements is shown in Fig. 1 and Fig. 2; for residual ranges
of 8 mm and 12 mm respectively. The distribution of energy
values obtained for each gréup iz shown in Fig. 3 and Fig. 4,for
the measurements taken at 8 mm residual range and in Fig. § and
Fig. 6 for the set at 12 mm residual range. The data shown 1in
Figs. %3 and 5 are the uncorrected onéé; in Figs. 4 and 6 appear
fhe data treated according to the procedure developped in Section
II.

The average values of energy, obtained from the different

groups are:

i) at 8 mm residual ranges

E = 18,26 * 0.39 MeV (1)

B,= 20.16 % 0.43 MeV (2)

ii) at 12 mm residual range:
E = 22,84 * 0.50 MeV (3)
E,= 24.77 % 0.87 MeV (4)

where B and Ec hold for uncorrected and corrected energy

respectively.

Those values are to be compared with the corresponding ones
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given by range-energy tables; we have used for that purpose the
formulae given by Powell et al 8. We normalized our ranges to
values in an emulsion with the same stopping power as in those
formulae by means of range measurements in muons. The range of

muons in our emulsions is 601.2 + 8.3 micron.

We thus obtaln:

1) at R, = 8 mm, E 20,13 MeV (5)

0

25,02 MeV (6)

ii) at R0= 12 mm, EO

We see that the corrected values obtained from scattering

measurements are in excellent agreement with the results above.

We conclude that the estimator of true scattering must be
corrected to account for the energy losses and that the method

presented 1s thls paper can be used successfuly for this purpose.
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The distribution of path lengths used for the measurements
starting at 12 mm residual range.
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Fig. 3 | E(MEY)

The distribution in energy obtained from uncorrected observegiicns starting at
8 mm residual range.
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The distribution in energy obtained from corrected observation starting at 8 mm
residual range.
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The distribution in energy obtained from uncorrected observations
starting at 12 mm residual range.
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The distribution in energy obtained from corrected observations
starting at 12 mm residual range.





