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ABSTRACT

Classes of algebraically special Einstein's geometries are examined,
associated to a congruence of null geodesics, hypersurface orthogonal. Writing
field equations in a null frame? adapted to the congruence, we make explicit
the role of null rotations of the frame in generating new solutions (or in

eliminating them). A simple case is treated as an example.
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We have considered solutic's of Einstein's vacuum field equations in

which the metric has the form'

~

9y = Gy " 2m ku k,, (1)

is itself a solution of the vacuum field equations Ruv =0, mis an
v

arbitrary constant and ku is a null vector field with respect to guv s

where ¢
u

hypersurface orthogonal:

kp . =0 (2)
[w ks el
Equation (2) 1is a necessary and sufficient condition for

k = A(x) ¢, u (3)
u

where ¢(x) = cte is a null hypersurface in the space-time equipped with the

. . . -~ . W 3
metric 9 and X is a scalar function. The inverse of guv 1S

AP (4)

(the index of k" 1is raised with guv).

The Ricci tensor ﬁuv constructed with (1) is a polynomial of the

fourth order in m, and since m is an arbitrary constant

R =R +2mA +4m®B +m®C +m*D =0 (5)
uv uv UV uv uv UV

implies that each coefficient of the polynomial must vanish separately. The

condition D v = 0 1is automatically satisfied because ku is a null vector;
u



the condition Cuv = (0 implies that ku defines a congruence of nuli

geodesics
k . k% = Hk (6)

u
where H is a scalar function. From (3), (6) and from the fact that ku km =0

we get

H= & (7)
By using (6), Buv =0 yields

(H , k* + k% 50 H)k_u k, =0 (8)

and form A =0 we get
uv

a0 —
RGpr k™ k¥ + ABV =0 (9)

where

(1) o (O " ’ AV kB .

Bu = ™ Kagp K+ (Ko + kg J%a +H kg -
+ k“(¢,v Agt bghry )y, - A k“;a (q>,\)),B +
1 O
- (¢,v A kB);a (10)

Let us consider now a local null frame - a quasi orthonormal complex



340

basis? for vectors in space-time adapted to the congruence k* , hamely

(k% 2%, m%, ) (11)

where the only non-zero scalar products of basis vectors are

k& =1, moaM o=- (12)
u U
We can expand ku‘v in this basis
= - -Yk m -7¢% +
ku;v 8 ku kv Y ku m, =Y ku m, "h kv
ol m - &m m mom 13
+om, m o+ em W) - 8Tk + om m, +om W+ Hk £ (13)

In particular we note that

kK =-2p+H (14)

and from (3) it follows

T -8 = (15)

Contracting equations (7) and (9) with the various pairs of (11) and
using (14) and (15) we obtain (apart from some trivial equations) the set of

independent equations

H, k*+ k% H=0 (16a)
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!0’,2-02+20H=0

R K*k° i Y+ 2Ho = 0

aBpv
8 20
A8 L AT,
R kP ko B 2" - 2p(e - ) - 2Hp - —2& 4
pBav A
A, &% 8 A, A
+ 2 H+2H o &8 + —2—— +a]y|2 - 2[§]2 =0

A B A2
R Kk kP ZB m’ + T(H + o) +H m¥ - 20§ +oy =0
Y sV

pBav

which are equivalent to

(16b)

(16¢)

(16d)

(16e)

(17)

Since we can parametrize the congruence such that in (5) H =0, we

have by (16c) that, in this case, k% must be a Debever-Penrose vector

*
concernin
g guv

If X =1 then H

It
o

¢

Gy = Gy ~ 2m ¢,u %

(18)

* This can be more easily seen by considering the spinorial expression of

basis (11 and writing R
(11) ng R

in Penrose's spinorial formalism2.
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and equations (16) reduce to
lo|? = p?

R k k £52°+2[8|2-200=0
pBaV 81 P (19)

Rpswkpk“zsm\’+p'y‘-zpa+oy=o

In this case the curvature tensor becomes

o = p% o _k a a pp
R = R o 2m(k8;v k™. k ot kp k™ R )

Buv Bu HT} uiB H Buv

This expression shows that §uv js algebraically special if and only if

L * . 52 &g 3 Buv
g is . Besides, let us calculate the curvature scalar R =R Buv Ra
uv
where indices are raised and lowered with §“v and §uv respectively. MWe
obtain
RZ = R? (20)

if and only if o =0. Soif A =1 and g js algebraically special
Hv

(0 = 0)3 » (18) can be absored by a coordinate transformation on %Jv .

Let us investigate now the behaviour of equations (16) under a local
null rotation?

2
k -~ Ak® (21)

* This can be more easily seen by considering the spinorial expression of

basos (11) and writing RpBav in Penrose's spinorial formalism .
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m* » e C(m® - A B k%
(21)

A% B - B W% AR k®

where A, C are real, A >0 and B complex. Ye restrict curselves to the

case A = cte. Under (21) the parameters of expansion (13) transform as
8>A 0-(BY+By) -ABBH+2ABE o~ (BS + BF) + (AB%5 + AB20)
T+e'C (- ABH - ABo - ABp)
§>e' (5 - ABo - ABp)
o+ e21C pg (22)

p+ Ap

H-> AH

and accordingly equations (16): equations (16a), (16b) and (16c) are invariant
under (21) and (22), but the last two equations turn into a linear combination

of (16) plus some terms added. For instance (16e) goes into

eic [A {16e} - A?B {16c} - A%yB{16b}.- A2 B {16a} -
-2 B pH:) = 0 (23)

which is not invariant because of the last term. If we consider equation (16d)
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more carefully we can see that it contains two terms which arelinvariant under

(21), (22), namely

- 4
2 32 T S (24)
- + s Ol -
A A
where O = A’a;
and (16d) can be written
2
0 a D S
- - 2% . T=0 (25)
A A2 '
where T is a scalar function which transforms under (21), (22) as
T+T-2M {16e} - AB[ZO(Y - 8) + 2p(Y - 8) + H(Y - 35)] +
- 2AB {16e} - AB [23(7- 5 + 2p(y - 8) + H(y - 3F )] +
(26)
+ A% B2{16c} + A2 B2{T6c} - 2A? BB {16a} + 2A% BE {16b} +
+ 2A% BB (p2 - 2p H + 6H?)
For the case
o=H=0 (27)

field equations imply p = 0 and we have by (23) that (16e) is invariant

and hence, by (26), (16d) or (25) 1is invariant. And T assumes the form

T=R_ kP K* 2B Y+ a|y|2 - 2|5|2
a8pv
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[}
(o)

for o =H

But if (27) does not hold we are faced with a problem: what role does
a null rotation play in the space of solutions of ﬁuv = 0 and what does the
non-invariance of equations(16d),(16e) mean in terms of solutions?We argue that
null rotations generate new solutions of ﬁuv =0, i.e., for each different
basis (11) we must have a new class of solutions (1) of (17). To see this we

shall treat a simple case.

We consider the case ¢ flat and the 3-dimensional null hypersurfa
uv

hypersurface in Minkewski Space as the future light-cone
6 =x° -r =cte (28)

where r? = x2 + y2 + z2 . This implies

= WX oYy .z 29
¢’a (]’ r’ r’ r) ( )
and
k . = A O + A O,
TERY Vo v
Adapted to the congruence ka =)o o we construct the null frame
ka=>\(],'X/|",'y/Y‘,'Z/Y')
(30)
1 1 cos O sin 8 ~z/r
L = —(
o A

1 -2%/r2 /T - 22/r2~ V1 =~ z2/r? 1 - z%/r?
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eZie z/r 1
m, = ( , isin 8, -1 cos @, - )s (30)
vZ A - 2% A = z22/r?
in Cartesian coordinates, where <cos 6 = — X , $in 6 = _— Clearly
/XZ + y2 /xz + y2

(30) satisfies (12) and this basis is uniquely defined up to a Tocal null

rotation. The parameters of expansion (13) are calculated to be

Ao 2%
0 = N + eo
- r.m®
Y = 20 + §
A
1 1
0
2\ r (] - ZZ/Y‘Z)Z
5o - e21'9 72 /2
AN Ry
A
P == J—
r
o=0

where we make use of (29) and (30). Equations (16) become

H kK* - 20 H+H2 =0 (32a)
o = 2H (32b)
E]zx A AY
S -T, =0 (32¢)
A A2
H m’ + H(37 - 28) = 0 (32d)
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where
S A YR A 5
T o==20(6 - )-2Ho+—% Y424 ¢ +4[v|2 - 2|52
° A A -8

At this point we must note that the parametrization of the congruence cannot be

arbitrarily chosen. For instance, if we take an affing parameter (H = 0), using

(7) and (30) we have

oA oA

ax° or

and hence A = A(x° - r), which does not satisfy (32) since o # 0.

Under a Tocal null rotation (by local we mean that B can be a function

of coordinates)* (32a) and (32b) are invariant, (32d) becomes

{32d} - 8 ABHZ = 0 (33)

or

{32d} - AB{32b} - A?B{32a} - 4ABH2 = 0 (33')
since we can make use of (32a), (32b) at ease because they are invariant; and
TO > TO -20 A% BBH? - AB(5HY - 7HS)

- AB(5Hy - 7H3) (34)

(34)
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(in obtaining (34) we have made use of (33).

Thus it is always possible to construct a local null rotation which

makes (34) zero and so reduces the set (32) to the equations

H k*-20H +H2=0
(o}

O - 22— =0 (35)
If we consider now A = )(r) the last equation (35) gives a gerleral solution

-n (36)

for any real n, up to a multiplicative constant. Using (7), (30) and (31)
the first equation (35) gives
d* A 2 dx 1 da

+ - —+—(—2 =0
dr? r dr A dr

and first integral is the second equation (35)

d A A
dr 2r
which restricts (36) to n =-% . The solution

NPV (37)
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corresponds to a Schwarzschild metric

g = - 2maZ ¢, (38)
guv nuv ¢,u ¢,v
where ¢ is given by (29) and m is the mass of the source, and which can be
1)

put back into its well known form by an Eddington mapping®.

In general, for A = x(x) the set (35) can be considered as a principal

equation

whose solutions are restricted by two equations.

H k% - 20H + H2 = 0
2O

p =2H
closely associated to the null congruence.

Solution (37) 1is not, by any way, a solution of equations (32) with
To # 05 conversely, equations (32) must have compatible solutions which are

not solutions of (35).

Thus by a null rotation (21) we are able to generate and/or eliminate
»So1utions of equations (16). UWe proved this in a very simple case making a
rotation and obtaining the well-known Schwarzschild solution. We believe that

not only does it work well in the simple example considered but it also
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constitutes a method for treating more general cases and obtaining new

solutions.
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