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ABSTRACT. After a reformulation of the General Relativistic equations of mo-
tion of a pdint mags in a gravitetional field in terme of "four-legs", the gener
alized Dirac equation is written in the Schroedinger;representation and the
equations of motion of classical observable quantities compared with the previ-
ous one, The FoldyaWouthuyéen representation is obtained in presence of gravi-
tational fields. The most interesting result is that the gravitational "gyro-
magnetic" factor is 1 instead of 2 as the electromagnetic one. The interpreta-
tion of this fact is that the spinor field {and probably all fields) describes
rotating particles where the gravitational mass has exactly the same space dis-
tribution as the inertial mess. This is not true in Moshinsky-Birkhoff linear
theory. Finally the red shift of hydrogen atoms levels in presence of  gravi-
tational fleld is obtained and found to coincide with the usual prediction of
General Relativity.
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INTRODUCTION:

The equations of General Relativity can be understood
either as describing the laws of Physies {including gravitation)
in arbitrary coordinate system or as a description of these laws in
a priviledged frame corresponding to an underlying flat spaceln In
the last case the whole difference g,, - éﬂv is ascribed to the
gravitational potential. In fieid theory this is the most appro-
priate interpretation. We shall adopt this point of view and thus

deal with the equations as non-linear equations in Mirkowsky space.

In this paper we are mainly interested in the Dirae E-
quation. However for the interpretation of these equations where
the gravitational potentisls appear in the combination given by
the “fOHrélegS”=h(qa, and not gﬂv 3 it is convenient to analyse

the classical equations of a moving point mass in terms of h@xj ;

E4
this is done in secs. 1=2. g
In section 3. Dirac Equation is written in a ocbviously
self-adjoint form. In section 4 it is written in hermitian or
Schrodinger form gpd comparison with the non quantum formulation
is made, In sec. 5§ the Foldy-Wouthuysen representation of gener=
alised Dirac equation is obtained. Finally; in sec. é the red shift
of hydrogen atom in a gravitational field is examined in the lines
of the used interpretation and the same result is obtained as in
the metric interpretation. The red shift correspond to the fact

that the rate of vibration of an atomiec clock referred to the under

lying "flat” time is changed in presence of a gravitational po-=
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tential. The fact that the sise of the atom is also changed as
directly examined in Moshinsky analysis, is implied here by the
fact that comparison of the hydrogen atoms in presence in absence
of gravitational field is much simpler when different lenght scales

are used.

1, ITHE CLASSICAL (NON QUANTUM) EQUATIONS OF MOTION FOR A POINT

MASS IN A GRAVITATIONAL FIELD.

The equations of motion of a point mass m in a gravita-

*
tional-metric field 5#” are given by

duf P A e T pv/%%m %% 08 -
m——=-m ] ;,u u =~-—g + T " u u, (1)
ds 2 ax? dx ax”
where, p
" P 3 as? = gy ax” ax”, (2-a)
ds »
py _ R
g gy}l 6Ao (Z_b)

~ From the variational principle which leads to equation
(l), we find the four-momentum p}j of the point-mass in the gravitg
tional field:

*
Throughout this paper we will use natural units, ¢ =h = 1. Greek suffixes
run from O to 3; Latin suffixes from 1 to 3.
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Py = m g, . | (3)

The equation of motion for p}l is:s

ds 2 ax)*

a® u® . (4)

It is known that the relativistic quantum equations for
a point particle with spin 1/2 in a gravitational field (Dirac e~

quation) is more conveniently written in terms of "local frames" or

fcm:c--legs‘2 h(q)}‘ and their reciprocal h(q’) # 3 deffined by the re-~
lations: '
(ex) (g
A L Bap ™ By 0 (5-a)
h(qi! nB# - gap (5-b)
h(Q)F h(ﬁ)y éu = g)‘ly . (5=¢)
g
where 4 g"m[3 is the Galilean "local metric tensor",
Boo = = 833 =1y B35 =05 17§ (5-d)

It 1s convenient, for a future comparison, to write the
equations (4) in terms of the four-legs components. We find by a

straightforward caleulation (x° = t)

P

—— T P v 9 (6"“&)
dt ax® F
where, ,
ba) = e BP7 (6-b)
and V(Q) is the "loeal veloelty" given by:
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axl @) g3

v(q) = h((x) —— = h u —-— ., (7)
}ooat P dt
It is also convenient %o eliminate p, from the second

member of (6-a)., This is obtained if we use a spécial set of four

-legs which we shall call the gahonical frame, with the property:

These restrictions and even three new ones; can be im-

posed in of the fact that only ten out of the sixteen numbers
hﬁaa‘ are independent. Thus we take the canonical frame as:
plelo (o)1 plo)2 plo)3
(1 (12 ,(1)3
, 0 h h h
(n(“?g) = - . (9)
0 0 h(Z)Z h(2)3
o o o n32
This 1s a unique definitions of the h(qaj, 1f we fix the
signs of the diagonal elements. We have:
h(o)o = h(O)o -‘~ng° ] (10-a)
goi
ﬁ(o)i - ﬁ(Q)i T — (10-b)
00
g
ij oi o]
~ - g g 8
h(k)i h(k)J = - 3 (10~c)
goo 00 2
(g™")
where , p h(y)F '
h(y) = o

o
h(o)
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In general only (10~a,b) will be used. It is easy to
conclude from (8) and (5) that:

h(o)i = 0 (10-d)
Thus we obtain:
' =1
gto) = h(O)}.l P = h(o)o ¥© = h(o)o = (h(o)o) , (11)
where,
axh
of = —
dt

Equation (6-a) takes now the form,

13

~ k
dp . dh
P o 8t 2 ( o)-l (o) () o
=m h — ——— ] ; - v h (12)
at (o) ds o M (o) 5 <H Py (o)

In derivation of the equation (12) we used the porperty

A | |
P, u =nm (13)

Bquation (13) which is linear in P, can be used to

obtain the expression of the energy Po in terms of the momenta Py

and the local velocity v(j); We find, using Egs. (7) and (11):

ds i (k)

= e— - (x " !
P = m " - Py h(k) v = Pg h(o) o (14)

This is the classical equation which will be compared
with the Schrodinger representation of Dirac equation.
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2. SLOW MOTIONS AND WEAK GRAVITATIONAL FIELDS.

The approximation correspondent to the weak field is,
. »
g’ = gM ek 'Y+ PP (small k),  (15-a)

o

g}w= g,w - K(‘i?in.,"'#;,’l) ’ (15-b)

where a dotted index 1s an index lowered with g P instead of

8,“,

FPor the four-legs we have, in this approximation:

° 4 .
N T T RN R T L (15-c)
In the canonlcal representation (equation (9)),

¢Py = 0, if V>}.lo (15"‘&)

o
For a moving point source of velocity V and mass M,
the time component K4>°° = ¢, represents the newtonian po-
tential, given in weak field approximation by:
K M
b= — . (16~a)
r

The components ¢ °1 are linear in Vi,

4kM i 1

Kol = vi = o1, (16=b)

T

ands the remaining components are,
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k M

Keli= — 5134 13 (16-c)
r
xj'j being guadratic in Vi, will be neglected for slow moving

sSources.

In what follows we shall be concerned only with ¢M”'S

- of the form:

KP*”) = (17)
o 0 o0 ¢

The equation of motion (12) for slow  moving Dbodies
(velocity ¥) in the weak field may be written:

—
dp .
— =me +mvAD , (18)
at
where , -
mv

?= (Pls Pa: P3) = (- Pys=Pps -P3):

4

;2 (&1’ a.Z, &3) 3 -ai = E(o)i = goi‘ ’ (19)

. s
?=rot?; e = Ve .

In the case of a moving point source we have from Egs.

(16):
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- — /1
g*= ¢ = KMV (;>- )

r

i — g 1
b= =4KMV AV G).
r

(20)

Therefore we seee that the "magnetie" field B*as com=-
pared to the "electric" field ;> is four-times greater in the
gravitational case than in the electromagnetic case (for charges
of the same sign) and the relative signs are opposite:

E&: 5* = ~-4 3’: E*

The minus sign correspond to the fact that the "elec-
tric* force is atractive in the gravitational case and repulsive

in the electromagnetic case.

3. THE DIRAC EQUATION IN GENERAL RELATIVITY.

The four-component spinor field ¥(x) which describes

a spin - % particle is invariant (scalar) under coordinates

transformations, and transforms under local infinitesimal rota-

tions of the four-legs, as3:;

i
Y(x) —> B(x) - = PO ¢

: )(x) $(x), (21-a)

{(pXo
under,

h(Pil -——*h(P;l + G(P)(c) (x) h(‘"),, s x' = const.  (21~b)
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(p)(o)

where S are the "flat" spinor matricesB,

i
gte)o) - 2 [q(P), 9-(")], (22=a)
2

1
3P0 = - {,}(9), o o) }, (22~b)

Here, and in the-fo_llowing sections we shall use the Vierbeine-for

malism, in which are used only the "flat" spin-matrices Q(Q) i=

dentical to fbhe usual Dirac matrices"]’o

The wave function % satisfies the generalized Dirac e-

quation?,
ih(P)ﬂ 5(P) AF?/’zm?ﬁ , (23)
where, ' | (o)
A= — =5 n(PIV d - n(® ). (24)
SRR RN

Now, in view of the relations:

1 1
P2 S(P)(U‘) =E [Q’(A)’ S(p)(o-)]"'z{(r(a)a S(P)(o-)} y (25-a)

[”(A)’ s(p)(o‘):l'—' 21 (ﬁ;\?'r(a) - &g 0'(9)> 3 (25-b)
= (@)

{r’b\)’ S(P)(c)} =21 €N ? Vs (25~¢)

Vs = Yoy (1) %2 U3y 0 (25-d)

& A)(p)(o)(q) Peing the full antisymmetric unit tensor constructed
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with the fundamental permutation 0123, it is possible to write Eq.
(23) after some substitutions as:

i P} i
(A) po 9 P r* = (A -
X

where ,
. 1 (o)
- (3P  (p)v 3n*°°
B = 2 EAxB(p)a) BT B = . (27)
azc#
The dual-squation satisfied by,
-q: = §l'1' ﬁ ) (32 ()-(0)’
has the folléwing expression:
i ) | ol - i _ -
z Hhmﬁ’ T } +ay T } gt~ oMo By =-at.
‘ oz’ ad - (28)

From (26), (28) are obtained immediately the known relg
tion for the law of conservation correspondent to the generalized

fourvector density-of-current,

23t
— 0, (29-a)
a::“

= n(P)" 7 o Py (29-b)

where, g = det (gPV).

This justifies the use of the normalization conditiomn,
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P®av= |/ ny® yt g av =1

4, SCHRBDINGEB BEPRESENTATION OF THE DIRAC EQUATION IN PRESENCE

OF GRAVITATIONAL FIELD.

In the next section we shall apply the Foldy-Wouthuysen
transformation® to the Dirac equation (26). As a preliminarystage
to this method it is necessary to write (26) in the Schrodinger

form:

QX :
i _ = HX ] (30)
ot
where,H is the hermitian hamiltonian operator. Thus the probability

density must be,

2= xtx = % ol x| (31)

If we multiply equation (26) by P, it takes a form
similar to (30) where H does not involve time-differentiation (in
our canonical frame); the unique difference appears in the first
member of these equations, since now we obtaln, |

;1. b )09.9_ ?ﬁ-_-aiq()'l) h i,_?i,.. Y
2 | % et | 2 I R

- i : i
-z @y PpH CY



209

where ,

However this '"hamiltonian" is not hermitian; in other

words, J° does not take the form (31) but is (by 29-b),

1° =/ oy’ 9T Y, (33)

Comparison of (31) and (33) suggests that we must

make the non-unitary transformation¥
1l i
X= (-—g)4 (h(o)o>2 q’. (34)

Indeed, after thils transformation we obtain,

. g_i_c ) [mﬁ_ _Eq(k)_ {ﬁ(k)i, b} - ,;3;- {ﬁ(o)i, by - .z. qsq,wg}'(aﬂx ,
(35)
where , _ d
PL7e oxt

and,y for any quantity F,

Q
hio)

' d
Taking 1 3+ = p,» we see that Eq. (35) is just the

symmetrized Schrodinger equation corresponding to (14), except

Clearly the same conclusion is obtained if we try to bring the first member
of (32) to the ususl form involving only time-derivatives  of the wave
fanction.
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for the “quantum term" involving .(B( A)® With the following corre-

spondence: _
oc(j) —--:—v(j) h(o)o, (36=a)
ds - '
® at (o) | ?

The "quantum" term,

i ~ 1 ~

- ¢A) = — (A

"7 %5 B > 7 B(ay

in equation (35) has the nature 6__f a "magnetic" moment interaction,
Indeed, in the weak f ield approximation we find from eguation (27)
- and (15-16),

1., - -
530‘-—‘—0; (1)@(1) = =0 T.rotaz=b-.
| 2 2

- We may now obtain the equation of motion for p;; from
the general relation-

do

— = -0, H]
at
We find,
(s ] 2 ~
dpy 8 2B6) 1 ofi (5’ 1| 98y)
"‘;'; = = ' - 1 ) p‘-] - ? pJ -
h(a_)o ox 2 dx 2 bxi
2% (37)
B B
?
2 ol

The “quantum"' termy
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~ 1 ~
- (A) - = (A)
%« By =z By o
2 2
in equation (35) has the nature of a '"magnetie" moment inter-

action. Indeed, in the weak field approximation we fiﬁd from
equations (27) and (15-16),

i w—p —
c.rot a=b-

v gy

0 . (1)Q -
gg<::'0’ g @(i)"

VIS B

We may not obtain the equation of motion for Py} from

the general relation:

do 1
— = - [0, H.
dt
We find,
~ o J h
dpy m @3 ohyy -1 aﬁ(0) 1| %8k
—_— o T ’ pj - ’ pj -
dt B, \©° axi 2 dxt 2 2 xt
(o) -
| 1 (MBQ(A)
= = g —— (37)
ot A) being the hermitian fourvector,
) = (D Is5 - (38)

Using again the correspondence given by Egs. (36) we
see that equation (37) is identical to the classical equation (12),
except from the symmetrization of non-commuting products and for

(A)

the "guantum" term involving o
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5. THE FOLDY-WOUTHUYSEN REPRESENTATION®.

We shall consider the FoldyéwOuthﬁysen approximgtion
of the Dirac eQuation for a charged particle in presence of

grévitational and eiectromagnetic fields.

The schrgdinger equation (35), in the weak-static ap

proximation, after- the usual substitution,
P Ty S Ryteds; T e

o
j— ———ai——+ e P,

ot ot
takes the form:
X _
1— = ng +& + & (39)
dt P o

where, in the present approximation:

n=wm(l-b), (40-a)

€= -ep+ 247, ?}+%?-“’; (40-b)

0=%{£ﬁ, (1-2¢ >} ’ (40-c)
and ‘ ! : 5

' 1l = 1
PV =0 5 )@@ )

ST ox" | (40-d)

Following the Féw proceduré5 we f£ind, after the transformation:
X —> xt = 18 ,
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i N S S
§=-—8 G, (1+¢ ) » = -'—[3&-6“"{4”%9
4m 2m 2

ax

i—— = ﬁﬁ "‘.‘&i'*' 0"9
ot
where é’ is an even operator and 0’ is an odd operator of the
orders (%{) and (1) As we are interested in the approxima -
tion up to the order ( )2, we proceed with two new sucessive
transformations which eliminate the odd terms up to (1) (in-
clusive) and produce  only even terms from l) up. Thus,
neglecting these terms, we find: (using also the usual transfor-
mation: x" = exﬁ(- imt) ¥)
oY

1 . e
i— = [—mcb-e*P-*-“ {v‘?‘, 1-34>}~—-?-3(1=3+)
ot 4m 2m

1 1 e - ,
+—{?, ?}+_,-—o~.b=-———— fo"-'.EA?r*,lmacb} +
2

e -+ 5 3 e >
4 — (L-2P)divE ~— T-8AT ~-—dive - — E-3[P (41)
2 4m Sm 2
8m 8m

In equation (41) terms quadratic in ¢, and those of
order ( ) involving zorb (thus the small velocity of the
gravitational source) were also neglected. Finally the condition
B lf =y was used.

We see that to the order (% )2, besides the usnal
terms of the electromagnetic ca595 with corrections coming from

the gravitational field, terms were obtained of pure gravitational
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nature. Let us examine these firstly.

(1)— {7 7+

The first term would already have been obtained in
6

N aw

the Moshinsky~Birkhoff theory- which coincides with the present
one in the weak field approximation, except for the term |

- % f)(A)‘}s 93(1}. The second term,however, did not show up in
his work, as it comes out precisely and exclusively from the re-
fered additional term which is characteristic of general rela-

tivity.

If the atom is in a region where b = rot a is uni-

form we can write:
L o
a

i

b A

N

— - —_
1 ;.#+%ou =3B (FaT+:D-ens=2F.T-c1.2

o

Thus we see that the "magnetic" gravitational field
© interacts with‘the total angular momentun 7. In order words,
the gravitational "gyromagnetic" factor is equal to 1; even for
spin % particles, in contradistinction with the electromagnetic
case., Therefofe the general relativistic equation assures that
the intrinsic angular momentum behaves as if the particle was a
gyroscope. We believe that this result holds true for any value
of the sbin, as the value G =1 implies that also for the internal
structure of the particle the distribution of gravitational mass

(in the interacting term) is the same as that for the inertial
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mass (in the angular momentum).
.
7

(11) The "spin arbit term® | = — o - ,

This term together with the previous one, gives for the precession
.

equation of the spin ?—

F)
= <§z . s>,> | (42)

— b ot
where Sle is the usual precession angular velocity and Slg is
the correspondent gravitational one:

— 3 1
Q=== SAT+~- F. (43)
Zm 2 .

If the gravitational field is prodﬁced by a rotating
sphere we find that (43) is identical to the equation for the angu
lar precession of a spinning body in a gravitational field as given
by Schiff’ (equation (3) of the reference. The term'§i\§§ is of
higher order then those in (43), so would not show up in the pre-

sent approximation).

iii) The divergence term (- é% div Eﬁ) » similar to the diver-
gence term occurring in the electromagnetie problem, and the very

small term in Eﬁ e



316

6. RED SHIFT IN A UNIFORM GRAVITATIONAL FIELD.

If a hydrogen atom is in presence of gravitation its
levels will be shifted. Mbshinskyé, using a version of Birkhoff
theory, found this shift to coincide with the usual prediction of
General Relativity.

Let us show that for the present purpose Moshinsky's

equations are just the linearized General Relativistic eguations.

Fifst, our Schroedinger equation for the electron in
the Coulomb field coincide with his one to the order of his ap-

proximation (2 = b =& = 0),

2 : :
P e o>y L
12?={-mc|> e +(1-3¢) — ~ — (1-24:)@-%‘3;;-- aiv E}) P
2m 2 2

ot am
(44)
Seéond his equation for the electromagnetic field
in presencé of gravitation are just the linear approximation of
Maxwell equations in General Relativity. Ih the weak field approxi
mation the Maxweil,equations

[ oA
0 P ()

ax"l ax° bxp

becone

5 .. . . .
— <F‘3°‘- 2;1(39 r® - 2pP quqpé Ff"? = 1P, (a6)

where
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Iy
Q}‘ = - ‘bGFVi

(we used equation (15 ~a, b)), and

P*= g 2 sl = 2 gfY.

& Tpo P tp T Epol

Eqﬁation (46) is indeed identical with Moshinsky's (10-a) since our
ﬂﬁ“are identical to his hﬁm (when ot,[a =0, 1, 2, 3) and our tb is

the same as his f.

=B

Thus 1f we keep only the terms up to order in e~
quation (44) we 6btain the same result of reference (6). We shall
show now that the same expression for the red shift result when
the JE terms are included. Instead of going into detailed calcu-
latign we shall reduce equation (44) to a form similar to the one
for the free gravitation case:

alPo pZ e 1 |
i“;:"EolI’o -{-ertpo-!- : o-B AP Zdion> \Po =

= By(Fy By ¥,) ¥ - (47)

Here as in ref. (8)

. e

(1-29) ¢(F) 5 9 )=

m

Y(T)

o )
4 7r

—r
E

. -
= -To; B =-Ve .

We find indeed that if we make the change of variable:

T—T =T 1+ §); p—p =% V, (48~a)
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we obtalin: .
!

1, - 0 f y
Eq{(r',t),=i-%,—+md>1‘.[5 =HY , (48-b)
a .

H=(1-¢) H(T',p'¢") (48-c)

vhere @' = Y (F1), Y (F,8) =¢ (Frt).

Thus we find, by comparison of (47) and (48):

| t
lll'(;’i ’t) = <1 + zi) q:‘e(;*' ,t) e-i(E° EO) ’ (49)
E=hv=(1-9) E = (1-¢) hy,. (50)

The factor (1+ g‘:) in (49) comes from the normalization condi

tions:

JQ*de=JTG+ $ dv=1 .

Therefore we have proved that to be present approxi-
mation not onJ.y the Coulomb potential contribution to the energy‘s
but all electric terms are shifted to the red by the known rela-
tivistic equation,
‘ AX kM
—— I @Sme (R) "
A R ¢
Actually this result can be proved to be exact to
all orders straighforward from Dirac equation in the form (35) for

gravitational fields of the form,

8uy = 0s PV 811 = 8pp = 833 T 8149
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or

1
_ /00 Ao I
h(O) = ~g 60 - 50 )
' v o0
(51)
s U S 3
hpy =VET 8¢y S(ry
811
In this case we find from equation (45)
oo
P(r) = /—-— P (1) .
841
Thus, after the change of varlables:
1
;>' = /841 .1_": -I?i'; ;VG (52)
equation (35) becomes (Kf? ﬁ:i e =0):
' ‘
bq’ (k) 1 t 1 '
i"?é"«/'ﬁ??{mﬁ-m P -o¥ p¥ =EY, (83)
where
P = P F),

from which we obtain, by comparison with the free gravitational

case:

3/4

Y= (gyy) | Y (F1t) oL (E-EE, (54)

BE=hu=/g " E = /goo‘h»b ’ (55)
which is the exact prediction of General Relativity in the usual

interpretation.
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Finally we shall consider the more general case when
magnetic fields are present. From Maxwell equations (45) we find

for stationary magnetic fields in presence of gravitatlon:

J(rl)

- =

A(r) = dv, . (55)
IF' -irll

However, for comparison with the expression in ab-
sence of gravitational field we need more information about  the
. - '
current J(r) which is altered by gravitation. Here we assume that

in general the relation of T to J (in absence of gravitation) 1is

h
the same as for the atomic current Q Ek; § o(K) 2})
| )

IF) = o' FY @ = 8,7 Y,
Thus o
- Bis  _ €11
() = )Y YP(T) =e —— To (V).
r) =e v€;§3 P, )y YPlr e végﬁ; i, (r
Therefore:
A.(I') = ;'; Ir rl dvl (gii) ='/gii Ao (1").

Equation (35) becomes now (7= 0):

- /T fmp - @ o e Ly

with

|
fl
b
[
®
W

L i —
A = 0.k (rt).
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Thus we obtain again, by comparison with the free gravitational

case, exaectly the results (54), (55).

It is interesting to mention that the change of
variables ;?___,Eﬁ, given by equation (52) correspond to the

fact that the gise of the atom iﬁﬁﬁresénce of gravitatlon is
1 .
reduced by the factor ——— as could be found by direct compu-

s 8ii
tation.

* sk ok
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