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ABSTRACT - We compute ordered integrals along arcs (or circles)
and segments for the instanton. We use them to
obtain variational and partial derivatives for
open and closed strings. We also compute the

D'Alembertian for Wilson loops.
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Lately, the Wilson loop[]J[Zj has arisen considerable
attention in gauge theories, due mainly to the fact thatits
behavior serves as a confinement criterium. It could also
act as a dynamical variable which may eventually replace
the fields in the lagrangean, with its own evolution equation

which should involve their variational derivatives [3][4][5J
6107 |
(8] [9]

" On the other hand, instantons , being solutions
of Yang-Mills equations may have important contributions in
effective ca]cu]ations:

Instantons and fnstantons-]ike configurations ( like
merons) present a symmetry property which allows the actual
calcuiation of the ordered exponential integral along
particular paths, closed or opened. These paths are arcs
of circles which we choosein the plane X]X2 with the center
at the origin, and also straight line segments. The center
of the‘instanton is at any point of the plane X3X4.

In this way, we can consider loops which are complete
circles, or closed paths formed by arcs and straight lines.

We consider first some simple examples of loop ( or
string) integral computations for the instanton, whose po -

tential is:

A = 2f HY ¥V (1)



although it will become clear that the same procedure can
be applied to a more general set of potentials, not neces-
sarily solutions of Yang-Mills equations.

in the specific case of‘thé instantons having the

center at 'X% = X§ = 0, we havé“explicitly. with X on the

plane Xy X,
G, Xy 40 X, = 0 o X2 = 0, X9
PP M Bl M BT ML SYPY
X2 + Az
with X2 = x5 « x5+ x3%e x3%

If we now consider po]ar\variabies in the X]X2 plane,

and remember that

- 4 !
?ij " eijk}Aék %54 % % S (4)
we find:
A, dx¥ = i B de ' - (5)
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We note that

. . 0 .
iB(e)do_ .""Z” 93 i B(0)de e 2 % (7)

Let us consider now an angle interval 0, <0 2&. We 'divide

@, - 6,
it in N equal parts f L and express the value of
N .
exp i B(0)do at. the corresponding points 0, = —ﬁ——(@f - @i)

(n=1,2,...,N) by means of (7). Then we take the 1imit N + o,

We get:
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Explicitly LS = - (12)
and:
o By By - Byt —— o
L= .0 Z]=T . zzzT s E3=——l.-_.— . (]3)

(10) represents the value of the “integral® (8) for any arc
of radius r with 6.<0 < 0;.
In particular, for the complete circle:

1
2 Ti(B(0)+ Oq)
TENISER s (14)

wzﬁ’o(r)=-cos 2tk = iI sen 2er . - | (15)

If wev take the trace of (15) we get the corresponding Wilson

loop:

W(r) = Tr 'WZW o(rl)=-2 cos 2slL. ' (16)

If we now consider - for simplicity - a radial segment in the
(x,y) plane, the integral is abelian and can be computed straight

forwardly with the result,
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with AT = X

A completely similar result can be obtained for a
segment
Xu = o, + Bu T ] ST <19 -

With formulae (9) and (17) one can compute more general loops.

In particular, for the "plaquette" PAS T <y » 0720 <0y ¢

Let us now consider the variational derivatives and
related partial derivatives of strings.
It can be shown that for an open string
S W

9y O axX

do

=W

0,0 ,fVA(G). wad] + a(d-oz)Av(az)wgz d1-6(o—o])wgzc]Av(c])

& X%(a)
(19)
Where o 1is a parameter along the curve, and fﬁv the field
intensity. See also refs. [2] to [7] and [10] and [11].

Form.(19)can be written in a more compact way.
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or also:

————6 "ope, ry 21
s "V - wczc fuv( (o)) wcc] (21)

where the field fu (A(r))is to be computed from:

Y

A(o,upw)=e (o, U,V W) Au(o,u,v,w)

(22)

-] G]i g < 02
e(o,u,vw )=¢(0)

0 otherwise

ie: e(o) is the characteristic function of the string
coordinate; the string itself being given by

V= Vo, W= Wy, 0150 <0,

It is not difficult to understand the following relation for

an open string: (See also form (9) of ref. [11] )
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s W 5 W
(o} o [P e} .

do 2 91 297 (23)

8 Xv(c) 3 XV

9
(valid also fbr general coordinate systems).

Let us see how (23) works for the instanton.

We take W (r) given by (10), X_ being the radial
@261 Y



coordinate r. In this case, we have

e
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The validity of (24) can then be explicitly checked by
independent computation of both members.

Besides radial dilatation we can consider angular
desplacements of the string sector as a whole.

In this case, from form (23) and (19) we get:
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In particular, for 9,=0,0,=0 + 2m (28)gives:

o W

which is a Heisenberg eq. for the loop o~ © + 27.
Up to now, as we had w@fei as an explicit function
of (r,0) we could check (23) for radial and angular variables
For cartesian coordinates, we compute the
r.h.s. Nevertheless even if we only know woo' at a
certain position, formulae (19) and (23) allow the calculation
of any translational derivative. This remain also true for

higher derivatives with repeated use of those formulae.

In particular, for a closed loop:

fo+ 27
8w®+ 27,0 .
v = or 2m,00 Tyt Werg M40 * [Au(@)’wm zn,@J
Jo ,
(30)
where
- ax’
O WY 4o

Taking the trace of (30), we have for the Wilson loop:



5 W 2n
— TY‘ . fue w@+ 2'”’,@ Y‘d@ : (3])

Now we can compute the' D'Alembertian of the Wilson loop
by the simple expedient of taking derivatives and using (30)

Thus (in cartesian coordinates):

2m
Ow =3u auw =Tr IO au fue we+ 21,0 + fu@ au w@+ Zn,e}rde (32)
2n J r@'l' Vail \
Ow-=rTr [ [ Du fp@ Wo oot fu@ Wou 2n.0" fu@' Woig rde’ frdo
©)
(33)
which, for a solution of Yang-Mills equation reduces to
2n o+ 27 }
Qw=Tr ) fue . Wo, 21,0" fu@' w@.o rdo | rdo (34)

A similar result can be obtained for open strings. In

the  case of the instanton, using (10) to (13), we find:

2
4 1 + 2
By = 216772 7 2n(1-z§) cos 2wl + N sen 27l +
(X™ + A7) L
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+ —————— sen 27l (35)
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Analogously, by taking (21) for a closed, traced loop;

and then using (30), we obtain:

5 U o+ 2m

au =Tr Du fuv wO+ 2,0 * fuv w@+ 2m,0' fu@' “e'e
& o"V(X) 0

rdo't . (36)

(For the quantum case see form (14) of reference [6] )
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