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§1. INTRODUCTION

A vector fibration is a pair (E',(FX_);@E) where E is a Hausdorff space and

for each x € E, F is a r’eal'(r'esp. 'c_ompléx) vector space. A cross-section is

any element of the Cartesian ’pi'oduct’XgE Px. A weight is a function v on E

such that v(x) is a seminorm over F,; for each x € E. A weighted locally convex

space LV is a vector space L of cross-sections equipped with a locally convex
topology determined by a family of ‘seminoyms

I£],= suwp tvoo [f0); x e B}, £el,
where v ranges over a direct:ed'sef V>of wéights, éuch. that fhe real-valued func-
tion x = v(x)[£(x)] is upper semiconfinudl"ﬁs and null at infinity on E, for each
f el. Given an algebra A of écalaxévaiuéd continuous functions on E, contain-

ing the constants, the vector space of all cross-sections is, in a natural way,

an A-module.

The weighted approximation problem consists, then, in asking for a descrip-

tion of the closure of an A-module of LV_; and, in particular, in finding neces-

sary and sufficient conditions for an A-module to be dense.

In the particular case in which A is the algebra of 'all constant functior.s
over E, an A-module W .'l;.é, 51 géhéréi, oniy a4 vector éﬂbépkadé of LV_. In such a
case, the only thing we can do in general is to apply the Hahn-Banach theorem
to describe the closure of W. To reduce the general case to this special case
one introduces an equivalence relatién on‘ E, denoted by E/A, defined as follows:
if x, y € E, then x = yk modulo E/A if, and only if, u(x) = u(y) for all u in A.

An A-submodule W is localizable under A in LV_, by definition, if its closure

consists of those f € L for which, given ény e >0, any v € V and any equivalence
class X'modulo E/A, there is a w.€ W such that v(x) [f(x) - w(x)] < e for any

X € X. The strict weighted apgrox:i.mation'consists, then, in asking : for neces—
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sary and sufficient conditions for localizability.

The algebra A of scalar-valued continuous functions over E may be a general

. subalgebra of C(E) or a separating subalgebra. There arises naturally the
question of deciding whether the special separating case implies the general one.
In §5 we show that this is the case, answering in the affiyjmative the conjecture

stated in ref. 6 and in ref. 7.

In 86 we extend to the context of vector fibrations the known sufficient

conditions for localizability.

In §7 we consider the case of vector-valued functions, i.e. the case in
which all the vector spaces FX, x € E, are equal to same fixed topological

vector space F. In this paragraph we extend results-about the strict topology B
due to Buck, Wells and Todd. We also prove a Weierstrass Theorem for locally

convex Hausdorff spaces: if E and I are two such spaces, then P(E;F) the vector
space of all continuous polynamials defined in E with values in F is dense in

C(E;F) equipped with the compact-open topology.

In §8 we study the question of spectral synthesis for proper closed A -
submodules W of LV_, in the case which LV ié itself an A- module. We show
that spectral synthesis holds for A~ submodules that are localizable under A in
LV_. The results of this paragraph generalize the ones cbtained by Todd in the

case of Cb(E;F) equipped with the strict topology.

Finally in 89 and §10 we turn to the case of operator algebras, which we
proceed to described briefly. Let £ be a real (resp. complex) locally convex
Hausdorff space, and let J/ be a camutative algebra of linear operators over L,

not necessarily continuous; further assume that of contains the identity. The
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point co-spectrum of A is the set E of all homomorphism h of #£ onto R (resp. O,

such that the vector subspéce Sh of £ spanned by u(x), with u in h"™}(0) and x in
AL, is not dense in L. Consider over E the weakest topology which makes all
the functions he~r h(u) are continuous. Clearly E is then a Hausdorff space,
and we consider the vector fibration (E’(Fh)he}:) > where F| = L/S, . We then
establish the necessary condition for representing Las a weighted locally
convex LV,. This representation theorem uses a special concept of local .convex
ity, which was first introduced by one of the Authors in ref. 5. We then

extend to this context, via the representation theorem, the known criteria of

localizability.

¢
Historically, the ccncept of semicontinuous sums of locally convex spaces

goes back to Silov and von Neumann. (See ref. 4, 11 and 12).

Related questions about weighted locally convex spaces qQf continuous scalar
valued functions are now being studied by H. W. Summers (See ref. 13). We
should also mention that several results on weighted polynomial approximation

have been generalized recently by J. P. Ferrier (See ref. 3).

§2. NOTATIONS AND PRELIMINARIES

In this section we give the notation and terminology which will be used

throughout the paper.

R and C will denote the set of all real numbers and of all complex numbers,
respectively. R, will denote the subset of R consisting of all nonnegative
real numbers. When referring to either R or C without being specific we shall

use the symbol K. All vector spaces considered will be over K.
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If E and T are topological spaces, C(E;F) is the set of all continuous map~
pings fram E into F. If F = X, we often denote C(E;K) simply by C(E). In what
follows, E is always a Hausdorff space and C(E) is endowed with the compact-
open topology, unless the contrary is explicitly stated. C(E) is then a locally
convex topological algebra with unity. Assume now that F is a topological vector
space. Cb(E;F) is then the vector subspace of C(E;F) consisting of all f in
C(E;F) such thaf f(E) is a bounded set of in F. C(E;F) is the subspace of
Cb(E;F) consistiﬁg of all f in C(E;F) that vanish at infinity, i.e. those f in
C(E;F) for which, given any neighbourhood N of the origin of F, there exists a
compact subset K of E such that f(x) € N, for every x £ E outside of K. This
is surely the case when f has compact support, i.e. when f vanishes identically
outside same compact subset of E. We shall denote by K(E;F) the subspace of

C(E;F) consiéting of all f in C(E;F) with compact support.

A weight on i is any upper semicontinuous positive real—v%iued function
defined on B_n Let w 2 0 be a weight on &n . me(gfl ;K) denotes the vector suh
space of C(ﬁl; K) consisting of all f ¢ C(;Rfl;‘},g) such that fw vanishes at
infinity. Cwm(gn; X) is endowed with the topolégy determined by the seminorm
I£l , = sw {wlx |f(x)|.; x e K'}.

A locally bounded X- valued function f on If is said to be repidly decreas~

ing at infinity, if the following equivalent conditions hold true:

(1) pf is bounded on K‘, for all p in P(‘g‘).
(2) pf + 0 at infinity for all p in P(;Rf).

let w 2 0 be a weight on g{‘ which is rapidly decreasing at infinity. Then
P(R) & ON”(B_n',‘lQ , and in this case w is said to be a fundamental weight if

P(&n) is dense in Oﬂw(g: 3X0. We shall denote by Q. the set of all fundamental
weights on i’, and by I‘n the subset of Qn consisting of all y € Qn such that
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Y<eq, forall k > 0.

We shall consider Bf as a vector lattice in the usual way: if u =
= (u se+e5 ) and t = (t ,...,t ) belong to ;Riwwrite u £ t provided u; < t;
for all i = 1,...,n; and define |u| = (|y,| s+++5|u |). A real-valued function

f defined on K. is then said to be decreasing if u, t € K" and |u| <t

imply £(u) > f£(t). Denote by Qg the subset of Qn consisting of those fungda-

d

. . d
,, the intersection I n Q.

mental weights which are deFreasing. Denote by T

If E is a topological space and A @ C(E) is a sub-algebra containing the
constants, E/A dgnotes the equivalence relation defined on E as follows: if
x,y € E, then x = y modulo E/A if and only if f(x) = f(y) for all f in A. The
_subalgebra A\ is said to be separ é&:i’ng’ on .E, if the %quivalence classes of E
modulo E/A are reduced to points, i.e. if for any pa:.r of distinct points
X, ¥ € E, there exists same f in A such that f(x) # f(y). Let F denote the
quotient space of E modulo E/A, and m: E » T the quotient map. Then F is
a Hausdorff space, since it admits a separating subalgebra. To each f € A
there corresponds a unique h € C(F) such that f = ho 7. The set B ='{h; f =
=ho m, f e A} is such a separating subalgebra on F, containing the constants.
If A is self-adjoint in the camplex case, so i; B. Finally, if E is compact,
then F is compact; 7 is a closed map and the saturated neighbourhood of each
equivalence class m~'(y), v € F, form a basis of neighbourhbods of that class.
(A subset X € E is saturated with respect to E/A if it contains the union of

all subsets m 2 (m(x)) when x ranges over X).
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§3. THE SPACES LV, and LV_

Let E be- a- Hausdorff space and for each x € E, .letFx be .a real-{resp.

camplex) vector space. By a cross-section f over E we mean a funetion £ on E

such that f(x)-belongs to F  for each x in'E, i.e. a point in the Cartesian

product xIe{E F . The Cartesian product xgE FX is made .a real.(resp-. .complex) .
vector space-in-the-usual way,.and a:vector: space.of " cross-sections is- a vector

subspace of X'I;:IE-,FX. A weight on'E, say v, is a.function.on.E such that v(x) is
a seminorm over'F_, for each'x in E. A set V of weights'on E is directed, by
defirﬁtion‘«, if for every pair v;, v, € V, there exist v € V.and t > 0-such that
vi(x) < tvlx) for.all.x e E, i = 1, 2. From now on, V.always .denotes .a directed

set of weights...If f is:a cross-section over E and v.is a.weight.on E, the

positive real-valued function x * v(x)[f(x)], defined on E, ‘will be denoted by
\% [f] .

Definition 1. Let L be a vector space of cross-section over E. A weigl'it v

on E is said to be
(1) L~ bounded
(2) L- upper semicontinuous,

(3) L--null at infinity,
in the case the function v[f] is, respectively,

(1) bounded on E,
(2) upper semicontinuous on E,

(3) vanishes at infinity on E,
for every cross<-section f in L.

Fram the above definition, it follows that any weight v which is L~ bounded

determines-a seminorm over L, namely
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£ £, = swp (V) [E()]; x € E}.

Notice also that if the weight v is L~ upper semicontinuous and L- null .
at infinity, the set fx € E; v(x)[f(x)] > €} is compact, for all € > 0 and f in

L. Hence v is.L~ bounded.

Definition 2. Let L be.a vector.space.of cross-sections over.E and V a

directed set of weights which are.l~-:upper semicontinuous: and L~ bounded. LVb _
will denote the- vector.space L.endowed with the- loca_’l'.ly:.convex “topology deter--. -
mined by the:family of seminorms f= |f| ; when v ranges over V.. In the
paI'tJ.CulaP case-in which the weights v € V are L- upper semicontinuous: and L~

null at infinity, we shall write LV, .for this space...The spaces.LV,.and LV,

are’ called weighted locally convex spaces' of cross-sections. -

Since-we aseumed V to be directed, the sets of the form {f e L; v(x) [f(x)]<e
for all x € E}, where v e Vand e >0, form a basis of neighbourhoods. of the
origin in I..Vb or LV_. Moreover, .I“Vb or LV_ 1is a Hausdorff space if ,h-given any
felL, f#70, there exist ve V and x e E such that v(x)[f(x)] > 0, ‘

Remark 1. Given a weighted locally convex space LVb of cross-sections over
E, the vector subspace Ly of L of all c_:ross—sections f such that vf_'f] vanishes
at infinity, for every v € V, is closed in LV, . Indeed, let f € L be a cross-
section which belongs to the ,closuxé, of L, in LV,. Givenany ve Vand e > 0,
there is a g € L, such that v(x) [f(x) - g(x)] < €/2 for any x € E. Hence
{x e E; v [f(x)] 2 e} € {x e E; v(x)[gx)] > /2 . Since the right—l;ha_.nd side
of this inclusion is compact, the same is true of its left—hand side, it being
closed. Thus v[f] vanishes at infinity, for any v in V, and therefore f e L, .

Nofice that L, endowed with the relative topology of subspace of Lvy is precise

ly Lov_oo'
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When X is a closed subset of E and L€ 1I Fo is a vector space of cross-
sections over E, we shall denote by LjX the }\;zitor space (L), where m, is the
canonical projection of I F_onto II F_ . If fell F , we shall denote by

xeE xeX xeE *
f|X the cross-section me(£). Let now V be a set of weights on E. We shall
denote by V|X the set of all weights on X of the form (V(X))XEX’ where v fanges
over V. Notice that letf]X] =v[f]|X for allveVandfel, Hnce, if
v is L~ upper semicontinuous, then v|X is L|X~ upper semicontinuous. Similarly,
if v is L- bounded or L- null at infinity, then v|X is L|X- bounded or L|X- null
at infinity, respectively. Therefore, it follows that, if LVb or LV are
defined, then the weighted locally convex spaces (L]X)(V]X)b or (L{X)V]X)

are also defined. In such a case, we shall write LV |X or LV_|X instead of the

longer expressions (L!X)(V]X)b or (L|X)(V|X)_ respectively.

84. THE WEIGHTED APPROXIMATICN. PROBLEM, LOCALIZABILITY

The vector space Il F, of all cross-sections is an A~ module, for any sub
algebra A G C(E;}S) ‘coni:(ining the constants, under the following multiplication
operation: if u € A.and £ = (F(x)) is a cross-séction then uf is the cross-
-gection (u(x)f(x))X€E. Thus, if W ié a vector space of cross-seation, we say

that W is an.A- module, where A is as above, if AW = {uf; u e A, f € WICW, i.xe.

if W is an A- submodule of 1T FX.
' xebE

Given an A- module W C LV_, the weighted approximation problem consists,

then, in asking for.a.description.of the closure of W in LV_; and , in
particular, in finding necessary and sufficient conditions for W to be dense in

Lv_.

[++3
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Iﬁ thée:particular case.in.which A is the algebra of all.constant .functions
over E, an A--module W is, in general, only a vector subspace of .IV,. -In such
a case, the only thing we can do in general is to apply the Hahn-Banach-
theorem: once known the dual.space.of LV_, the closure of W.consists- of those
f € L such that any.continuous linear functional ¢ over- LV which vanishes on W,

vanishes at f too.

‘We shall try.to reduce the general case.to:this special.case. We-first
notice that for any equivalence class X' € E module E/A, the subalgebra .
Alxc C(X;K) is precisely the algebra of all constant functions over X. This

remark. suggests the following definition.

Definition 3. An A- module W € LV, is localizable under A in LV, when
its closure consisz T those f £ L such that, for any equivalence class X € E
modulo E/A, given ve V and e > 0, there exists we W such that v(x) [f(x) -

- w(x)] < e for any x € X.

The strict weighted approximation problem consists, then, in asking for

necessary and sufficient conditions for localizability.

§5. THE SEPARATING CASE

Let us consider the following conditions:
(a) The subalgebra A € C(E) is separating on E.
(b) Forall feLandxe E, givenv e Vande > 0, there exist w ¢ W

and neighbourhood U of x in E, such that v(t)[£(t) - w(t)] < ¢ for all t e U.

(¢) For any x € E, W(x) = {w(x); w e W} is dense in L(x) = {£(x);
fel}lerF > When F is equipped with the locally convex .‘f‘topology determined by

the family of seminorms V(x) = {v(x); v e V}.
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Proposition 1.  .Conditions (b) and.(c). are equivalent. Proof. It is

obvious-that.(b) implies (c). .Conversely, suppose that (c).is valid-.f._Leta_.‘f e L
and x € E. @Glven any.v.€ V.and € > 0, there exists w ¢ W such that \{(x)[f(x).—’ .
. W(x)] < g, -Since f. - w:belongs to L, \sz -’w:] is upper.semicontinuous Henece., -
“there-exists a neighbourhood & of x in E- such that .v(t) [f(t) - w(t)j <eg, for

any t € #. Therefore (b) is satisfied.

‘Definition.4. The.Separating Case of the strict “weighted-approximation

problem occurs:when conditions' (a) and (b), or equivalently, conditions (a) and

(c), are satisfied.

Proposition 2. In"the'Separating Case, W is dense in LV, if, and only if,

W is localizable under A in LV .

Proof. -By.condition. (a), any equivalence.class of E moduleo E/A-is a set
reduced to‘-a peint: Hence, W is localizable Lmder A'in LV, if, and enly if,
_its closure-in LV, consists of those cross-sections £ e L such that £(x)
belongs to the closure. of W(x) € FX, for any x € E. By condition (c), these are
precisely all the elements of L.

Remark 2. In.ref, 6 and 7 it was conjectured the.equivalence between the -
separating- and the- general .cases of the results of weighted .approximation -
‘theory. This.is established below (see Theorem 1) and its proof rests on the

following crucial result.

Lemma 1.. Let.E and.F.be two Hausdorff spaces and 7: E~+ F a.continuous

‘mappings from E.onto F. .For any upper semicontinuous function.g: ‘Ev-r.,‘& that

vanishes- at:infinity, let.h: F .+ R, .be defined as hiy) = sup {g(x); xew > (y)},
————e AP o mevmi——— o—

for all y e F. Then h is upper semicontinuous and vanishes at infinity.




240 ‘ ' .

Proof. We first notice that'h is well defined, since g is bounded and.attains

its maximum at each:closed set 7 (y) for y in F. Let then € > 0 be-given. The
set X = {,x_'_‘eE-;r.g(x) 2.€}. is compact. Since.w is continuous, m(X)-is- also
compact. Weacla:im.,that.{y.e.F;'h(y) 2 e} = ?T(X)'. For, if y.e w(X), then y =
= m(x) for some x.e.X,.and then h(y) > g(x) > €. Conyersely, if y ¢ m(X) and
t is any point in m7(y), then g(t) < €. By the remark made at the Dbeginning
of the pr"oof,\.it;follows that h(y) < >E:. Thls establishes our claim, and ends

the proof. -

Remark 3...If in.lemma 1:we amit.the hypothesis that g vanishes-at infinity,
then h may fail to be upper semicontinuous or to vanish at.infinity, as the

following simple examples show.

Example 1. ‘=t E =R*, F=Rand m: R* + R be defined as m(x,y)-= y.let
g be the characteristic function of the closed set {(x,y); y = €}.. Then h
defined in Lemma 1 is-the characteristic function of the open set {y ¢ RS y>0}

and therefeore is not Upper semicontinuous.

Example 2. Let E, F and w be as in Example 1. Let now g be the characte-
ristic function of the closed set {(x,y); y = x?}. Then h is the characteristic
function of the.closed.set.{y € R; y 2 0}. Thus h is upper semicontinucus, but

does not vanish at infinity.

Let then LV ];e a weighted locally convex space .of cross-sections and
WC LV  an A= module. Let F be the quotient space of E by the equivalence rela
tion E/A, and w: E -+ F.be the quotient map. Le;t Ty: C(F) + C(E) be the induced
homemorphism: m,(b) = bO 7 for ény b e.C(E). Then B = m;'(A) is a subalgebra
of C(F) containing the unity and separating on F. If A is self-adjoint, so is

B. For every y € F, 71 (y) is a closed subset of E and we shall denote by
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f|n ™ (y) the eross-section over 7~}(y) given by .ff(x) ) ey -2 (g)» -When f is a
cross-section over E. Let L|m ™ (y).be the vector space {f|n~'(y); f e L}. For
every weight v on E consider the weight v' over F defined by

VI EIT @] = sup v [FG)] 5 x & 7y} .

Let M be the vector space of cross-sections g € 0 L|w 1 (y) -such that,
‘ yeF - S

1) there exists.f.e.L, such that g(y) = fjn~1(y) for all.y e F5 -
2) giveny e F, veVand e >0, there exists w € W such that v'(y) [w|7 ? (y)-

- g(.y)] <€E.

By Lemma.l, each weight v' on F is M~ upper semicontinueus and M- null at
infinity. Hence-we may.consider the space MV!, whem V! = {v!'; veV}l. LetW's
= {(w]n-l(y))yeF; weW. Then.W'is a B~ module.

~

THEOREM 1. W is localizaBle under A in LV, if, and only if, W' is dense in

w———t ——— S——

MV' .

Proof. Suppose  that W.is .:::‘Loc;’:ﬂ.izable ander A.in LV_. .Let g.e M, v' € V! and
€ > 0 be given. .let.f e L be such that g(k}’) = flp 2 (y) for.all.y£ . Let XCE
be any equivalence- class .modulo.E/A, ue V and § >.0.be.given. If ¥, € Fis such
that X = 77! (y,2, by definition of .M there exists w, € W such that - |

: uf(yo)[wolﬂ'J(yoj - fiﬂ"l(yo)] <§ .
Hence u(x) [wa{x)a-;--,f(x)] <.§ for all x e X. Thez;efon'a f belongs-to-.the- elosure
‘of W in LV .. Hence-there‘exists w e W such that v(xj{w(x) - £(x})] .< ¢ for all
x' € E. But then v'(y)[wjr ™ (y) = fin Tl(y)] <€ fér all y ¢ F, i.e. g belongs

to the:closure of W' in WVO‘0 .

Conversely,:suppose that W' is dense in MV . Let f e L be such that, for

any equivalence class XC E modulo E/A, given v € V and €> 0, there exists
{
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w € W such that v(x)[f(x) - w(x)] < e, for any x € X. Consider.g.= (f|m{y) )y€F°
By’ the- above property;" g belongs.to:M.. Therefore,.given u.e'V.and §.> 0,.there
exists w e-W-.such that u'(y) [f|n ? (y) - w|T(y)] < 8§ for.all.y e.F. Hence -

u(x) [f(x) - w(x)] <& forall x ¢ E, and £ belongs to the closure of W in LV_.

§6. SUFFTICIENT CONDITIONS FOR LOCALIZABILITY

If A is-a subalgebra of C(E) containing the constants, G(A) -will denote a
subset of A which topologically generates A as an algebra over K with unity,
i.e. the subalgebra over K of A generated by G(A) and the function identically
one is dense-in A for the compact-open topology of C(E). If WCLV_ is an A~
module, G(W) will denote a subset of W which topologically generates W as a
module over A, i.- the submodule over A of W genexjatéd by G(W) is dense in W

for the topology of Lv_.

The proof of'the theorems in this paragraph are entirely similar.to the
analogous results proved in ref. 10, and are therefore omitted. The first
theorem below .reduces.the search of sufficient conditions of localizability to
the search of -fundamental weights in the sense of Bermstein on gﬁl, i.e. to the

Finite Dimensional Bernstein Approximation Problem.

THEOREM 2. - Suppose that there exist G(A) and G(W|) such that:

(1) G(A) consists only of real-valued functions;

(2) given any v € V, CPETRRPL W= G(A) and w & G(W), there.exist-an+l,...,

ay € G(A), where N > n, and wefy such that for all x € E:

vx) W] < wla, (x),..., a (X)5..0; ag(x) .

Then W is localizable under A in LV_.




243

Corcllary 1. «Suppvose-tliat.there exist G(A) and G(W) such.that:

(1) G(A) consists:.only of real-valued functions;

9 -

(2) G(A) and G(W).are finite; say.G(A) = {al,...,an}'

(3) given'any v € V and any w e G(W), there exists w e Q. such that for all

'v(x).[w(x)] <w(a, (x),..., an(x)) .

Then W is localizable under A in LV_.

- THEOREM 8. Suppose that A is self-adjoint and that there exist G(A) and

G(W) such that, given any v.e.V, pyesisd € G(A) and w € G(W), there exist

8 413+ Oy € G(A), where'N > n, @g’m € Qﬁ such that

v(x)[w(:x)] < w(lal(’x)lv,...,[an(x)l ,,IaN(x)I) :

for all x ¢ E. 'Then W is localizable under A in-LV_.

Corollary-2, Assume that A is self-adjoint and that there exist G(A).

and G(W) such that:.
(1) 6(A) and G(W) are finite; say 6(A) = {a ,..., g/} ;

(2) given any v e V-and any w &€ G(W), there exists w € Qg such that for

allxe E:

v [wia)] < w(la, (], ,[q ) .

" Then W is localizable under A in Lv_.

© THEOREM 4. Assume that the hypothesis: of Thgoriam. 1.holds; and that we are

in the Separating Case. Then'W is dense in LV .

Proof. Apply Proposition 2 and T}‘igoxwe.m 1.

Remark 4. Theorem 2 and Theorem 4 are equivalent. Indeed, given A, LV_
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and W satisfying.the hypothesis.of Theorem 2, let B, MVg and W! be as in §5.
Taking G(B) =m;'(G(A) and G(W') = {(w|m ™ (y) )ye:F;’ w € G(W)}, .they satisfy the-
hypothesis of Theorem. 4. Hence W' is dense in MV! . By Theorem 1, W is loca-

lizable under A in Lv_.

Our next theorem reduces the search of sufficient conditiens of localiza-
bility of modules.to the search of fundamental weights on R, i.e. to the One

Dimensional Bernstein Approximation Problem.

THEOREM 5. Suppose that there exist G(A) and G(W) such that:

(1) G(A) consists only.of real-valued functions;

(2) given any v € V, a € G(A) and w € G(W) there exists y € ', such that
for all x € E;

v [wx)] < ylalx)) .

Then W is localizable under A in Lv_.

THEOREM 6. Assume that A is self-adjoint and, that there exist 6(A) and

G(W) such that, given any v.€ V, a € G(A) and w €:\G(W) there exists y € F?

such that for all x ¢ E:

v W] < y(Jao]).

Then W is localizable under A in LV _.

THEOREM 7. Assume that the hypothesis of Theorem 6 holds, and that we

are in the Separating Case. Then W is dense in LV_.

Remark 5. Theorem 6.and Theorem 7 are equivalent. The proof of this fact

in entirely similar to that of Remark 4.
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THEOREM- 8. - (Analyt:.c Cniterianz:gfz GI@galizability) . Assume ;that A-is- self-

-adjoint- in-the: complex ca\seifaadtthat tl'xe_k’e exist G(A)-and G(W).such.that,:given

any v e V,:a € G(A) and we 6(W), there.exist constants C > 0 and ¢ > 0 such that
for all x e.E:

‘v(x)[ﬁ{(x)»] <cC e-—cla(x)l

‘Then W is localizable under A in LV_.

-c|t]

Proof. The function y(t) = C e defined in R belcngs to I'? - (see Lemma 2

§28, Nachbin ref. 10). It remains to apply Theorem 6.

THEOREM 9.. (Quasi-analytic Criterion of Localizability). -Assume- that A

is self-adjoint in the complex case and that there exist G(A)-and G(W) such

that, given any v ¢ V, a € G(A) and w € G(W) we have

(%)-l/m = g
1

18

m

$

where M = sup {vex) [E™x) w(x)]; x € E} for m -
izable wnder A in LV_.
Proof. Let y be defined on R by setting

0’ l, 2,... Ihenw'l:.‘%local'-

y(£) = inf{M/ " ;m=0,1,2, ... },

if t #p and v(0) = O,'if..some.l\’gnv: 0, or y((ﬁ

]

M, otherwise. Then y > 0‘ is

upper semicontinuous and |
sup {Y(‘t)]tml', teR M form= 0,1, 2,-...

By Lerma 2, §29, Nachbin ref. 10, y belongs to I, From the definition of M

we have v(x) [am(x') wi(x)] i% for every x e Eand @allm = 0, 1, 2,.... = Hence

v(x) [Wwx)] < y(]a(x)|) for all x ¢ E. By Theorem 6, W is localizable under A

in v,



Remark §. Theorem 8 13 based on the uniqueness of analytic continuation,

e e e e

whereas Thecrem 9 rests on the Denjoy~Carleman Theorem.

Definition 5. The Bounded Case of the strict weighted approximation problem

=
"

the one in whicn there exist 6(A) and G(W) such that . every. a. e G(A) 1s bounded

on the support of the function v[w], for any v € V and any w € G(W) .

Remark 7. Each of the following hypothesis leads to an instance of the

Bounded Case:

(1) AC C‘b(E). |

(2) Every a.e G(A) is bounded on the support of any.v € V. -
(3) Every a € G(A) is bounded on the support of any w e.G(W).
(4) Every v[w]| has compact support, when v € V and w € G(W).
(5) Every v.e V has. compact. support.

(6) Every w € G(W) has compact support..

THEOREM .10.. Assume that A is gelf-adjoint in the complex case and that we

are in the Bounded Case. Then W is localizable under A in LV_.

Proof. Let v e ¥V, a e G(A) and w € G(W) be given. Let m = sup{{a(x){; x in the

support of v[w]} and M = sup {v(x)[w(x)]; x € E}, letc>mand C>M Ify is
the characteristic function of the interval [—-c, c] cR times the constant C, then
Y E F? and

vix) [wx)] < y(la(x)|) for every x € E.

By Theorew &, W is localizable under A in LV_.

THEOREM 11, Assume that A is self-adjoint in the complex case and that we

are in the Bounded Case. Then, if A is separating on E, W is dense in LV if,




247

and only if, W(x) is dense in L(x) for each x in E.

———

Proof. The- condition’ is obviously necessary. On the other hand, if A is

separating -on.E.and W(x).is dense in L(x) for each x in E, then we are in the
Separating Case, and therefore.W. is dense in LV if W is localizable- under
A in LV_, by-Proposition 2. Since we are in the Bounded Case, this always

occurs.

§7. VECTOR-VALUED FUNCT{IONS

In this.paragraph we.shall. consider the case in which all the vector
spaces FX,, x.€.E,.are equal to some fixed vector space F.. A cross-section f is
then any mapping from.E into.F, and a weight v on E is a mapping whose- values -
v(x) are semdinorms over.F... We.shall restrict our attention to.the ecase-in-
which F is a.locally convex space and the weights'Aarwe continuous . seminorm-valued.
As a first example of this situation, let E be a locally compact-Hausdeorff
space and [ a- locally,coﬁvex space whose topology is determined by a-family T
of seminorms-over F. Let V. be the family of weights of the form x = |${x)|p.
when ¢ ranges.over.C,(E), the space of all continuous scalar-valued functions
that vanish-at-infinity, and p ranges over the set I' If L = Cb(E';F),"‘then‘
all weights v.e¢ .V are L- upper semicontinuous and L- rull at infinity,.and LV_
is precisely.the space Cy(E;F) equipped with the strict topology.B,.first
introduced by.Buck.in.ref. 1. OQur next theorem extends results of.Buck‘f(see
Theorem 5, ref..2), Wells (see Theorem 2, ref. 15) and Todd (see Theorem 3,

ref. 14).

THEOREM 12. Let E.be a locally compact Hausdorff space,.and I be a local.

ly convex spﬁce. Let AC CD(E) be a, Separating subalgebra contgining the unity
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and seELf*—adjointr_iE the compléxgcase. letWcC Cb(E;F) be an A- module. If

W(x) is demse in F for each x in E, then W is 8-dense in C, (E;F).

Proof. Since AC Cb(E)‘we' are in the Bounded Case. Therefore we have just to

apply Theorem 11.

Our: next theorem is:a Weierstrass Theorem for locally convex: Hausdorff
spaces. If E.and F are.two such spaces, P(E;F) denotes the vector space of
all continuous.polynomials.defined. in E with values in F. On C(E;F) we will
consider the- campact-open . topology ; this is defingd by weights of . the form
x e E» xK(x»)p',-.where.xK.::&i_s the . characteristic fu.ﬁction of K, .and K ranges

over the ceompact subsets of E and p over the continuocus seminorms of F.

THEOREM 13. Let E and F be two locally convex Hausdorff spaces, both real.

Then P(E;F) is dense in C(E;F).

Proof. Let A be the algebra of all continuous real-valued polynomials defined
in E. The algebra A contains the constants, is separating over E, and is self-
adjoint. The vector space P(E;F) is an A~ module. For every x in E, the set
P(x) = {p(x)3 p € P(E;F)} is equal to F. Since the weights have compact sup-
port, we are.in the Bounded Case, and therefore by Theorem 11, P(E;F) is dense

in C(E;F).

Remark 8. If E and F are camplex, theorem 13 holds with the following
modifications. If m 2 1 is an integer, let ¢: E™ > F be a continuous function
which in each variable is either linear or anti-linear and let p(x) =
= (X 5..05 X ) where x; = ... =X =X Let P:;l (E;F) be the set of all such

p's. Form = 0, let P:‘(E;F) be the set of all constant mappings from E to F.

Then P*(E;F) is the vector space of all finite sums I p;» where p. € P’;(E;F) :
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WhenF = C, A= P*(E;C) is a separating and self~adjoint subalgebra of C(E),
containing the.constants.. Moreover P* (E;F) is an A- module under peintwise
operations.. .Since P*(x) .= F for all x e E, it follows thatP*(E-,F) is dense in
C(E;F) in the compact-open.topology. Theorem 13 remains true if we restrict
attention to .elements of .P(E;F).with range generating a finite dimensional sub-

space. Likewise for its complex analogue.

When F is a normed space the arguments in Nachbin ref. 10, 819, Theorem 1

can be applied to prove Theorem 13 above, directly.

58. SPECTRAL SYNTHESIS

.....

LVOO is an A~ module.

THEOREM 14.. Every proper closed A- submodule WC LV , which is localizable

under A in LV, ,.is contained in same closed A- submodule of co-dimension one in

L, and is the-intersection of all proper closed A- submodules of codimensicn one.:

in L which contain it.

Proof. Let f e L.be.a cross-section which does not belong to W= W, Since W is
localizable under A in LVOO, there exists an equivalence class X C E modulo E/A
such that £]X does not belong to the closure of W|X in LV_|X. By the Hahn-
Banach Theorem, there exists a continuous linear functional ¢ € (LV_[X)' such
that ¢(£]|X) # 0 and ¢(w|X).=.0 for all w ¢ W. Let them M be the closed A-
submodule of codimension 1 in L defined by M = {g € Lj ¢(g|X) = 0}, It is

clear that WC M and £ # M.

Let R denote the set of all equivalence classes X € E modulo E/A. If
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X e Rand ¢ € (LV_|X)', let W(X,9) ={g € L; ¢(g|X) = 0}. If WCLV_ is a proper
closed A-:submodule, which is localizable under A in v, let ¥ be the set - of -
all X €R such that there exists 0-# ¢ € (LV_|X)' such that W € W(X,¢). By
Theorem 14, # ¢ ana W = xre\t WX,4).

Conversely,.suppose: ¥ #: 8, is a subset of R such that for.all.X € ¥, there
exists 0# ¢ e (LV_|X)'. The W =0 W(X,$) is a localizable under A in LV_. To
prove this consider f e L--such:thﬁzflx belongs to the closure of W|X in LV_|X,.
for every X €®. Suppose:f t.ﬁ. Since W is closed, f ¢ W and.therefore-
£ ¢ WX,9) for.-same X e¥, i.e.. ¢(£]X) # 0. However W C W(X,4), hence ¢(£]X)=

= 0, a contradiction. Hence ';E € W, and W is localizable under A in LV_.

We have thus proved the following:

THEOREM 15. A proper. closed A- submodule W.C LV .is localizable under A

— — fo——— ——

in LV_ if, and.only if, it is of the form W.= gt\W(X,d)),'f_og someﬁ #+0, such

X
that X cQ and for all X e¥ there is same 0 # ¢ € (LV_[X)'.

Coroliary. A closed A- submodule.of codimension.one in.LV_ is localizable -

that there exists 0°# ¢ € (LV_[X)'.

Remark 9. In the particular case in which LV_ is Cb(E;F) .equipped- with
the strict topology.B.and.-AC Cb(E;}s) is a éelf—adjoint.subalgebraacontaining -
the constants, we:are.in the Bounded.Case of the. strict weighted approxima-. .
“tion problem, -and by Theorem 10 any A~ submodule.of Cb(E;F) .1s.localizable - .- -
under A in C (E;F). .Therefore, Theorem 14 above generalizes Theorem & of Todd

ref. 14 and Theorem 15 and its Corollary generalize Theorem 4 of Todd ref. 14.
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§9.  OPERATOR ALGEBRAS

In what follows..e denotes a.real (resp. complex).locally.convex-Hausdorff
topological vector space and % denotes a commutative algebra .of .linear-
-operators aver. .6, -not.necessarily.continuous. We further assume that ﬂ

contains the identity operator.

Definition 6. -The point co-spectrum of Ais the set of-.all .honm&rphisms

'h of ﬂ'onto.;{_: (resp. C) .such:that there exists f ¢ L', f # 0, such that

“flu(x)) = huwf(x) for all u e A and x s,e .
We shall denotes by E the point co-spectrum of A .

Notice that .E.is also the set of all homomorphisms h of o onto R (resp.()
such that-there.exists.an.f.e L', £ £ 0, such that f(u(x)) = 0 for any u in the

kernel h™*(0) and x in 2.

Or, eqguivalently, by the Hahn-Banach Theorem, E is the set.of all.-homo~
morphisns h of ‘A onto R, (resp. C) such that the vector subspace Sh of L span-—

‘ned by {u(x); u e h™(0), x' e L} is not dense in L.

We shall .consider over E- the Gelfand topology, i.e. the-weakest- topolo-
gy over E such that all the functions h~ h(u) from E into R (resp.-C) are

continuous, ‘when u ranges over 9. Clearly E is then a Hausdorff space.

For each h'e E,:let F/ S+ The vector fibration (E’(Fh)héE) is- called
the" vector: fibration-associated.with the point co-spectrum of 2 . .For each-
hekE, let x~ %, -denote the quotient map.of L onto Fh Then, for each x s»,e,
“the family- (Xh)héE"is -a eross<section over E, which we shall .denote by X.

The mapping x » X framefinto I F_ is linear; hence the image of £ under

h
hekb
this mapping is'a vector space of cross-sections, which we shall denote by L.



252

For each u e A, let i denote: the.continuous mapping h » h(u). The mapping
u+~ U from .99 ~dnto C(E;K) .is .a homomorphism; hence the image of A under it is
a subalgebra.of C(E;K), which we shall denote by A. Notice that A is separat-
ing over E. We claim that

-~

wx)" =34 « X

for all u e # and x € £. Indeed, for.all h € E, u(x) - h(wx = (u-h(wWI)(x).
Notice that u - h(u)I.belongs to h™'(0). Hence u(x) - h(u)x belengs to Sh for

all h € E, and (u(x))h = (h(u)x)h = h(u)xh for all h € E, i.e. u(x)"= 40 * X, as

we wanted to prove.

From this it follows that'L is an A- module and that the operators u e 9%

appear as multiplication by U € A.

For each continuous seminorm p over ,8 , we shall denote by Py, the quotient
seminorm Ph(xh) = inf {p(y);.y € Xh} for all x € F, . The mapping h » py is
then a weight over .E, which.we shall denote by p. Notice that every weight p
is L- bounded, for

15[52] (h) = p () < p(x)
for all h ¢ E, i.e. p[X] .is bounded on E, for every X € L, and therefore p is

L- bounded. From now on we shall make the following

Hypothesis H. There exists a.set I'' of continuous seminorms over ,5 , which

determines the .topology.of af , such that for every seminorm p € I', the func-

tion h ~ ph(xh) is upper semicontinuous and null at infinity on E, for every

x €.

Under the above hypothesis, we may.consider the space LV_, where V =
= {P; p € T}. The linear .map.x ~» X fram Zonto LV_ is then continuous. In

fact given a seminorm “2“15 = swp {p(x) ; h e E} inLV_, we have
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llillﬁ < p(x) for all x e,£. The follewing representation theorem establishes

the condition under which x* X is a topological vector isamorphism.

THEOREM 16. A necessary-and sufficient condition for the existence of a

set I' of ‘seminorms over. £ ) which determines. the topology of £, such that

X+ X is a topolggical vector-isoupxphism.between ,f and LV_, where V ={ p;

p € Iland u~ 4 is an-isomorphism.-between d.and‘A, is that ,f be locally
convex under of with respect to the category of all algebras isamorphic to R

(resp. Q).

Proof.  Suppose that L is.locally.convex.under A with respect to the category
{R} of all algebras isomorphic to R (resp. £). (For definitions, see Nachbin
ref. 5). I.;et I be the set of all continuous seminorms p over .8 which are
convex under & with respect to {R} (resp. {C}). For any such seminorm D,

we have p = sup {pshg h € E}, (see Nachbin ref. 5) where psh(x) = inf{p(x-s);
s e Sh}. Hence psh(x)
= swp {py(x); h € E}

vector iscmorphism of & onto w_, where V = {f; p € T}. To prove u = 4 is

ph(xh) for allh € E and x €&, Therefore px) =

||i“§ for a1l x e £, and x » % is a topological

an isemorphism, just notice that 4 = 0 implies that u(x)"= 4 * X = 0 for all
X € ,é Since x » X is an isomorphism it follows that u(x) = 0 for all xe L;

hence u = 0.

Conversely, syppose that there exists a set I' of continuous seminorms
over ae such that x = X is a topological vector iscmorphism between AL and v,
where V = {P; p € I'}. Then the seminerms over £ of the form sup {psh;h e E}
determine the topology of of . But these are convex under Jfwith respect to
{R} (resp. {C}). Hence £ is locally convex under of with respect to {R} (resp.
©<h.
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§10. WEIGHTED APPROXIMATION PROBLEM FOR INVARTIANT SUBSPACES

Let ,6 be a locally convex.Hausdorff space and JZ an algebra of linear
operators over j , satisfying Hypothesis H of §9 and such thatpg is locally
convex under & with respect to {R} (resp. {C}). If we denote by I' the set
of all continuous seminorms over L which are convex under A with respect to
{R} (resp. {C}), and V = {p; p € T'}, then we can construct LV_ as in §9 and
by Theorem 16, £ and LV_ are topologically and linearly isamorphic under

the mapping X = X.

If UC ;e is a wector sybspace: of L invariant under of , then its image W

under x » X is an A- submodule of L. The weighted approximation problem

consists, then, in finding necessary and sufficient conditions for a given A-
invariant subspace to be dense in 46 , and further in studying when spectral
synthesis holds, i.e. when a proper closed 9@ - invariant subspace equals
the intersection of the proper closed M- invariant subspace of codimension

one containing it.

An A- invariant subspace WCZ is, by definition, said to be localizable
under A in f , if its image W under x » X is localizable under A in LV_. It
follows that an ,j{— invariant subspace "II/CZ is localizable under A in IZ
if, and only if, its closure ln[ consists of all those vectors x e £ such
that, given € > 0, p € T and h ¢ E arbitrarily, there exists w eﬁ/and s € Sh

such that p(x-w-s) <e.

The strict weighted approximation consists, then, in asking for necessary
and sufficient conditions for localizability of of- invariant subspaces of ag .
Using the above definition of localizability and the representation theorem of
§9 we can easily establish results similar to those of §6 and §8. As an

example we prove a result about spectral synthesis.
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THEOREM 17. Let. ch be.a proper closed o - invariant subspace. If v

is localizable under. Je in. / -thenﬁls the. mtersecrtmn of. all m closed

Jf ~ invariant subspaces of codimension-one- contamug it.

Proof. The image W of U/ under the mapping X + X is proper and closed in LV_.
Since % is localizable under #in £, the A- submodule W is localizable under
A in LV_. From Theorem 14 it follows that W is the intersection of all proper
closed A- submodules of codimension one which contain it. Since x= X is a
topological and linear isamorphism, Vis the intersection of all the 9{-

» . - K / - - 3
invariant closed subspaces of codimension one which contain it.

* % %
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