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ABSTRACT

A modcl consisting of an’Ande?éon Moriya d-resonance,
strongly.perturbed by a Slatef—Kostér potential écting in the
cenduction band is developed fo describe dilute raré earth impu
rities in s-p hosts. |

| The properties of this model are studied, in particu-
1ar‘th¢ deviations from the usual behavior of the phase shifts
due to the Slater-Koster potential.

The local magnetic responses to the rare earth's ex-

“

change fields are calculated in order to discuss self-polarizat-.

ty

ion hyperfine fields of the rare earth in thesc hests.

The behavior of the hyperfine fields in terms of the
parameteré of the model is discussed numerically and possible
changes in sign'élong the s-p series is obtained. It is suggested
that the coﬁbination of an Anderson-Moriya resonance and the
strong.81at¢r—Koster scaﬁteriﬁg may be a physical mechanism
suitable to induce changes in sign of fhe hyperfine field in

these systems. Experiments are suggested to test the model.



I. INTRODUCTION

Magnetic rare eérth impurities have been used succesfully
as probes in host metals in several experimental works. In'parti?
tular hyperfine field measurements have been réported in the 1itg,
rature for transition metal hbsts[l,2,3] or intermetallics [2,4].

‘ Frém the theoretical point of view diluted magnetic rare
earth impurities in such transition like host metals have been in
terpreted as physical realizétions of simultaneous presence at the
same site of charge impurity scattering and éxchange polarizat-
don 5,61, e .

In this work we wént to discuss*theoretically the problenm
of a magnetic rare ea%th impu;ity embedded in s—prhosts. Contrary
to the problem discussed in Ref. 6 where there exists a considera-
ble amount of experimental daté [2,7], to oﬁr knowledge experimen-
tal data concérhing hyperfine field méasurements at the nuclei
of rare earth.imphrities in-s-p hosts have not been reported in
the literature. | .

The case of a magnetic rare earth impuritf'diluted in s-p
hosts contrasts with the previous transition métal case [516] due
to the absence of unfilled d-bands in  the neighbourhoud of the |
Fermi level of the host. However fhe existence of filled d-bands
near the bottdm of the pure host s-p band provides the possibility
of ext;acting d;bound states frdm'it, as in the case of transition
impurities in Cu or Al [8].

Hence, the existence of d-states, i.e. a d-virtual béund

State hump necar the Fermi level a part from the host conduction S~Pp
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states is a impuritf effect.

One has experimental e&idenées confirming the'éxisten;e
of a d-virtual bound state for ;aré earths diluted in some noble
metals (Ag and Auj. Measurements 6f,skew scattering of rare
carth impurities in these noble metals [9] show that the maximum
value is obtained for Gd impurities. Since Gd is a S-like ion,
the usual anisdtropic exchahge scatte;ing as derived by Kondo [10]
(and reported in [9]) vanishes since the angular momentum is zero.
The apparent contradiction is :esolved by introducing a 5d-virtual
' bound state and including spin-orbit coupling of these'electrons..
Other. evidences are brovided by studies of the sign of the crysfa-
lline field coefficients [11]. |

The rare earth valence plays a central role in the problem
we discuss th;oughbut this work. In fact for trivalent rare atoms
‘the number of d-elecF;bns per impurity in the d-hump plus’ the num-
béﬁ of conducgion states is equal to 3, whereas for . divalent impu-
rities the sum is 2. If one studies a series of s-p metals ohe then
varies the number of 's-p-electrons in fhe host from say 2 to ?.
_Then é Tepulsive potential must ensure the correct change of number

-

of s-p electrons per rare earth impurity and thereby the ressonant-

ing d-bound state is strongly modified by this extra charge poten-:

tial. In other words: a d-atomic Anderson state [12] mixes to a Sla-
ter-Koster (SK) [13]perturbed conduction-density of states thus
affecting’the feffective width” aﬁd height of<the d-hump. So we
suggest thaf a Friedel-Anderson (FA) model where the conduction
states are perturbed is physically realized when trivalent rare

ecarth impurities are diluted in s-p hosts.



If one concentrateé on hyperfine results in these systems
we argue that the trivalent rare earth 4f magnetic moment polari-
zes both the‘Mo;iyé~1ike distorted d-hump [14] and the SK perturbed'
host density of states. "

In this work we are conce:ned‘with S-state rére earths,
othérwise the strong orbital hyperfine field shoﬁld be present.
So our results apply to Gd3+£o; Eu2+) impuritieé.

The theoretical pyaﬁlem discussed in this work contrasts
with the transition metal host case [5,6] where tﬁe rare earth
4f moment polarizes the perturbed d-band host (mostly responsible
for the excess charge screening) and the s-band which feels im-
purit& effects only via s-d Scatterihg,'ln that case it was shown-

/ ,[6] that no change in sign of the hyperfine field as a function of
the charge difference was-pdssible. Moreover the sign of the hyper
fine field was determined only by the sign of the exchéng¢ coupling
-between d—condggtioﬁ/states and f?loca;ized'states.in agreement
with ESR experiments [2,7,15],

In the $-p host caée, d—electroﬁ occupation is small. One
hopes that in favourable situations chénge in sign may octur since
competitive mechanisms (contact and core polarizations) may become
‘comparable and alternate in'importance.

Our paper has five Sections. Scctions II and III are dedi-
céted to the formal aspects. In Section II.we ﬁresent the model
whereas Sectiqn'III cdntains the general mathematical treatment of
the problem and basic derivations of the hyperf;ne contributions.

In Section IV we describe and discuss the numerical results obtained.

Concluding remarks arc made in Section V.

b g T < 4 e 75



1I. THEORETICAL MODEL

In this Section we describe the main- ingredients of the
model e.g., the unpe;turbed s-p host and the impu:ity potehtial
introduced by the magnetic rare earth impufitf. Let ﬁs start
with the unperturbed s-p host. One adopts a simplified‘ﬁand mo-
del based in Campbell's [16] picture for s-p impurities embedded
in fetromagnetic hests. This mbdel consists of 8 identical sub-
bands, each one normalized té unity in order to account for the
filling of the s-p series. Within this particular model, the pe-
-culia? s- or p—charécter as obtained from de deccomposition of the
total density of states [16] is repiaced.by a uniform dist;ibutéon
with Qeights of respectively 2/8 and 6/8 for the s- and p- densi-
ties of states. Then, iq the Wannier representation the one-elec-

tron hamiltonian for one conduction subband is

-

) o Horese = Do ot -
_ | ) Host ijo_Tij Ciccjo T (2.1)

’

where c:  and c
_ ig an .

56 are respectively the creation and annihilation

operators for electrons with spin ¢ at the i-th Wannier site in
that subband; Tij is the transfer integral between sites i and j

defined by

Tij —'}}é El’s C ~ ~1 Nj‘ (2.2)

éE being the band energy.
Now we describe the impurity effects. These are separated

into two types: potential scattering of the s-p states and reso -
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nance effects associated to a d-atomic State.

As far as the first effect is concerned one assumes that

the trivalent rare earth impurity is characte;izéd by Zgﬁ) and
@ .  confisurations respectively with z(&) + z(8)-

Zimp’ i.e., s- and d- configurations respectively with Zimp + Zimp

i NOR GO . : L

=3, The values of Zimp agd Zimp will be discussed in more details

. later on. Starting from atomic values one has for e.g., Gd atoms

(c) _ (d) . . i o il
Zimp 2 and Z.lmp 1. Then,  if phe rare-earth impurity is embedded

in a metal with Zh s-p electrons, a repulsive impurity potential

should be introduced in order to repel Zy - Z§;% electrons. These

remarks define:
i) a SK problen specifiéd by the potential VCC assumed to be loca-

lized at the impurity site, so that

(C) - "z 4 .
imp . Vcc oo Coo , ' (2.3)

The strenght,of the impurity induced scattering matrix ele

ment Vcc is determined self consistehtly as a function of the

charge difference AZ_ = Zg.- Z£;% fhrough Friedel's sum rule [17]

AL = Vee pclep)
C R
lfVC Fc(e

8 . 1r
5 arctg

(2.4)

C F)

Ip (2.4) the factor 8‘accounts_for s-p degeneracy whereas
pc(eF) and F?(ep) are respectively the déﬁﬁity of states and Hil-
bert transforﬁ at the Fermi level of the condﬁdtion supband suitably
normalized to one. Clearly, if the s- and p- densities of states
are available from a band calculation, (2.4) should be replaced by
the corresponding equations descri'bing S= énd p- contributions to

screening.
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ii) The second contribution to thevcha:ée impurity proﬁlem arises
from the existence in s-p metals of a filled d—Eand’{lo electrens)
'1ying far below the' s-p Fermi level.

We assume that the existence of thé atomic 5d level of the
rare earth provides a locally strong~tepulsive potential capable
of extracting a.bound state from this filled d-band. The reppeled
bound-state rescnates then with the conduction states produ;ing
a virtual bound state around the Fermi level. The hamiltonian as-

-

sociated to the resonating ''atomic' d-level is

(4 R T ' s (d)_(d)
. mp =g Ed'doc d00+ o (Vcd oo dpo ¥ ch dOOCOJ * Vaa Dot n*ﬁ ’
) . . : . (d)= + £ oo
: _ : neo doo dOO {2.5)

where d;g‘, doo are cre;tion and annihilation operators for the‘

d-local statesAﬁin'Ande:son's [10] sense) located at the origin

' a;d with ene:gy'ed. Vg gnd Vic afe the matrix elements account-
ing for the broadening of the local level and IV¢d12 is one of the
paramete;é of our modei. Finally Udd is the 1ocal-pouiomb repulslon.

The impurity effects associated to the rare earth impurity are then

‘incorperated in the hamiltonian

4 ch _gr (c) & (d) ~ ‘

0w imp "% imp “®imp - (2.6)
It is assumed throughout that a magnetic Hartree-Fock so-

lution is obtained for the extended Anderson-Moriya (AM) problenm
J2.1),

defined by™(2.3) and (2.5). As for as sclf-polarization hyperfine

fields is concerned the existence of the local Coulomb interaction



Udd Eetween*Sd electrons amounts to Harﬁ;eenFock weakly enhance
the local magnetic‘response of d-hump states to the exchange in-
teraction with the 4f—moment (see Section 1IV). In this work we
neglect this effect which tends to incrgase the d-contribution
to the hyperfine field. |

For a given hybridization matrix element [VCdIZ' and
band st:ucture'model (given by the density of states pc(m) and
the corresponding Hilbert transforﬁ Fi(m)); the problem for a
spinless rare earth impurity like Lu is completely specified by
determining self-consistently the position ed of the d-atomic
state respccﬁ to the Fefmi level. To do that one should solve
the AM problem in presence of the SK pefturbed s-p states. This
" will be done in the next Section and he;e we just state the re-
sult for the self?consistenéy'equation. The number of states
associated to'the resonant states (d-hump plus conduction,state

contribution) 'is given by

- 2 N
. ﬂlV | © p (e)
,AZd = %g arctg cd c,0 F

SR T (2.7)
epmeg™[Veql FC;OCFFI

The factor 10 accounts for the d-levél degeneracy whereas
g;,oﬁeﬁ) and E;?O(EF) are respectively the local SK perturbed den
sity of states and its Hilbert transform at the Fermi level. The
self conéisteht determination of €4 gdes~as follows: using the
value of the Fermi energy ep aséociated to the host s-p metal with
Zh electrons and imposing AZy = 1, onc gets from (2.7) the valuc
of eq- ‘

If the impurity is a magnetic rarc earth like Gd, the lo-

calized f-moment polarizes both the perturbed s-p conduction states



and the d-hump. The coupling term is as usually

4+f exch _ _ 1 f oz (c) + L 1 (d) 4+
M@ imp 20 g <85> ( OGCOU Fd ‘ d00,d00> (2.8)

J(A), (A= ¢ or d) are respectively the exchange intefactions be
tween the localized 4f-state -and the s-p conduction states or d-
states. For simplicity's sake, the k,k' dependence of these cou-
ﬁlings is completely disregarded’and as discussed below (cf.
Sect. IV) these paramcters enter in our calculation through the
ratio J(d)/J(C)

Hence, our model hawlltonlan descrlblng a magnetic rare

K
earth embedded in a metallic s- P host 15 given by
¥ _ ¥, . % ¢ch 4 exch | (2.9)
. " host imp imp T

T1I. FORMALISM

A - General Mathematical Approach

"In ordcr to obtain the contact and core contrlbutlons to
the self- -polarization hyperflne field at the rare earth impurity
nucleus we calculate the s-p conduction electron and d-hump mag-.
netiz;tians-induced by the 1oca1.f—moment <8%> at the rare earth

impurity site. This calculation w1ll be performed in the Born

approximation for the "local exchange fields" -V é;g‘—2<JJ(A)<S >,
(A= ¢ or d). To do that we must determine the complete Green func

34 (u) associated to the hamil

tion matrix elements ngg(w) and T
“tonian (2.9).

We start from the unperturbed systen (i.e.%'=5&hdw): to
: N



a given conduction subband of the pure host described by (2.1)
. S . . ) . .
corresponds a Green function g(w), the elements of which are -gi-

ven by

s 7 oo (3.1)

CcC = X o)
~gij(w) K
~

Due to the translational invariance of the pure host, the
diagonal elements ggg(w) are  independent of site i and are connectad
to the Hilbert transform of the unperturbed s-p density of states

-

through

t
~ | ' pe(u)
855C) = g55) ~ Fo(w) = L _=f S Sdet, (3.2)

w~w .

Eb and Et being respectively the bottom and the top of theAs—p
subband. |

In (3.2) oneghas'real and imaginary parts. Hence

:F¢(w+ igj-z FE(N) - iﬂpc(;), (€+0+? .‘*(3-3.8)

where ‘ .

R = = \ .
Fo(w) = k Ty éj\ dw» : (3.3.b)

GD being ‘Cauchy's principal part.

b

When one introduces the rare earth impurity at the origin
onc gets a "perturbed“‘system characterized by a Green function
~ :
Pq(w), of matrix e]ementq r (w), (x,u = ¢ or d), which can be

evaluated through a Dyson liKC ecquation

0D

A ~
= o +
r g o

A A . )
) I (3.4)
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The problem defined by (3.4) is to be solved as follows.
We define an intermediate Green characterizing the perturbed s-p

band (through (2.3)) which is solution of the SKX problem

Rk d
USP D]

(3.5) -

Next, one has an AM like problem (th:ough (2.55), namely,
a sharp d—lé&el extracted from the filled d-band host collapsing
into a charge pertu;bed"s—p band. The d-level is described by
.the Green function §(w) with mat:ix elements (in the absence of

Coulomb interactions)

8., 8. .
gg?(w) = 2] 10 : (3.6)

m"'ﬁd

‘ : A A
This problem can be solved by calculating G from E,
through
- _ - _ A ~ C A (ANI\ A . ‘
G=g+ gV ‘G (3.7)

So by solving (3.7) one accounts for the pure charge po-
tential effects/int?oduced by the ra:eAearth impurity. A similar
'formulation was introduced by Iglesias-Sicardi et al [18] for
studying the formation of thé magnetic moment of an actinide im-
purity in a disordered host. !

. oA
Once obtained the Green function G, by considering the

rare eérth’s 4f moment (through (2.7)) one gets finally

N -~ A/‘; A ~
Pg= G+ G Visen Iy G+ G exch G

A N

(e

<>

(3.8)

where the last approximate result follows using the Born approxi-

mation for exchange scattering. Let us now detail the various



stages'of the ‘calculation sketched above.

B - Charge Impurity Effects: Exact Solution of Equations
(3.5) and (3.7)

cdd

The Green function mat;ix element Gg?(m)_= 5ot Oo(m) is
evaluated from (3.7) through’
d dd dd cd
603(9) = 850(w) ¥ goolw) Vg 6o (w) (3.9.a)
d, | _w dd
Ggocw) = ggg(w.) Veg Gog(w) . (3.9.b)
. cd ' %
Eliminating Goo(w) one obtains
. dd
dd, - o0 (0] _ 1 '
Goolw) 1 IV 1285C (1) g 99, ) - v '2~cc ) (3.10)
. cd g00 goo WTEGT Y ed (w
with
cc, | .
8o (w) ,
Boo(w) = —2—— = F_ ) (3.11)
: 1-V_ g " (w) ’
cc®oo

Expression (3.11) is derivéd from.(SVS); i.e. Egg(w) describes the
Green function matrix element at the rare earth impurity site which
is the exact solution of the SK problem. Note that expression (3.10)
is just the c}assical Moriya result [14] of a.d;level hybridized
with a conduction band, except that in the present casé the con-
ductlon states are perturbed by the impurity potentldl \% cct

Let us now ecvaluate the Green {unctlon matrix clomcnt G (m)
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Again-fyam (3.7) one has

GSS() = BSSw) + FS(w) Vog G5(e) T (3.12.a)
dd |
Ggg(“) = 860wl Vg Ggi( ) : (3.12.b)

Eliminating Ggg(w) yields

-

lV

cdl ~NCC
Z~cc (o) goi(“)

cC _ nNce ~Nece
Gii('w)‘ = gii("’) * gio(“’) “ l
: weegTlVeal &oo

(3.13)

where

. | v
CB5E(w) = 855 w) + g5 w) €€ —— gof(w)  (3.14)
L - - . -. ". - l—Vchoocw) . .

is precisely the i-i Green function matrix element as derived

from (3.7).

P

So, the Green function matrix element Ggg(w) at the impu

rity site 1is

(w- ﬁd) 800 w)

GEC (w) (3.15)

00

2nCC .,
w-eg=|Vql7e So w)

The Green function matrix element defined b} (3.10),(3.13),
(3.14), which are obtained in terms of pure host s-p band quanti-
ties (as pc(w) and Fg(w)) and impurity quantities (as Vcé’cd and

IVCdlz) completely solve the d-impurity scattering problem'(AM



problem) in terms of s-p perturbed scattered states (SK problem).

C - Local Density of States of the perturbed system and
extended Friedel sum rule.

Firstly we consider the various contributions to the
-local density of states at the rare earth impurity site.

From (3.11) one has, simila%ly to (3.3),

-

%gg(w).= ?E,O(w) - ingc’o(m) ' (3.16)
where'
P lw)
W = -3 InESW) =
[1-V_ F c( )] t 7 Viep C(m)]
(3.17.33

o~

is the local den51ty of states of a s- p subband in the SK problem
”R

c O(m) belng given 1n terms of o, (w) and F (w) as

- R ReyionZy -
B () - Fc(w)[lhvchC(w)j_ Ccpc(w) (3.17.b)
[V PR ()] 54 [V o (]

- The total local density of states at the rare earth impu-
rity center is the sum of two contributions, which are obtained
from G (w) and G ( ).

One has

D‘loc(m) = pd’o(b)) * DC;O(UJ)' (3.18)
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where’

~
pc,o(“)

22R 2 r 12 2
[omeg=Veql Fe o1+ [nVq ™8 o Cu)]

1 dd ., ’ 2
Pa.ole) = - 5 Im G () = |V 4

‘‘‘‘‘ (3.19)

is the local d-hump density of stafés and

. : . 2 ~
1 cc (w‘ﬁd).pc’o(w)
) =-gIm Goo(w)," v 2R 2, 1y | 2 )
o femeg- cal *C,o(w)] x| cal pc‘o(m)J

-

~
~

D

C,O(w

(3.20)

is the local s-p deﬂsity of 'states for a given'subband.

We close this paragraph deriving an extended Friedel thcorem
N connecting the total change in density of states due to the AM reso-
nance to the total change in the number of conduction states intro-
‘duced by the AM resonance. In particular, the sum rule previously
announcéd in €2.7) fbllows straightforwardly from the theorem.-‘

From (3.13) and (3.14) one obtains for the change in the
number of s—p.ﬁonduction states up to energy w introduced by the

AM resonance:

-

w - . m a'\’
: o F. (0"
' " ~ 2 % ¢c,0
n°@)= - ¢ T [ Il Ese e = -2 m | Neal =5r—
o i = , w'-e -]V lZﬁl (") '
Eb ' T Eb d''cd “c,o
(3.21.a)
The above expression may be rewritten as
: 2 ¥ o) o .
O B L e "
sn(w)= - py I — 2"? do' - w = B
| 1 w.—cd—lvcdl Fe ol ,‘w'ned"gvcd‘ e ole?)

B o, |
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- 3 28 ' =0 (s
= - 2 j v bnlgg[wf—%jivcd ch(gjldwf59l9;
(3.21.b)

where sn“(y) "is the number of d-states contained in the d-hump
up to energy y as follows from (3.10).

Then the total number of states introduced by the AM resgo
nance AZd(m) = anc(w)+§nd(w) is connected to the total change in
deng}ty.of sﬁates Aptot(w)7by

(Y] - [
: 10 3 . . 20 - _
j‘ 8p o (@)de’ = - 77‘] 5£Tf Im logfw -ed-]VCd] bc,o(w}ﬂ dy' =

Ot

il

AZd(w)

=ﬂj”%¥mmw o ' (3.22)

w
.Eb,

where the phase shift n(w) is given by

| ™% ()
n(w) = arctan Cd €,0 (3.23)

The factor 10 in (3.23) accountg for the degeneracy of the
d-level with same spirit that degencfacy ofythé s-p band was in-
cluded in (2.4) through the factor 8.

Fricdel's sum rule (2.7) followé directly from (3.23) by

taking w=ey and bZylep) = LYE
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D - Spin Polarization at the Impurity site: Self Polari-
zation Hyperfine Field ‘

We consider now the Dyson like equation (3.8) to evaluate
the Green function mafrlx elements I (w), (x= ¢ or d). We calcu
late these matrix elements up to first order in the local exchan-

ge fields V§;2h=-%o‘J(A)<SZ>. Then we collect the spin dependent

terms thus obtaining the local magnetizations mck)(o), (A= c or d).

Within this Born approximation the Green function matrix

elements r;;c(w) turn out to be

MO GM(U’ 79650 (n) J(”<S > 2w - $o 6w I8 ) =

e HORTAAORICERE or diu ) (3.24)

Using the previously obtained expressions for the spin

independent Gr?en functions Gku(w)’ (A,u'= c or d) one finds after

a little algebré:

-

2 "( 2 , 2. 2 ‘s
sToC(w) = - J(C)<SZ> wreg) UC’O(N)] -g J(d)<lSZ \/Cdl LFC O(mBJ ,
” i [oeg Vgl F. o] * 2 meq IV gl F. @]
TP ed! Tes0 w:[ . V [o-eq71Veq c,o
(3.25)
and
' ; v
ﬁfdd(w) = - E.J(d)<52> 1 - g_J(c)<Sz> ‘ ﬁdl [ c ﬁ(“)j
00 2 [ume - |V Zﬁ’ ( 27 T } \jz
JHAEd cdi C,0 m)l D» sdkl Cd] C,o(m,

(3.26)
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Then one obtains the local magnetizations m(A)(o), by re

.membering that
n?) (o) =2 ImJ Jile sRh ()]aw . (= coor d) (3.27)
, L _ .
Ep

Let us introduce now the local magnetic susceptibilities
'xkp(o), (A,u= c or d), which are the local magnetic responses of
A-electrons to an "effective magnetic field" acting on p-electrons.

(In our case the "effective magnetic field" is supplied by the lo-

; (r) *
cal exchange field Vexch)‘ One has

(i) The c-c local susceptibility x®S(o), " ' ‘ s
’ €
/ F N
21 2
(w-ey4) IFC’O(w)]

o 2 =
[o-eg=17 gl B, ()]

-~

'XCC(0)=-%-;Im

-~ [ F _ )

. 2i¥ 2
' (e ) “IF. ()]
R %'j\ o d c,0

g bl o @)

5 sin[zn(m)—zac(m)], ' §3.28a)

A\

(1i) The “cross" local suSceptibility X (o),

€

| 2ry 2
. | .2 .
X" (0) = x4 (0)=x%(0) =% Imj as Ned] [c;fi( )] ) =
. [w-ed—lvcdl FC,b(fu)]

EREE

°F 2 2
Jﬁ do [ycd! [Fc,o(w)l

B !X(m)lz Siﬂ[ZU(m)“Zéc(w)] | . (3.?8b)
b
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dd

(iii) TThe d-d local Susceptibility X (o)

EF - EF )
) =1, 'Imj - de o - = %J d ilriz—’l-g—“ﬂl (3.28¢)
: ‘ @?dﬂnﬂibgown - | X(w) |
b .
n(w is given by (3.23) whereas the quantities |[X(w)l, (m)l

and 6 .(w) are defined by

}\(») = w-eyr :vcd| <, ow) = lx‘(w)[e"i“(“‘) (3.29a)
with
X (o e Vgt 2 (@17 + Vgl %, @1DY2 2om)
and , (/'
Fo o) =1F (w)le () ' s0m
with B | | : , i

l?F,c,o(“’)| :5'-{ [EE,Q )17 +[w Pe. o]} 23172 (3. 300)

o A
m oc,o(w)

5R‘
%c,o(w)

Gc(w) = arctan (3.30c)

The contribution to the local magnetization due to one

conduction s-p subband is

ke

)(0)=J(C)<SZ >XCC(0) + SJ((D<Sz >.Xmix(o)=J(C)<Sz 57 5 J(d) m;x( j ‘1=V§C(O\:
. ](C) cC (O j ATV
=3(C)eg?, ¥ ) (3.31)



The_inclﬁsibn of the,factofus in'{3,31) is becéuse one‘
has five different scattering channels whereby a conduction clec
'tron in a given s-p' subband can be admixed into a AM d-resonance
and go back to the s-p subband. The local magnetization duc to a

d-hump is

. | r
n @) = 5 @Pes? Ho) + 3Des? MX(0) 3 D57, (o)fL+ e :i\(O)}
| OIS

3@ g2, 730 (3.32)

So, the total magnetization at the impurity center is

mo) = am ) (o) + sn{d (o) (3.33)

4

Until now the s- and p- conduction states have played

the same role in the above caléulations. In fact, within our mo-
~del, they aré indistinoui ﬁable in seferal steps of the computat
ién namely, that of the charge perturbations affectlng the conduc
tion band, of the self-consistent p051t10n of the v1rtual d-level
eq in the conduction band and in the |V d| pHenomerological para
mﬁter responsible for the brOadenlng of the virtual bound state.

. However in orde; to compute the self polarlzatlon hypcrflne
field, oné must consider s- and ﬁ— electrons as contributing diffe
rently to the hyperfine field. We havé the following contributions

to the hyperfine field: -

(tot) _
H hfo ) =H

where
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(d) . . (@) _(d) : | '
Hpe' 5 Acy” me (o) (3.35)
Aég) being the hyperfine d-co;e polarization parameter and the
factor 5 accounting»for degeneracy of the d-lcvels.

The s- and p- contributions to the hyperfine field, given

. Tespectively by‘*éi) and Fiﬁg) are to be computed from

- H (5) = ACZ)m(S)(o) | | (3.36a)
and |
HB = - alPnl® o (3360
where |

"A(Z) is the "true" Fermi contact interaction and Aég) is the p-in
duuud.core polarl ation. We compute here, consistently with the

assumption of the uniform distribution of s- states, (S) 0o} and
P p

-

(9) (O) as .- o
n(8)5) = n(D (o) ) (3.37a)
nP) 0y = 3m(S) (o) ; (3.37D)

So, one has

HEE v u®) = e on 2y ml©) (o) (3.38a)
“’lt:i .
A (2) = A(Z) - SASQ N (3.38D)

arnd the total hyperf{fine field may be written in final.form as

H ﬁ;o?) = Aypg(2) n(® o) - 5 Aég? w6y (3.39)
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The simplified band structure.éicture adopted implies &
certain efféctive Fermi contact interaction which includes correc
tions from the p-induced core polarizatidn, és seem f?om (3.38b).
This is perhaps at the origin of Cappbell’s [16] almost perfect
fitting of the hypeffine field of s-p impurities in ferromagnetic
hosts using the simple Fermi-Segré formula for the céntact inte-
raction, because of a subtle compensation of pure s- and p- con-
tyibutions tb the hyperfine constant. So, we adopt in this work

(cf Sect. IV.B) the estimate by Campbell of Aeff(Z).

1V - NUMERICAL RESULTS

We divide this Section in two péyag;aphs. The first one
is devoted to illustrate some consequeutgs of the theoretical
approach'presented in Sect. III. Since some unfamiliar features
are associated to the strong scattering which is present in the
. SK problem, we.disé&ss in details certain points which reflect
the deviations from the cLassiéal AM results. In the second pa
ragraph we discuss tﬁe behaviour of the hyperfine field.

The numerical calculations are performed for a simplificd

band structure model. Each pure host s-p subband is described by

‘a "parabolic”'like density of states [14]:

! - C
cplw) = : - (4.1)

0 , otherwise . ' .

\‘ 3 vwz
»—-—4Ac[l "(K‘) ] -, Ey<u< By

where AC is the half width of the subband so that:

E

. .
‘ﬁ:' pc(w)dm = 1
b
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We hope that this example will be useful to give an in-
sight on the whole problem, but indeed some effects related to
the details of actual s-p band st:qcfures cannot be accounted
for properly. However, Sigée pc(m) is a entry duantity in oﬁr
formulation all the required features which could be obtained
usiﬁn sophisticated band calculations for the descriptién;of the
density of states of real s-p bands can be naturally incorporated
in our formulation, together with st?aighfo:ward-embelishmeﬁts

of our model.
A - Some'CCnsequencés of the Theoretical Model

In figure 1 we plot as a function of the enefgyug the
phase shifts n(w)lgiven by (3.23). The energy varies from the
bottom to the top of the conduction subband. These phase shifts
are plotted fp:-the,following choice qf payamete:sf

(i) The IVCdlzimixing parameter, which is a phenomenological one.

We take always in figure 1, |V = 0.1.

l2
cd! -
(ii1) The position of the d-bound state level, which may ‘take va
lues between Ey and E,. |
-(1i1) the perturbative Vcé charge potential; this is a repulsive
potential and two kinds of regimes occur. (a) When VCC is less
crit ] - . o . ’
than Vccl., (nglt = [Fcht)] 1 being the potential to repel a
bound state above the top of the subband), a "pilling up" of
states in the region near the top of the subband is observed.For
the band shape (4.1) one has VEI'' = 0.667. (b) After a bound

state is repelled the number of extended states decreases and

conscquently the previously (SK) strongly perturbed Moriya band



becomés flatter and flatter.

In figure 1l.a we show the phase shift féx eq =qQ, Vcc
.spénning the two above mentioned regimes. Fér Ve =0 the usual
symmetric AM behavior. is-recovered whereas for strongly repulsi
ve limits (VCC‘= 0.8 and V__ = 1.08) the classical behavior defined
by-a steep increase of n(w) afound €q is obtained. This is easily
understood since the perturbed density of states is rather small
and flat. To emphasize the consequences of the strong peyturbation

regime (V__> nglt) we'plot invfigure 1.b, for VCC = 0.8, nlw) for

cc
some values of £q- The same kind of behavior obtained for eq 0

.is observed here for €q = - 0.4 and €g = 0.4 although there exists

€
A

a tendency to flatten the change in.slqpé of n{w) as one goes
« from tb to Et' This is related to a smooth increase with energy
of the perturbed density of states. This behavior illustrates
small departdres from a flat density of states reflecting a in-
c?easingly émooﬁh Variation of n(w) with energy. Next we return
mto-figure l.auté.discuss the‘"pilling up" regime (0<VCC<V§§it).
For energies near Et’

towards = for both cases Vie =0 and V_ > Vgélt, gcreases now

n(w) which showed a monotonic increase

to give rise finally to a rapid incrcase to w.
In order to investigate the origin of this behavior and

its connection to the SK problem we show in figure 1.c n(w) for

Voo = 0.4 and for several values of eq- We plot also in figu:e
29R . n : .
l.c,]Vcdl PC,O(w) as a function of o . Compaqug to the unper-

turbed result (VCC = 0) one verifies that the Hilbert transform
which is perfectly symmetric and small for Vcc = 0 becomes highly
assymctric for a strong pilling up of statcs near Et' This effect

is typical of Vcc close to the condition for repclling a bound
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state from the band and is to be cont:asted to the strong per-
turbatioﬁ regime whére the Hilbert transform take only small va-
lues (negative and postive) along the band.

To discuss the unfamiliar behavior we 6btain for n(w)
we analyse the denominat6r>i(w)=m;gd - }Vcdfzﬁg‘o(w) which
. appears in the definition of ¢ (w) (Cf’.(3'23))' The zeroes of
that function éive the energies at which .the phase shift passes
through /2. jh the top of figure l.c the'straight lines woe g
determine the energy values fo: which n(w) = /2. Since both

plots in figure l.c are in the same scale we have marked a cross

in the corresponding energies for n(w). Depending on the values

~
ZFR

of e, one sees that the straight lines cross 1V ql c.o

(w) one or
three times and the last situation is at the origin of the anoma-
lous behavior of n(w).

We ét;ess that these strong deviations from the AM results
are a direct COnsequéﬁce of the deformations of the.density of
States. In our case these are SK induced deformations but a quite
similar behdvio;{wouid be observed for a band model exhibiting a

peak in the high energy region. These features however depends on

. 2
c 7|
the choice of IVcd‘ .

oD N
ZFE O(m) of the top of figure 1l.c is rescaled and these

In fact, if one reduces its value, the_cur-
ve chd]
unfamiliar effects are wiped out. .

Figure 2 describes the local déhump density of étates
pd,o(w) as a function of the energy for different band fillings,
i.e. Zy variying from 2 to 7. We have taken for IVCd[Z the values
0.05‘(figurc 2.a) and 0.1 (figure 2.b) respectively. We consider

that the trivalent rare ecarth impurity contributes one electron

{d).; 1)

to the d-hump (Zlmp

, the remaining ones being associated to



the s-p conduétion étates‘ The dotted points correspond to the
_values of the Fermli energy associated to each valuc of 2y, These
self-consistent rcshlts'are obtained by imposing in the extended
Friedel sum ryule (2.7) an occupation number of one electron for
the d-hump State. .

In figu%e 2.a the self-consistently calculated d-hump den
%ity of states exhibits only weak distortions. This is to be com-
pared to figure 2.b where for intermediate occupations St:ong dis
to:tions occur, these disto:fions beingArelated to the above dis-
cussed unfamiliar behavidy of n(w). Note that in n(w) are included
"both d-hump and exténded state contributions (cf. (3.22)). From

. . . : “

figure 2 one observes a d-state contribution (which is positive)
at the high enérgy pa}t of the band. Sc, the difference i%éﬂi ~ﬁd30
gives a measure of the strong deviations from the result of the An-
deyson—blogston compgpsation théo;ém [19] due to the highly non-

~

flat density of states.

Figu:e 3 illust;ates, for VCC = 0.2, the»expressions (3.19),
(3.17a), (3.20) obtained in Sect. III for'the local densities of
~states, mamely: d-hump (dotted lines), SK density of states (dot-
trace curve) and the |Vcd]2 perturbed AM local conduction density
of states. A hybridization induced depresgion on the SK density of
States is'clearly‘shown: in particular for o= eq the local conduc-
tion density of states vanishes. The négative change zssociated to
the dcprcssion'may overcome the positive one associated to the d-
hump and therefore igﬁﬂl becomes ncgative as reflected in the
phasé shift plots.

Next we repert in figures 4,5 and 6 the results obtaincd

dd

£ i - 2l o~ - P - .- Y
for the local magnretic responses x““ (o), XCC(O) and mex(O)’ (cf.
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(3.28)). The dotted lines 5oiniﬂg the crosses indicate the self

. dd cc, mix ., ‘ -
consistent values of y (o), x (o) and g (o) fo: several hosts.

Figure 4 shows that de

(o) has the same characteristics
of the AM like d-density of states, i.e. aﬁ assymmetry of the
shape of the local magnetic response coherently with\the deformat
.ion of the d-hump states. An interesting feature of figure 4 con-
cerns the strongly deformed magnetic responses associated to the
strong perturbed SK probleﬁ. In figu:p 4.2 this corresponds to

Zi

= 4,5 and 6. In this case the self-consistently determined V_

1 c

correspond to values around the critical one to extract the bound
state. Again ‘the behavior reflects a feature of the pilling up Te

gime. Similarly to pd’o(w),'a reduction of ]Vcd}2 wipes out these-

. effects as shown in figure 4.b.

x“€(0) is plotted in figure'skfor ]Vcdl2 = 0.65. A general

’ . . - cC . . -
characteristic of the curves yx ~(0) is the existence of a depression

-

in the local c-c response, precisely around the corresponding peak

in xdd(o) shown in-figuie 4 and a hump outside this region. For

Zy =2 the SK potential vanishes and one obtains a symmetric curve

4

: , - . c
for xcc(o). For increasing values of Zh the assymmetry of g C(o\
increases until one obtains a saturated regime where bound states

“are repelled from the band.

The cross magnetic response xmlx(o) is plotted in figure 6

for ]Vcd]-2 = 0.05. One observes a change in sign in the local res-

ponse and these changes correspond grosso modo to the depression

dd

region in XCC(O) or to-the peak in x ~(o0). It should ke stressed

that for the adopted number of electrons in the resonant state the

. mix . ' . .
self consistent values of ¥ (o) (dotted lines) arc always positive.
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B -~ Self Polarization'Hyperfine Field

The theoretical results (3.35) and (3.38) for the self-

polarization field involve the echange parameters J(A), the hy-

(d)

perfine couplings Aeff(Z) and Acp

and the local magnetic res-
ponses xx“(o).

In order to cowparé the theoretical results to experi-
ments a b;ief account of tHe‘various contributions to the hyper-
fine field at the rare earth impurity nucleus is'worthwhiie.The
total field is given by the sum of three terms: the f-core hyper
fine field, the self-polarization field (which is computed in
‘this work) and the transfered field. An-experimental procedure
to extract from the data the relevant contribution to be compared
with our predictions goes as follows. The f-core state contribut-
ion can be known from experiments in tnsulating matrices. On the
other hand consider §mall-quantities of non-magnetic elements like

Lu in alloys such as (Lngl_X)yM R Being the spin carrying rare

y
earth element whefeas M ié-the s-p host. A measurement performed
in the Lu site‘”see" directly the transferred hyperfine field.
~ Then the self polarization field can be obtained.

| Throughout this wofk,,J(X) is assumed to be independent

of k’and q. This enables us to obtain the self polarization field

"~

as a function of the local magnetic responses xku(o), which incor

porate the impurity effects. Otherwhise if one considers
ene, '

J(A)(§+q,k) has to compute numerically the impurity perturbed mag

.

. PR . . .
netic responses y’(Kfq,k) which involve complicated sums over the
. ~ A~
Brillouin zone. Even in the assumption of J(A) independent of k

and q, the transferred field would be extremely difficult to cal-



culate theoretically since it still involves the calculation of
magnetic susceptibilities which are E,QIdependent. In this way,
the above suggested experimental technique would circumvent
this difficulty. B |

The values of J(d) and J(C) can‘be extragted frpm "atoﬁic
like" calculations [20] in absolute value the ratio J(d)/J(C)
ranges between i and 2. . |

In the present work, confrapy to the case of tfansition
metal hosts [6] the sign of g is always positive.This 1is be-
cause no available next-neighbour impurity d-sites are expeccted
to be present in s—p.(or noble) hosts, thus inhibiting a possi-

ble direct d-f Heisenberg like exchange between next neighbour

~d and f orbitals. Within our mocdel of cight identical s-p con-

- duction subbands, the effective exchange coupling J(C) (similarly
to A_c.(Z) defined in (3.38b)) is given by: J() = g(8) 4 55000
Actually, J(p)-would’;ventually beinegative (due to.a direct

p-f Heisenberg exchange) and overcome the pure positive s-contri-

bution. | - ‘

4 Fu:thgrmore the hyperfine couplings can be only crudely
estimated [16]. So we intend to rewrige (3.35) and (3.38) in such
g way that only ratios Agg)/Aeff(Z) appear. As a consequence the
contact and d-induced core contributions to thé self-polarization
field are given in units of J(C)Aeff(2)<sz> and the exchange pa-
rameters appear also as the ratio J(d)/J(C).»One has:

1S

1f nCe cc J(d) mix(o) }
. X (0) = x (o) { 1+5 = A (4.2)
J(L)Aeff(2)<sz> ' { g(e) cciqy
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énd
(d) (d) : () :
b A (d) A (d) () mix )
- cp JV ~dd B cp J dd 19, x _( o)
1 gDy PRegr@ S X TR o (o)l ION
(4.3)

Since we comsider rare earth nucleus, we use Campbell's {16]

estimate of Aéd) forA%g)states and Aeff(z) appropriate of rave

earths, the ratio AC ) should be varied about 1/4. The diffi-
' eff\”
culties in estimating the ratios J(d)/J(C) and Aég)/Aeff(Z) are

‘of different character. In fact, as mentioned before some estimftes
of J(d] (c) . ; N wra . S 1o 1-
and J are availlable from plane wave or atomic like ca

‘" culations [207; on the other hand hyperfine coupling constants in-

volve extremely delicate atomic calculations. In this way, within

(d) Agd)
our theory, the product x P 5 may be taken as _a flexible
T o gle) Agee(Z) ALd) |
parameter which- should be varied about the estimate ~L = -
T Repe(B) 4

[16] and 3 () |
n = Z. .
E‘CE‘)— Z [20]

Let us now precise some fundamental assumptions about the
basis of the self consistency procedure adopted in our calculations.
The SK imputity’problem is defined by the charge difference AZC =
= 7(c) ' d). Ces e e '

Zimp - ;h' The number ng% spec;fles for trivalent rarec carths
for instance the number of electrons to be put in the AM d-resonant
state, z(4) - 2_,(c) o ] "of the SK ; :

imp S.Zimp' Since the strength of the SK .perturbation of
the s-p conduction states depends on the value of Z£;% for the
number~of electrons in a given host, the deformation of the AM

resonance is a function of this SK perturbation. On the other hand,

foj c 3 Y - C : . i - .
LOeT & given vaiuc of Zg ) which determines the SK perturbation, the



amount of occupied d-~states in the AM resonance. depends strongly

on the value of the phenomenologiéal admixture paramotef ‘V d’

. . ) . : C
In the numerical calculations throughout we consider Zim% 2

which corresponds to adopt the d-occupancy equal to one eléctron

for a trivalent vare earth. With this choice the SK pe;turbation'

- is defined for any host. The role of varying the d-state occupat-

ion with respect to the "ionic value" is ascribed to }Vcdlz. In
fact due to the SK induced strong deviations from the Anderson-
Clogston theorem [197 , for a given IVCa}Z , the d-state occupat-
ion number may be quite different from: onc. Furthermore, changing
Vca|2’ we induce for a fixgd SK pg;tufbgtion a varying d-state
occupation. .

In figure 7 wé plot the total and partia1 (contact and
d-core induced) flelds for si¥gsal hosts %é)a function of the
iVCd( admlxt%re parameter, “iisz) and JT«T (J(C)>O) being tgken
respectlvely as’ % and ZJ_In this flgure the many tendencies predict .

ed by our model aie exhibit. For suitable ranges of IVCdIZ, which

controls the amount of.d-like electrons in the AM hump, the total

- hyperfine field ﬁay change sign at the end of the series. This is

because the increasing numberlof d~elccfrons buts the Fermi energy
level in a region of'higher»density of states, thus incfeasing thé
d-d local’magnetic response and cbnsequent}y the d-core polarizat-
ion conLerut*o1 which is negative (for J(C)>0)

In figure 7.a, 7.b and 7.c we can follow how the d-core

.

contribution decreases with increasing |V dlz. To understand that

we rccall that in all these plots the SK impurity charge Z(C) 18

1mp
AN

kent constant
“¢ ot Jmp

So, this change in ascribed to Y dl . The

physical mechanism behind the decrease of the local d-d susceptibilirty



xdd(b) can be seen through the self con$istently determined dotted

lines in figures 4.a and 4.b for two different values of |V _,|
e d : ,

However from (4.3), the local pure d-d response x d(o) is multi-

T(C) mlx( )
plled by a conection factor 1 + ‘( )
. J

In figure ¢ one

( mix
X

sees that the self-consistent calculated (o) is always po-

sitive. We have numerically verified that the self consistent

mlx(o) is roughly 1naependent on the choice of |V dl . So, for a

(c) Xmixﬁo)

given positive ratio J(d)/J(C) the cowection factor 1+ (d)

-

dd( )
decreases with increasing |V cdl . It turns out numerlcally Lhat
the d-core contribution to the hyperfine field, which is proport-
ional to X (0) is dominated by the pure. d-d response xdd(o).
Concegning the behavior of the contact contllbutxon.to the
hyperfine fiéld: in this case the sign of Siz is extremely.imv
portant in discussing the vériation of theJlocal magnetic respon

se. In fact, fignre 5 shows that the sclf~consistent value of

(o) decrcases when one goes from the beglnlng to the end of
mlx( 0)

the series. Then, the ratio increases along the series

xS (o ‘ T
thus compensating for J(d)/J(”)> 0 the decrease of ch(o). Hence,
the final result x““ (o) (cf. (4.2)) turns out to be roughly cons-
tant and positive as observed in figure 7.

Therefore the chaﬁge in sign of-the total self-polarizat-
ion field is to be ascribed to the competing mechanism between
d-core and contact (conduction) contributions, the negative sign
at the end of the series reflecting the dominance of the d over
the conduction contribution. So, trivalent rare earth impurities
in heavy s-p metals show the a similar.bchavior of rare earth
impurities in transition hosts [6] in the sense that d-core

polurization contribution dominates over the contact one.
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We have checked numerically the imﬁo;tance of the choice
of the ratio J(d)/J(C) in the final results (4.3). It turns out
that, due to compensations, varying‘ch)/J(C) from 1 to 2 does
not iead to striking differences in the final results. In figure

8 we report the numerical results for the self polarization field

(d) -
- in the case where QTE—< 0, the J(d) coupling being a positive one.
@, 3

= 2 and we cdnsidér three values for ]VCdIZ as in

We adopt )
: o 1J

the case discussed in figure 7. Comparison between figures 7 and
8 show that the d-core polarization in both cases are not sc diffe:
rent. This is because a change of sign of the ratio appears only

through the factor J‘C)/J(d), which is small for the adopted value.
g(d '

However if the 1at10'~T—7 approaches to one strong deviations occur,

T(C)

o

Since in this case the correction factor 1 + may even
. 5@ dd(o)

change sign. We have checked this behavior numerlcally and it indeed
occurs. The contdct contxlbutnon as illustrated in. figure '8 shows a
monotonlcally Jncre851ng behav101 and thlS is because a competlflve

i

mechanism is present., In fact, since J( )>0, from (4.2) one sees

{(C) ) cc
that ( is a sum of a increasing part (-yx (o)) and
c) b3 :(d -, .
J Aeff(z)<s > an almost constant part (fJTET Xmlx(o)) which
‘ J

_iS'posiﬁive and dominates at the end of the series. Thus producing
the monotonic behaviocr.

Let us consider now the caée of divalent rare earth impuri
ties (sucﬁ as Eu2+) in s-p hosts. We clain’ that a Eu2+ impurity in
S-p hosts pro&ides a physical realization of "an almost pure SK con-
tribution to the self-polarization fieid. in the light of the above
discussion of the principles of our seclf consistency procedure we

have (aluulatcd the self-~ po]azlzation ficld for this casec 1mp051nw

c
(m% = 2 and me% 6, i.e. no d-states exist in the ionic limit of
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Eult.

The total hyperfine field in this case is given by

ftot)
Hy ¢

3O (2)<5%

= %) = x*S0) (4.4)

"and all d-states are empty. Consequently the above mentioned
deprecssion of XCC(o).due to AM hybridization is irrelevant. One
is involved only with the low energy part of the ch(o) curve of
figure 5 which shcw the normal SK decrease of xcc(o) for repulsi
temtials dri _ g0 C a2y o
ve potentials driven AZ_ Zimp Zy,- So the lvcd‘ induced com
pensation effect which occurs for trivalent rare earth impurities -
(d) _mix ' ' S ' o
J x__ (o)

~ 1\ ~
I | .
fine field in this case decreases or increases slowly depending

(cf. (4.2)) is absent and the total hyper-

-;through 5

c) . . . . . .
on wether J( ) is positive or negative. This general behavior is

shown in figure 9.

Based on the analysis of figure 9 we want to suggest that

anAexpérimental test of E@é sign of () along the series is pro-
‘Vided by putting'Eu2+ im;%rities in s-p metals. In.fact;-if J(C)
"is to change sign along €£ej$e;ies, the slope of the hyperfine
field as function of Zh:shgﬁid'change sign.

Anothe; possible Chétk of the picture for Eu2+ impurities

in s-p hosts could be provided by skew scattering measurements.

[y

2+ . QL s .
In fact, Eu” is an S-state ion and according to our model the

d-hump is empty. So, only a small skew scattering is expected to

. + . s .
occur .thus contrasting to ca® impurities putted in the same hosts.
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V - FINAL REMARKS | I ' .

Let us summdrize oﬁr principal results. Firstly we suggest
that a.rare carth impurity in a s-p host is a physical realization
of a AM d»reéonance cn a strongly SK peftu:bed‘s-p host. This is
to be contrasted to the case of the same rare earth diluted in
a4 transition-like host [5,6] where d-states are already present in
the host forming a d-character band. Therefore mantaining the same
rare earth proge and going from the transition series to the s-p
series, althougﬁ.one keepg a strong 1oca1'pepturbation, one pasées
.from’a perturbed d-band scheme to a AM'd-yesonance.Both these pro;
blems\a;e physical realizationsAof an imﬁurity charge éo;entiafn
and a.Spin potential iocated at the Same site,-i.e. a limiting
case of the Blandin-Campbell [21] problem when the separation of
the charge and spin potentials tends to zero.

_ Pecuiia; effects associated to the strong SK scattering
in mOdifyiﬁg thé usual AM resonant phase shift are discussed in a
quite detailed form in Sec£ion IV.A. However those effects should
be‘obSeryéd oni&-fo; réfher large fillings of the-@-hump.'So dge
to the trivalent character of- the ﬁagnetic rare earths (occupat-
‘ion of the d-hump by a sméli number of d-electrons) those unfami--
liar results are expected to be absent. |

A posSiblg candidate to observe simult;neously strong con-
duction electron scatiering (important in providing relaxation for
an ESR expériment) could be provided by Mn impﬁrities in Sb or Sn.
In fact a strong repulsive potential is expected to act in the s-p
“host, (e.g. 2Z. = 3 for Sb host) and the d-hump should be occupied

s o 4o § 2 A
by 5d clectrons. Also; since these hosts are at the end of tho s-p



series (i.e. a Fermi level near the top of the s-p bané),
-expect that the unfgmiliar results discuésed in Section IV.A are
closest to be detcctable.

Concerning self-polarization~hYperfine results a part
from the conclusions reparted in Section IV.B; we emphasize
"agaln two points, namely:

(i) Eu2+ impurities in s-p hosts could be an experimental tool

to investigate- the sign and magnitude of the J(C) exchange cou-
pling. Moreover, these impu;ities Cou1d>providc an experimental
test of our éssumptions about the construction of the SK potential.
'(ii) G‘3+ impurities in s- p hosts 1is suggectod throughout to pro—
duce changing self Dolarlzatlon hyperfine fields along a s-p se-

ries. If thus turns out to be true experimentally, the strength

of the hybridization parameter |V could be another mechanism

2
cdl
as compared'to‘Bland}n-Campbell'[Zi] and Daﬁiel-Friedel [22] sour-
ce of sign chéﬁging hyperfine fields;'involving however different
symmetries d and s-p. N |

| Some remarks conCerﬂing the connection of our theoretical
results'and poséible experiments are in order. In 0ur general ex-
pressions (4.2) and (4.3);,tﬁg hyperfiﬁe field is obtained in
units of J(C)Aeff(Z)<SZ>. To avoid the numerical estimafe of tﬁe.
quantity J(C)Aeff(Z) we suggest the following way for plotting
the expcriment?l results and subsequéntly checking the consistency
of the model. Suppose one has experimental results for HﬁEOt) for
a serie§ of s-p host metals, with atomic numbers Zh. One clects =

particular host of atomic number 2 and plots H(tOt)(Z )/H(tOt)(ZhO}

ho

as a function of Zh. Clearly this curve should pass through the vao-

lue 1 for thzho' The theoretical results of figures 7,8 and 9 arc

¢
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then corresponéingly normalized and comparison to experimental
, L : : : N
Agd) J(d;/J(C)
cp '
(as discussed in Scct. IV.B) and of the strength of the ]VCd!Z :

;esuits depend now only on the parameters /Aeff(Z),
matrix clement.

Finaily the above mentioned hyperfine ﬁeasuremenﬁs if
.complemented by making MYssbauer Isomer Shift experiments and
ﬁeasurcments envolving density of states at the Fermi level such
@g electronic specific heat, residual and spin disorder resisti-
vity would pfovidp new tests and guides for the choice of the re;
levant parameters of the simple model developed in this work.
"Theoretical studies oﬁ the isomer shift behavior [23} and Fermi

. . A %

level properties [24] for the systems discussed in this paper are

)

now in progress.
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- CAPTIONS

Fig. 1 - Phase shifts n(w) as a function of enefgy for the

band model (4.1).
(a) gq = € and several values for the SK potential.

‘ cri
Values of VC larger and smaller than Vcc t are used.

o

(b} Several values of €4 and the SK potential is taken
crit '

A% =

Vee = 0.8>V_ "7

(c) Several values of €4 and the SK potential is taken

_ crit
'Vcc = 0,4 <VCC .

Fig. 2 - =~ Local d;density of states self-consistently calculated
for band fillings ranging from 2 to 7. (a) }Vcd]2=0.1.

) V1% = 0.05.

Fig. 3 - The dot—tyace line shows the SK perturbed loéal density
of statq§ for s-p conduction states. The dotted line
shows the d-hump densityiof states whereas the full
1ine’show$1fhe'local density of states of the s-p sub-

" band in'presence of both SK and AM perturbations. The-

IZ

se results are obtained for Z, = 3 and ‘Vcd = 0.05.

Fig. 4 = - d-d local magnetic susceptibility de(O) for the bandl
‘model (4.1) as a function of energy. The dbtted lines’

" joining the crosses an the self-consistent values of

dd . ; | 2 2
x (0) for several hosts. (a) }VCd] = 0.1. (b)ﬁvcdl =
= 0.05. ’

“Fig. § - c-c local magnetic susceptibility x€€(0) as a function

12 = 0.05 and

of encrgy for the band model (4.1). ‘Vcd

the SK potentials which corresponds to the various va-



Fig.

Fig.

" Fig.

lues of'Z.h are sclf-consistently obtained through
(2.4). The dotted lines joining the crosses give the

. c s .
seclf consistent values of x C(O) along the s-p series.

Cross susceptibility K

(0) as a.function of energy
for the band model (4;1) fér several self-consistent
values of Vcc cofresponding.to Zh ranging from Z to 6.
iVéd‘Z is taken to be 0.05 and the self-consistent va

mix

lues of ¥ (0) are given by the dotted lines.

Total hyperfine field, contact contribution to the

field (dotted line) and d-core polarization contribut-

ion (dot—tracelline) in units ova(C)Aeff(Z)<SZ> as a -

function of the band filling (Zh ranges from 2 - to 7).
- (d), () . (d) = 1 -

Ones takes J /J = 2 and Acp /Aeff(z) /4. The

fields are plotted for several values of lVCdiz.

Total hyperfine field, contact contribution to the

field (dotted line) and d-core polarizétion contribut-

ian (dot—tracé line) in units of J(C)Aefc(Z)<SZ> along

the s-p series for 30 o, One considers [J(d)/JLC)! =
£ 2 and Aég)/Aeff(Z) = 1/4. The fields are plotted for
‘2

several values of |V
cd

Total hyperfine fiéld iﬁ units'of'J(C)Aeff(Z)<Sz> alogg
the s-p series for thé band_model}(4.1) perturbed by
the SK potential. No d-resonance is included (case of
Eu2+). One considers positive and negative effective

values for J(C).
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