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ABSTRACT

We treat the geometry of spacetime as a stochastic variable.
Fluctuations.induce a deviation from Einstein's system of equa-
tions for the average geometry. A model is presented to deal with
the fluctuations by expanding the perturbations on a series in the
average geometry. As a consequence, some qualitatively new
features appear. The influences on galaxy formation and on the

propagation of gravitational waves are analyzed.
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I. INTRODUCTION

Recently there has been an increase of interest in modifications of
Einstein's equations of General Relativity (GR) due to vacuum fluctuations
of the gravitational field. There are many reasons for this. One is related
to the moderate success of the covariant regularization procedure to treat
the divergences that appear in quantum theory. Indeed, it has been shownl’2
that by modifying Einstein's equations through an effective Lagrangianm,
which contains nonlinear terms in the curvature tensor, one obtains a co-
variant way to eliminate the divergences.

These vacuum corrections to classical GR have been considered by many
aui:hors.5-6 It is our purpose here to discuss the effects of these modifica-
tions on some specific configurations of the gravitational field. 1In Sec. II
we introduce some definitions and our notation, and we recall the quasi-
Maxwellian approach to gravity which will be used throughout the paper.
Section III presents the main idea of treating vacuum corrections in the
quasi-Maxwellian scheme. The extra terms in Einstein's modified equations
are decomposed as a series in the electric and magnetic parts of the Weyl
conformal tensor. Section IV discusses the effects of these corrections on
a gravitational wave propagating in a Minkowskii background., We use the
analogy with Maxwell's electrodynamics in order to interpret the new terms
induced by vacuum corrections of the gravitational field. 1In Sec. V we
analyze the propagation of perturbations in a Friedmann~type Universe in our

modified version of GR. We end with Sec. VI in which an outline of how to

treat inhomogeneous corrections due to vacuum fluctuations is presented.
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II. DEFINITIONS AND NOTATIONS

Our metric has signature (+ - - -).

Greek indices run O, 1, 2, 3.

Latin indices run 1, 2, 3.

A single vertical bar means partial derivative.
A double vertical bar means covariant derivative.

A square bracket [ ] means antisymmetrization and a round bracket ( ),

symmetrization.
We denote
naﬁuv - - J_L_ eOﬂBuv ,
-8
where eaﬁuv is the completely antisymmetric Levi-Civita symbol.

A dot means derivative in the direction of the L-velocity va.

The Weyl tensor CQBHV will be decomposed into its electric and magnetic

parts as seen by an observer with velocity va = Sg:
E_=-C boyY
op appy ¥V (1)
* BV o po B
H = C = A
B = Caupv Y Y =2y Coopn v (2)
Thus, we can write
v [ vl [p Lv]
C = E -
R A
x oln ] (3)
_ olu vl _ _uveo
naﬁ%o v H v i vp Hc[a VB]

Einstein's equations of gravity, with suitable boundary conditions

are equivalent to the following set:,7-9
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BV k alp], k ula ., |B]
=3 Pl e ] ()

oBu

we will call the right-hand side the current J . From now on we will set

k = 817G = 1 and C = (velocity of light) =1. Using the projector operator

on the 3-dimensional rest-space of the observer va defined by h =g -~v v,
nv MY BV

we can separate Eq. (4) into a set which has a striking resemblance to

Maxwell's equations of electrodynamics.7 This is achieved by multiplying

app

the current J respectively by

We then obtain the following set of equations for a perfect fluid with density

p and pressure p:

wy o v B AN _ 1 o
EQuHV h"™" h . + 3 Hae w neﬁXT v o V=3 pla h e ? (5a)
VRV a wm BN
kuv h™" h -3 E, o - Nephe E o, V' = (p + p) w, (5b)
N, €L P 1M (e p)roB 0 34 (e p)v
H ha hk + 5 EB o hu M vk + 0 H" -3 Hv g +
(o ) (o ) o)
LY L €p p g)v e)NaB
+Huv° h -—},_.—HV w -aaEBp'n vy =0,
N, e, p ofv . (p _e) A £ v
E b, h," - + H By M e v+ O EP - 3 Ev( op) +
( ) (6b)
+E o™ P o Lg P EY H
v © z€, o +ay (o nG)mB v, = - % (o+p) ¢*°,



A

in which moﬁ is the vorticity, oV the shear, © the expansion, a” the

(0
acceleration of the congruence generated by v .

III. VACUUM QUANTUM FLUCTUATIONS

3,4,10 by means of which

We will follow here a procedure outlined before
Einstein's equations of GR are to be considered a model for microscopic fields
represented by the metric tensor guv; macroscopic fields contain fluctuationms,

represented by 5guv’ around some mean metric (guv>' We write

g,y = (guv) +0g . (7)

Due to fluctuations the mean metric satisfies a modified set of equationms

which we can write3

Bo_Llgst - - M W
R' - 3RO ™, + o, . (8)

The left-hand side is constructed from (guv); the ¢uv term on the right-hand
side depends on the fluctuations. Ginzburg_g_t___gl.3 argue that a good model
for the perturbing term ¢“v can be obtained by developing it as a series

in the unperturbed mean geometry. This is certainly the simplest useful
hypothesis one can assume about this term. As Ginzburg 95_31,3 show, this
hypothesis leads to nonlinear terms in the Lagrangian for (guv>° This is

a known fact in electrodynamics where vacuum fluctuations of the quantum
theory can be described roughly by nonlinearities in the classical system.

Rewriting Eq. (8) in terms of the Weyl tensor we obtain:

CaBHV —_ JOCBH + QOCBH (9)

hv ~

where QO'Bu depends on the perturbing terms SEa“, SHa“ and the left-hand side
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depends only on the mean tensors (E ) and (H ) = ybﬁ Then, the
hypothesis is made that we can write
ey ey O?E'; (10)
k

in which éﬁﬁ? are polynomials in the unperturbed Weyl tensor. The actual
values of the constants Sy depend on quantum physics. Their calculation is
outside the purpose of the present paper. For a preliminary rough calcula-
tion see Ref. 3.

We will be interested here in two main types of expansion: 1) Local

series:

[cx 116]“ OtB?\c 8)\ v +aq ,n0457\0 N)\H v . (11)

et

ii) Nonlocal series:

Qaﬁu neoaﬁ et + b neoaﬁ Nue|o+ e vl® éB]u +d v[a iz‘B]“ .

(12)

oL@ T]B]Nav v, et L ol nBD\ov M

olv plv "A°

These are the most general linear series in the unperturbed Weyl tensor.
Both terms Qa?“ and Q%ﬁf, may be regarded as consequences of nonlinear

Lagrangians due to vacuum perturbation.

IV. QUANTUM CORRECTIONS TO THE PROPAGATION OF GRAVITATIONAL

WAVES IN MINKOWSKII SPACETIME

In order to obtain insight into the modifications induced by vacuum

corrections let us analyze some specific configurations for the gravitational

field. In this section we discuss the case of a gravitational wave
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propagating in a flat spacetime; and in the next section we consider the

evolution of perturbations in a Friedmann-like background.

QB

Four possible corrections for the current Q will be analyzed:

Case i:
Qa?u =m 'V[a Sﬁ]u +n V[a ﬂﬁ]ll. (13)
Equations (9) give:

i
€kl = 0, (14a)
KL, 1 elk Hum _ (15a)

2 mln il s
skl _ %N(kmh nl)mn - elk o n Mek’ (15b)
mn ofmn,

in which nl = €

Let us consider the case in which n is zero. Then by multiplying equa-

tions (15a,b) by the factor % &8%,. 7. kt (d Bxk) and using equations (15a,b)
’ 2% (1 M) ’
we obtain
. o .
ON =¥, -V ¥ =-m¥, , (16)
.o 2 L]
og=¢g, -V €, =-mg, , (17)

in which v2 represents the 3-dimensional Laplacian operator. A typical solu-

tion of the wave equation (18) is given by

i(kx - wt) e-mt/2 .

Mg = Mg ! (18)

The case in which m is positive will give rise to an attenuation of the wave.
The energy of the wave will decrease by a factor e-mt. This case has been

presented in Ref, 10, The factor m can be interpreted in terms of a
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conductivity of the vacuum, by analogy with electrodynamics.
When n is not null, but m = O equations (1ka,b) do not change; but equa-

tions (16), (17) go into the set:

[:)5.![MZ =n (curl g()kl, (16%)
Dekl = n (curl e)kl’ (17")

in which we have used the definition

(curl N)¥¥ = 1 N(km|n pfmn (19)
Case ii:
Qoﬁu = p 1PN e v_+4 Phe vy v (20)
Equations (9) projected will give rise to
ek”k -0, (21a)
g[kllk -0, (21b)
4 (eurl ) = p e 1 M, (22a)
et _ (curl )X = o (22b)
Using the same procedure as above we obtain
[]ekl = p curl ekl + q curl Nkz, (23)
gg{k'e = p curl g(kl - q curl ekl, (24)

in which we have neglected terms of second order on the constans p, q.
There is a simple analogy between these cases and electrodynamics (see Table I)
which certainly can be used as a guide for future studies of the properties

of these equations.



Case 1iii:

apu _ €008 U ec0p
iR R LR A (25)

This will give rise to the set

k
€ gl = 0 (26a)
k
¥ o)k = o, (26b)
. ) N z
K0 (curl g)¥f - a gk * D & (27a)
ékz - (curl w)kz = a (curl e)kz + b (curl N)kg. (27p)

Let us investigate the case in which a = 0. A direct calculation gives

. 2 kg

Nkz - %{—% v = O, (28)
o b 2

ekt ifb v ekt - o, (29)

The weight b of the expansion gives rise to a modification of the velocity

of propagation of the waves. We can define an index-of-refraction for the

vacuum by
3
1-b
nb=(1+b) . (30)
For the case in which b is null and a # 0 Eqs. (27) change to
ékl + curl ekz = a ékz , (31a)
skt - (curl y)kﬂ = a curl e, (31b)

The analogy with electrodynamics is straightforward, but not illuminating.



Case iv:

| (32)

By _ [a . BlNoo M [a  BlNoo
QIV—rv M V?\eplc+sv il v?\yuplo'
The case in which r = 0 gives rise to the equations:
b -0 (33a)
k|2 ’
g[z =0 (33b)
k|2 ’
élf + curl et = 0, (3ka)
ékz - curl Nkl = - s curl wk . (34b)
The wave equation now has the form:
g o (1+28) e -0, (35)
o (1ros) Pt -0 (36)

We obtain a result similar to the previous one. We can define an index of

refraction n_ given by

n, = (1+25)7%, (7)
Case v:

Qasu = e yl® éB]u L4 vl %;.B]u . (38)

Equations (9) give:
s"k“ =0, (39a)
zfzk” =0, (39b)
3.[k£ + curl ekl =0, (40a)
R P Y, AN ) 2 (40b)
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In the case where d is zero the wave equations obtained by using Eqs. (40)

are:
o 2
o F W o, (41)
e S (42)

1-~-c¢

Once again, we can interpret the weight ¢ as a sort of index of refraction
given by
(43)

(see Table II).

V. PERTURBATIONS OF FRIEDMANN UNIVERSES: THE ROLE

OF VACUUM FLUCTUATIONS

Let us turn now to a discussion of the effects of the vacuum corrections
in a strong gravitational background., We will concentrate our analysis on
the study of stability properties of cosmological models. For the sake of
completeness we will review briefly the pertinent perturbation equations.

The geometry of the background is assumed to be of Friedmann type, i.e.,

2 2

ds® = dt° - a2(t) da2

(k)

in which d02 is the line element of a 3-dimensional homogeneous space. We

use a comoving system of coordinates in which the velocity field of the matter
fluid is given by v = Sg. The fluid has no shear and no rotation, but has

a nonzero expansion © = 3 afa. For a pressure-free fluid a(t) = a(o)tg/3 where
ao is a constant. In this background we consider an arbitrary change of the

configuration described by small perturbations of the metric and of the fluid

parameters:

TR0 YRV wv ?

AR (45)

10
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In terms of these perturbations the parameters of the congruence generated
by the fluid motion are:

i) Rotationm:

- L =1
By =28 Ve = 2 Vi g (46)
&”Oa=00
ii) Shear:
80,. = L8 Vi) - = 50 g . - O (47)
ij — 2 (ij) = 3 ij ij

where argj is the perturbed Christoffel symbol.

iii) Expansion:

i o
80 = 8V + Blpy - (48)
iv) Acceleration:
5a’ = (Svk). + 8 avk. (49)

3

In these formulas we have specialized the gauge of our perturbations by

using a coordinate transformation to set

SgOa =0 and so 6vp = 0.

The equation for the perturbation reads

cOBuYy OB OBk

4 (50)

in which SIaBu represents the contribution of the perturbed fluid and daBu
depends on vacuum corrections., Since the background geometry is conformally
flat, we will denote the perturbations by CGB”V, EOB, H® instead of SCaB”v,

0/
BE B, BHOB. The complete system of equations for the perturbation is given

11
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by (compare with Hawkingll)

. (ot 2 1
(80) - (da )"a +3080=-55%0, (51)
(80, ,) - L sa +268m, =0 (52)
kil 2 *9[k|e] T 3 ki ’
.1 o 1, A _
(8oy,) = 5 B8y gy + 5 O B0y, + 5 (8a7) o by == &y s (53)
2 1 1.
e g =3 (B0 -5 P B, (5k)
x & (55)
kg =P Mo
i R R Y LA L L ol (56)
2 "m |n
g %N(kmln nz)m roet - £ 8ot - m e - n (57)

The right-hand side of Eqs. (56)-(57) come from the contribution of local
linear terms to the expansion of the vacuum fluctuation terms.
We will analyze here the situation in which the perturbation of the

matter density is not accompanied by a perturbation of the fluid velocity;

thus, we set P

svE = 0. (58)

This implies immediately:

% = 8l ,
dw, = O,
_ o _ 1
Boyy = = By, -5 (80) g, »
Sak = O Y

In the absence of perturbations of the fluid velocity the perturbation

12
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of the density ®p depends crucially on the pressure in the background.
Indeed, if there is an equation of state relating pressure to density like

P = €p, then conservation of matter will give rise to the relation

(1+e)poa® + ¢ oy, 5(vv) - e(op)], b = 0 (59)

If both ¢ £ 0 and Svk = 0, Eq. (59) tells us that the perturbation dp must
be spatially homogeneous, However, since we choose the pressure to be zero
we can have both inhomogeneity in the density and zero perturbation of the
velocity., Let us investigate this situation here.

The most interesting case arises when p = q = u = 0, For this case it
is easy to see that the only effect of m in Eq. (57) is to introduce an

additional exponential dependence on time for the Weyl tensor. Indeed, we have

from Eqs. (57) and (54):

k _ sz (Xi) t-’+/3 e-mt

m
|

, (60)

dp (6p)o t-u/3 et (s1)

The case in which m is negative is of great interest for the problem of
galaxy formation.h Indeed, for negative values of m the contrast factor
6p/p increases exponentially. As has been remarked previously many t:’.meslz-v+

this effect could be of crucial importance to permit the creation of inhomo-

geneous regions in our Universe.

VI. INHOMOGENEOUS CORRECTIONS

In the preceding sections we have discussed the effects on the average
geometry due to perturbations of Einstein's equations induced by vacuum
quantum fluctuations of the gravitational field. Our analysis was limited

to a model given by the linear expamsion, Eqs. (11) and (12), of the

13
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fluctuating geometry in terms of the average curvature. The factors Cy

were assumed to be constant. For more general situatioms, ¢y fails to be
constant and can depend on spacetime position in a complicated manmer. For
instance, the conductivity coefficient m of Eq. (13) could be inhomogeneous
throughout spacetime — a situation which has an analogy in electrodynamics.
In order to deal with such cases we have to enlarge our model. 1In this sec-
tion we present two examples of the inhomogeneous case. We will limit once
again our expansion to terms linear in the Weyl temsor.

We allow the conductivity m to depend on the cosmical time through the
expahsion factor ©, This dependence could be a very general one but we take
the simplest case in which m is directly proportional to the expansion.

opu

Finally, Q can depend also on the vorticity of the congruence. These

conditions are fulfilled by the current

QaBp' =0 V[a eB]u + q ,naﬁpv €p7\ 0.)7\ VV'V“ (62)

in which w7\ is the vorticity vector defined in terms of the vorticity tensor

wLW by wT = % naBpT w(xB vp. Equation (9) projected on the va-basis gives,

for the above current, the following set of equations:

a (0

Hv a TV A1
Coppv B P T ING 0 F Mg ¥ "ﬁ"v“splahs (63a)
AV e} o v _ N B 2
quv h™ h e 3 eae w - TEB?\T € o, V = (p+p) wE-QQu) wp, (63b)
AN e p 1w (e .p)2oB ep 3, (e p)v
' ha h}\ +2€Bllahu il v?\+9£[ -52{V o +
wvep _ 1, (p e)v (p . €)NaB
+ Nuv o b - SN - a, eB 1 v, = 0, (6k4a)
xep 1 omjv, (e p) A ep 3, (e p)v
) hahx-ea(a P g Ve e S Py
MV L E 1 ( v N 1
+gpv0 hp__g_gvaE) +aa%[f3(p T]E) BV7\=-§(p+p)csp-Oeep,
(64b)

14
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. 2 (o . .
in which we used g = w o The presence of the vorticity term in the current

= Wy
introduces qualitatively new properties to the system of equations for the
average geometry., For instance, as we show next, the set of equations (63),
(64) admits an expanding shear-free rotating cosmological solution without
matter. As is well-known, such properties are incompatible with Einstein's
equations of GR.

The absence of shear implies that the vorticity Wy is an eigenvector

of the electric tensor €y Indeed, we have

B.

€

1 2
aB = wawB - g w h . (65)

b

When the magnetic part H_ _, is set equal to zero Eqs. (63) and (64) reduce

op
to
e 5 =0 (66)
&% L o0 e® oo, (67)
uBlo 0 AT

in which we have made q = 1 and used the fact that . 0.

op @
Besides Eqs. (66), (67), and (68) there are two more equations that

give the time evolution of the expansion and of the rotation:

2
(1).)\+"3-Qu)7\=0 (69)

2
. >
o +%+2w = 0. (70)

Equation (67) is a consequence of Eqs. (65) and (69). Thus, we are left

with Eqs. (66), (68), (69), and (70) which are manifestly compatible.

15
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VII. CONCLUSION

We have examined the modifications of Einstein's equations of GR due
to fluctuations of the geometry. In Sec. III we presented a model by means
of which the extra terms — due to fluctuations — can be expanded in a series
in the average geometry. We have analyzed here only the linear terms of
the series, This is sufficient to produce new features in the theory, some
of which we have examined.

A weak gravitational field propagates in the form of a wave with a
velocity that depends on the properties of the fluctuation. The analogy

with electrodynamics permitted us to define an index of refraction for the

perturbed medium,

Then, in Sec. V, we showed that an inhomogeneous perturbation of the
matter density grows faster than in Einstein's theory. This behavior is a
very new feature which could prove to be of importance in our understanding
of galaxy formation.

Finally, in Sec. VI, we study the effects of an inhomogeneous rotation-

Bl

dependent current Q ' ', on cosmological models., As a consequence of the
presence of rotation, the perturbed system admits a shear-free rotating and
expanding Universe, without matter,

The above properties seem appealing enough to suggest further investiga-

tions of our model.
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TABLE I. Correspondence between the gravitational current Qaﬁu due to

local vacuum corrections in Einstein's theory, and electrodynamics

QOB ‘Ilf an(/z ﬂk)mn _ 'é‘ [onk . Qkol] 5K 1K
(Gravitational rd th (Electric  (Magnetic
Current) (3"~ Projection) (4™ Projection) Current) Current)
vl Plu 0 gtk gk 0
L0 Bl o oK g 0
07571 i ki k
URER- N e 0 0 E
OBA ) y) k
il My Vs Nk 0 0 H
17

L T]ﬁ]?\pv M v

olv ™ 0 (curl e)k’l (curl E)k 0

Ty Q1IN A T} 4+ a
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TABLE II. Correspondence between the gravitational current QaB” due to

nonlocal vacuum corrections to Einstein's equations, and electrodynamics

1 I k 1 , kol Lok k k

QP -I;Q'm( e -2 (@ + o 3 I
(Gravitational d th (Electric (Magnetic
Current) (3¢ Projection) (4" Projection) Current) Current)

’nEO'aB eue|0 ékl (curl e)kll (curl E)k Ek

ﬂEGQB Nuslc ﬂkz (curl %)kl (curl H)k ik

i@ PIev ek 0 (curl e)¥* (curl E)¥ 0

plv A
V[a nS]Apv N“plv v, | 0 (curl u?kz (curl H)k 0
ol ePln 0 k! ik 0

v[oc irB]“ 0 s ok o

18
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