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ABSTRACT Mandelstam's program for constructing the scattering amplitude
from its analytic properties and unitarity is analysed in the vdse of non-
relativistic scattering by a cut-off potential or by a hard sphere. The
asymptotic behaviour of the scattering amplitude in the momentum trenefer
plane is obtained, leading to a double dispersion representation for the
amplitude. The usefulness of this representation is limited by an essential
singularity at infinity in the momentum transfer plane. An infinite system

of dispersion relations, connecting each partial wave with all succeeding
ones, is derived from the dispersion relation for fixed momentum transfer.
The partisl-wave amplitudes must be constructed from this system together

with the unitarity condition. Possible ambiguities in the solution of this
problem are investigated. It is shown that ambiguities in the exact solution
affecting only a finite number of partial waves (Castillejo, Dalitz and Dy-
son ambiguities) do not exist, They would arise, however, in approximate
solutiong and it would be very hard, in practice, to eliminate them from the
exact solution. The ambiguities can be formulated in terms of the positions
of the poies of the S-matrix. A series of sum rules which must be fulfilled
by the poles is derived. The solution of the system is investigated in the
particular case of scattering by a hard sphere. In this case, if one assumes
that the exact solution is known for angular momenta larger than some (arbi-
trarily given) value, each partial-wave dispersion relation for smaller
values of the angular momentum can be exactly solved, and it follows fromthe
sum rules that the solution is unique.
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I. Introduction

Since the beginning of the work on dispersion relations,
two essentially different standpoints have been taken concern
ing their applications. The first oné is to regard them as
consistency relations, which can be applied to test whether
the general principles from which they have been shown or are
expected to follow are compatible with the experimental data.
They could then be considered as broad r;strictions, which
might be fulfillied by a large class of physical theories,
rather than leading to a unique theory. The other and much
~more ambitious standpoint is to regard dispersion relations,
- combined with unitarity, as the basis for a complete theory
of strong interactions. They are then treated as integral e-
guations which can be solved, in principie, in terns of én
small number of fundamental constants. This program has
been proposed by Mandelstam (1), together with a conjecture
on the validity of the double dispersion relations upon which

the program is based.

Assuming the correctness of this conjecture, it is still
very difficult to fest the program in elementary-particle
physics, on account-of the complexity of possible intermedlate
states. In practice, the épproximation of neglecting multi-
-particle intermediate states is always appliled. It is far
from clear to what extent the results derived by means of this

approximation are to be trusted and regarded as an effective
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test of the wvalidity of the program.

In view of this difficulty, several investigations have been
made in connection with simpler models, specially for non=-rela-

tivistic potential scattering. The only case which has been

considered so far is that of a superposition of Yukawa poten~
tials:
00
r V{r) =‘I o (p) exp(~pur)dr . (1.1)
m

The validity of Mandelstam's representation in this case has
been proved by several authors (2; 3, 4). According to Blanken-
becler, Goldberger, Khuri and Treiman (%), the scattering ampli-~
tude can be uniquely constructed, in principle, given the Mandels
tam fepresentation (including Born's appreoximation and the ener-
gies of the bound states) and the unitarity condition. However,
there remained the problem of determining the number of subtrac=
tions, which is related with the behaviour of the scattering am-

plitude at infinity in the momentum transfer plane.

This behaviour was investigated by Regge and collaborators
(2s 55 6), who have shown, with some further restrictions on the
potential, that it is given by a (generally complex) power  of
the momentum transfer. The power depends on the energy, but
upper bounds for it were determined and related with the number

of bound states and resonances.

The actual construction of the scattering amplitude has not
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been carried out. The weight function of the representation 1s
to be determined as the limit of a sequence of polynomials in the
coupling constant, but the rate of convergence of this sequence
is unknown. Moreover, it would be very hard to test the result,
because the behaviour of the solution is not well known for this

class of potentials.

The analytic properties of scattering amplitudes are simplest
and most fully known in the case of a cut~off potential, i.e. a
potential which vanishes identically beyond a certain radius.
There are several examples, belonging to this class, in which
the exact partial wave amplitudes are known and have a simple
analytic form. A cut-off potential, however, cannot be repre-
sented as a superposition of Yukawa potentials. The analytic
behaviour of the amplitudes is entirely different in the two
cases. It may appearstrange that such a radical difference
should exist, for one would expect that the effect of intro-
ducing a cut=off in the potential at arbitrarily large distances
should be very small. However, afguments of this kind cannot

be applied to analytic continuation.

The purpose of the present work is to investigate Mandelg-
tam's program in the case of a cut=off potential. We shall also
consider a singular limiting case of such a potential, namely, s

hard sphere.

The analytic properties of the scattering amplitude which
are required for deriving double dispersion relations are almost

completely known for cut-off potentials. The only exception is
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the behaviour at infinity in the momentum transfer plane, which
will be derived in Section II. It is given by an energy-depend
ent essentilal singularity, such that a double dispersion repre=-
sentation is not valid in the usual sense, but only as a
limit, in which interchange of the order of the integrals is

not allowed.

However, in the case of a cut-off potential, the double
dispersion representation is not required: one can apply directly
the partial wave expansion and the dispersion relation for fixed
momentum transfer. This relation will be employed in Section IIT,
where we shall project the partial waves out of the total scat-
tering amplitude. The result is an infinite system of disper-
sion relations, coupling ecach partial wave to all succeedihg

ones.

In Section IV, we ghall investigate to what extent this
system, together with the unitarity condition, suffices to
determine the solution. It will be shown that there are 1no
solutions differing from the physical sclution by a finite num-
ber of partial waves only. Ambipgulities Iiavolving an infinite
number of partial waves cannot be excluded, but they would be
much harder to construct, In view of the complicated form taken

by the unitarity condition.

The possible ambiguities arising in each partial wave dis-
persion relation can be expressed in terms of the positions of
the poles of the corresponding S-funtion. However, these posi=-

ticns are not completely arbitrary: they must fulfill a series
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of sum rules, which will be derived in Section V.

v In Section VI, we shall consider in more detail the case of
a hard sphere. It will be shown that, in this case, if the
exact partial wave amplitudes are given beyond a certain value
of the angular momentum (no matter how large) all lower-order
partial waves can be uniquely determined from the system of

dispersion relations, with the help of the sum rules.

I7. The double dispersion representation
4. Summary of known results

Iet V(r) be a potential which vanishes for r>a and satis-
fies the condition
| a
f r|V(r)ldr<ow. (2.1)
0

Let £f{k,Y) be the scattering amplitude, expressed as a function
of the wave number k and the momentum transfer 7T. The folliow-

ing properties of f are known in this case:

“(a) f£{k, ¥) is an analytic function of both variables,
regular in the topological product of the v plane and the
upper half of the k plane, except for a finite number of

simple poles on the imaginary axis, k = ixh, which are
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assocliated with the bound states.

{b) For fixed ¥, and |x| — co in the upper half=-plane,

£y ¥) = £5(73, (2.2)
where
m B e —- .
fB(Y) & - -wz‘f exp(=it.-r) V(rdar (2.3)
2Th :

is Born's approximation (% = |Y|).

Properties (a) and (b), not including the analytlielty 1n Y,
have been proved by Khuri (Z) and Klein and Zemach (§). The
analyficity in T follows, as a limiting case, from the

results of (3) and from the work of Hunziker (9).

Property (a) has also been proved under more general
assumptions about the scatterer (10), which apply, in particu-
lar, toc the case of a hard sphers. In this case, however, prop

erty (b) must be replaced by
(bt) £(k, T) = Qk) (2.4)

for |k} =+ o in the upper half-plane.

It follows from (a) and (b) that, in the case of a cut-off
potential, £(k, T) satisfies the following dispersion relation

for fixed momentum transfer (Z2):-

{ (e
f(k,f) = fB(IJ) + Z — g e e K0 Ak (Um k> 0)9
2 2 . k“z‘-kz
o | (2.5)

-+
n k Kn



276

where fqn(?) is a polynomial in Y of degree Rn, the angular

momentum of the pth bound state, and

1
g(k1,¥) = — |e(x,0) - f(-k-;c)], (2.6)
21

The relation (2.5) is valid for real or complex values of Y.

For real V¥, the symmetry relation £(=k',¥) = f*(k',¥) implies

gk, = Im £k, (real ). (2.7)

In the hard sphere case, the following dispersion relation

follows from (a) and (bt):

2 (kt,1) |
£(k,T) = £(0,7%) + — kaf : ’ dkt (Im x> 0). (2.8)
” Kt (i 12k )

It was shown iﬁ (10}, by direct summation of the partial wave

expansion, that

£(0,%) = = a cos(Y a), (2.9)

where a is the radius of the sphere.

In order to derive a double dispersion representation for
£{k,T), we must still determine the behaviour of g(k,T) for
fixed, real k and |Y| — co. Unfortunately, this is a
completely unphysical limit, so that it is hard to foretell the

result from physical arguments.

For a cut-off potential, one might expect that (2.2) would
remain valid. This would imply
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f(k, v) =0 [exp(-i ‘I'a)] (2.10)

for |¥| —> oo in the upper half=-plane.

For the hard sphere, the behaviour of f(k, ©), the scatter-
ing amplitude expressed as a function of k and the scattering
angle ©, is known for fixed, physical € and |k| — o0 in the
upper half-plane. According to classical causality arguments,
which can be applied in this case, we have, under these condi=~

tions (11),

£(k, 8) =Q loxp(e2 tk a stn D). (2.11)

Since T= 2ksin %9 this leads again to (2.10), for |Y| —#o0
and |k} — oo gimultaneously, in such a way that the above

relation between T and k is preserved. One might expect this
result to remain valid for fixed k and |t| ~> oo; this seems

to be confirmed by (2.9).

However, we shall see that (2.10) is not the right answer
for real 7T, although it will turn out to be correect when
|| = oo in the upper half-plane, in directions away from the

real axis.

In order to determine the behaviour of g(k, v) for ftl-ﬂhoo,

we shall employ the partial wave expansion

00 2
(20+1) ( N
flk,Y) = 2. ———— [Sﬁ(k) =1p 1= — |, (2.12)
{=g 2 ik \ o
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where Sg(k) is the S-function for the Lth partial wave and Phis
the fth Legendre polynomial. It follows from (2.6), (2.12) and
the unitarity condition that

X (2t+1) 2 1_'2
glk,Y) = 3, ~————— ISQ (k) - 1] PQ 1 - . (2.13)
i=0 % 2K

The behaviour of PQ for |Y| —- oo follows from (12,I,p.
189)

B (z)x 2= 200 (Jz] = w; L=0, 1, 25...), (2.124)

where (28 - 1)l =1.3.5...(20-1). According to (2.14), (2.13)
bebhaves like a power series in VU for |Y] — . It " then
follows from the theory of entire functions (13) that the be-
haviour of g(k,?) for |Y| — oo is determined by the behaviour

of the terms of the partial wave expansion for { — oo.

We shall consider first the case of a hard sphere, and then

we shall extend the results to cut-off potentials.

B. The hard sphere

In this case, we have

5p06) = 1 = = 2 3 (kaW/ngH (ka), (2.15)
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where an are the spherieca esse unction an a
here §, and h%l) he spherical Bessel functi nd  th

spherical Hankel function of the first kind, respectively, of

order {.

The behaviour of g(k,¥) for |Y| — oo, derived from (2.13)
and (2.15), is given by Eg. (A13) of Appendix A. It corresponds
to an energy-dependent essential singularity which is quite dif
ferent from (2.,10), although (2.10) 1s correct away from the

real axis, as will be shown iIn Appendix A.

ILet us now apply these results to derive a dispersion
relation for g. It 1s convenient, for this purpose, to consider
it as a function of the variables s = kz, t = TZ. For fixed

s »0, the function
G(s,t) = exp[fa o=1m/4 a(st)l/4] g(s,t) (2.16)

is analytic in the t plane cut from O to oo (O<arg t< 2w) and,
according to (Al3),

G(s,t) = g(t“%) ({t] = o00). (2.17)

Taking into account (2.7), this leads to the dispersion re=~

lation
v dt!
G(s,t) = %‘J exp[ma(4st’)l/41 sin{§(4st“)l/4ﬂ Im £(s,tt) —
5 ti=t

Gm t #0). (2.18)

Since we already know that both sides of (2.8) are analytic
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in the topological product of the cut s and % planes, we can
now substitute (2.18) in the right-hand side of (2.8) to get

a double dispersion representation for f(s,t),

It must be remembered, however, that the - asymptotic
behaviour (Al3), which led to (2.18), 1is valid for fixed a
and |t} —> oy whereas the values of s' = k*z in the integral
(2.8) range from O to oo . The limit for s == o0, |t] —— o0,
depends on the mamnner in which both variables approach their
limiting values. Thus, in order to substitute (2.18) in (2.8),
we must interpret the integral in (2.8) as the limit of an
integral with finite upper limit of integration. Taking into
account (2.9), we finally get

o i
I ds ¥ exp[?emlv/4a(s*t)l/%]

R
f(s,t) = « a cos(at®)+ s lim
o =00 T s1(st=5)

0

Idm £(s1, t*)

00

‘[ dt? exp[ma(és?t“)l/%] sin[a(4s*t”)1/4ﬂ

° 7 (£t - t)
0

dm s 20, Ymt £20) (2.19)

This is the double dispersion representation for f(s,t) in
the hard sphere case, It differs from the usual kind of
double dispersion relations by the exponentisal factors which
are required to remove the essential singularity at |t} — oo

and by the fact that the integral in s' must be understood as
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& limit. Interchange of the order of integratlon after proceed
ing to the limit ¢ —> o is not allowed. This is due to the

non-uniformity of the asymptotic behaviour In t for g = 0.

C. DBxtension to a cut-off potential

In order to extend the above results to the case of a cut~-
-off potential, it suffices to determine the behaviour of Sﬂ(k)-
-1 for { = 00. If the potential is sufficlently regular,
the centrifugal term in the radial equation must predominate in

this limit, so that Si(k) - 1 should tend to Born's approxima-

tion:
a

2

R(kr) U(r) dr, (2.20)

5,(k) - 1v -2 ikJ 2

0
where Ulr) = 2m V(r)/h%. It has been shown by Carter (14) that
the absolute value of the right-hand side of (2.20) is  always
an upper bound to the left-hand side for large enough 1. We
'shall restrict ourselves to potentials for which (2.20) is

valid for large f.

If we take also R;£>(ka)2, (2.20) becomes

a

J 22 () ar . (2.21)
[(2t+121]%

Sf(k) - 1% -
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Let Ulm) (a=0) be the first non-vanishing derivative of U(r) at
r = a-0, with (o) (a=0) = U(a- 0). Then, by repeated partial
integration, (2.21) becomes

1 21 a2 gt (4 . 0)(xa)2*1
S (k)"’lz(“l) L] (2022)

: [(22+1)1]2 (21+3)(28+4). . . (2L+3+m)

This result can easily be checked in the case of a rectangu

lar potential.

Comparing (2.22) with (A3) and (A4), we see that the only

difference in ISE -1[2 is a slowly-varying factor

(2r+1)2 (2a+ 3)% (2a+ 4)2 ... (2x+3+m)%

which must be incorporated to the integrand of (A46).
Taking this factor at the saddle points (Al2), we find, in the
place of (A1%),

¥
ka exp|2a(ikY)
gk, V)% e IU(’m)(a-o)l2 p[ ﬂ] +
25/2 m+ 3
(ikY)
exp [Za( -ik 't’)%]
+ .5. (IYI —— m) a (2023)
m+
(-ikv) ¢

Taking into account (2.5)y we get from (2.23), in complets
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analogy with (2.19)}, the double dispersion representation.

o -
I-‘n (t) ds' te:c;c)&e=,»":i""r/4 a(s't)l/il
£(s,t) = fp(t) + L ——— + lim | — ~
n s +s o —~ocov T (st=3g)
n 0
o0
dt' exp wa(és‘t‘)l/%] sin[;(4s't’)1/%ﬂ
. Im £(st, t1)
s (£t -1t)
0

(Fms #0, Int#0) (2.24)

The remark made in connection with (2.19) on the non-interchangea

bility of the order of integration also applies te (2.24).

The radius of the potential does not appear in the dispersion
relation for fixed momentum transfer (2.5). This relation holds
also for potentials of the type (1.1). In this case, however,
£(k,Y) has branch cuts in the v plane running from 2im to i
and from = 2im to =1oc0c. The effect of cutting off the po=
tential 1s to remove these branch cuts to infinity, so that one
gats an entire functicn. The radius of the potential reappers in
the bshaviour at infinity, where there is an essential
singularity, given by (2.23). This behaviour alsoc depends on how
smoothly the potential approaches zero at r = a (this gives the
value of m in (2.23)).

In contrast with the cases of a superposition of Yukawa po=

tentials, there is no subtractlon problem for a cut-off po=-
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tential: (2.24) is valid irrespective of the strength of the
potential. However, on account of the exponential factors and
the corresponding lack of freedom in the order of integration,

it 1s not so useful as Mandelstam's representation.

The unitarity condition takes the form (3)

dm £(k,x) = — f ¥k, k1=k"|) £kylk"=k|) aQ" , - (2.25)
4r 3 - ‘

where ¥= |K' - | and ¥'Z = k"2 = ¥%, According to (2.7), this

condition can be rewritten as follows:

zr T
'k . .
glk, cos®) = “J gy I f(=k; cog® cos®i + s5ind sim® ' cos ¥1).
4
0 0

A(k,y, cosd’) sin@' 4o y (2.26)

]

where cos® =1 = (12/2 k%), The unitarity condition has physical
significance only for real values of k and for - 1 <cos e;<_1. How
ever, for real k, both sides of (2.26) are analytic functions. of
cos & 5 so that (2.26) remains valid for arbitrary values of

cos® or- ¥ by analytic continuation.

If we replace f by (2.19) or (2.24), taken for real values
of %, in the right~hand side of (2.26), we get; acecording to
(2.7)y an integral equation for dm £(ks¥). However, the iter-
ative solution proposed by Mandelsta.m'and applied 'to the case
of a superposition of Yukawa potentials (3) can‘not; be employed

here, because the weight function differs from zero in the en~
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tire first quadrant of the (s,t) plane.

ITII. The infinite system of partial wave dispersion relations

The unitarity condition- tekes its simplest form for the
individual partial waves. For this reason, the procedure
usually followed in the applications of Mandelstam's program
1s to project the partial waves out of the disperslion relation

for the total amplitude.

For this purpose, we shall apply the dispersion relation for
fixed momentum transfer (2.5) or (2.8), together with (2.13).
For potentials of the type (1.1l), the partial wave expansion
(2.13) converges only for Tz.g 4 mZ. For é cut-off potential
or in the hard sphere case, however, we can apply it for all

values of .

The partial wave amplitude fg (k) is given by

Sy (k) -1

fg(k) =

il
1 8
== f(kyY = 2k sin = )P, (cos @) sinBde,
21k 2 21
0

(3.1

Substituting £ by (2.5) or (2.8) and taking into account (2.13),

we encounter, in both cases, the integral
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m
M’(x) =3 (21"+l)_[ Pﬂ.“(l x+x cos @) P (cos 8) sin0 de. (3.2)
. 3 |

This integral is evaluated in Appendix B. The -resulté are
given by Eqs. (B3), (B5) and (BS§).

According to (2.9) and (3.1), we also encounter the inte~
gral ‘ '
o
%fcos(&ka sin ) PQ(cos 6 sin® 46 = — I:k Jf(ka)] (3.3)
0 . o
which has been evaluated by differentiatiﬁg_ the Clebsch—Heine
expansion (12, II, p. 316). '

Taking into account (%.3) and the results of A}ﬁpendix B, we
get from (2.8), (2.9), (2.13) and (3.1), in the hard sphere case,

282 T dn e k0
e f‘ (k) = = = [ka Jz(ka)] ~ P ‘[ i dk' +
™ w28 2000 )
C L2812 o tmel ‘ © fmr,, (k1)
k 4w 7
ST ST (-0 (Limss) kZSj | ks
T m=1 sg=0 k iZRr“f.ZS +3

=00
(.Q.": 0, 1s 2y .-o), (3-4)

where P denotes Cauchyt!s principal value and the numerical

coefficients (L m; s) are defined in (B9).

Similarly, in the case of a cut-off potential, let ipln be
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the residue of S,Q(k) at the pole i, ., corresponding to the nth
bound state of angular momentum t(PQn is real). Then, according

to (2.5) and (2.12),

YZ

[En(’l“) = residue f£(k,7) = (20+1) Pon B | 17 .

k=i 2
tn ZKRn

(3.5)
Taking into account (3.5), we get from (2.5), in complete analg
gy with (3.4), |

q Pln 24 O¥m £ (k)
Re £, (k) =fgolk)+ (1) kX )Y + P dk '+
L iB 20 2. 7 28
n Ky (k +¥ n) G)kl (k*=k)
PQ. +m,n 27 -1
# DN R T B 5T W) k2 ¢
m>»l n“f_o;_mzn s=0
20 o m-l D Im £, (k)
k L+m
+ =3 3 (=1)° (Ljmjs) kzs‘[ dkt, = (3.6)
T =1 s=0 - o 120+2s+1

where the sums oirer m and n in the fourth term are both finite

sums (the total number of bound states is finite), and

_ 2m
) = -

a
Jv(r) jz (kr) r° ar (3.7)
0

is Born's approximation.



Let us write explicitly the first few terms in the'first

few equations of (3.6) (assuming for simplicity that there are

no bound states):

® dm £5k) ® fm £, (k)
e ¥ 4 Uzl o
KQe-fO(k) ?fOB(k) +FPJ . dk 1 +1T3J " dxt+
o0 2 Im £ (k1)
+ sj 1w = ———— Ak e, |
2 X
-00 k'
w2 2w £, k) 2
Qe £.(K) =1, (k) +— pf-m____.dkw__ |
1 1B _
T a0k E(k k) ™
+7J 2=-3" dik? + oo
2 3
Zo K ks
W Fim £5(kt) Kt O $m £5(k)
e £,(k) = (k) #==P | —emee gkt +— |7 ak T+ . |y
° 2 k(v k) m 5
o i ki= oo k

This infinite system of partial wave dispersion relations
was first considered in the relativistic case by MacDowell (15).

It was also mentioned by Goldberger (16) in the non=relativistic
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case.

The relationg (3.4) or (3.6) couple the real part of each
partial wave amplitude with the imaginary part of the same
amplitude and the amplitudes of all gubsequent partial waves y
so' that we have =a "triangular" system of equations, The coupl
ing to higher-order partial waves appears in each equation

through a series of pelynomiais in kzo

In addition to the system of equations (3.4) or (3.6), the

partial wave amplitudes must satisfy the unitarity condition,
In g () = kleCk)lz . (3.8)

Notice that both (3.4) and (3.6) automatically give the correct

low=-energy behaviour of the amplitudes:

e £, = g(kZR), Ym £, = g(k4l+1) for k =0 (the latter follows
i R

from the former and {3.837,

The dispersion relation {3.6) can be rewritten in a more

transparent way by introducing the function

gg (k) = fl(k)/k?‘ﬂ = Q_.S[(k)‘ - 1}/(211:*3“1), (%.9)

which is regular at the origin. According to well-known proper

ties of the S-matrix for a cut=-off potential, is a mero=-

g
' .
morphic function of k. It follows from the work of Humblet (17)

that, for |k| — o on the real axis,

S (k) - 1= 0(x™h) (3.10)

L
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and, for |k|] — o in the lower half-plane,

|

8¢ (k)% (-1) (2x/1 )02 exp(-Zika)/U(m)(a-O), (3.11)

where U(m)(a~0) is the gquantity that appears in (2.22).

Let kg, be the poles of Sﬁ{k) in the lower half-plane, which
are symmetrically placed with respect to the imaginary axis. It
was shown by Humblet (17, pp. 45, 71) that (e an = 0(n) and
Im ko, = 0(log n) for large n. Let

Ry, = regidue go{k)
in g9 -
k=kon

The following dispersion relation is then verified by gék):

Pf dxt = - G gL(k) +2 Qe 3 (3.12)
kt -k n kwkln

S

=00

whefe the sum is extended over all the poles in the lower half-
=plane, taken in the order of increasing modulus. This relation,
which generaliées a result due to Lee (18), is obtained by
considering the integral on the left-~hand side taken over a
sequence of contoursclosed by half-circles passing halfway be-
tweén the poles in the lower half-plane. It follows from (3.9),
(3.10) and (3.11) that the integrals over half=circles tend to

zero when their radii tend to infinity, leading to (3,12).‘

According to (32.9) and (3.12), (3.6) can be rewritten as

follows:
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Tyn Rln

Wo lg (k) = F ——— 0 & —— | - % go(k) =
& %fk ik, 0 k-l 2 °iB

Yi+m s -1

=2 (-1 TT T —= T smsoe) WG

2
myl n Ki_'_m,n s=(
o m=1 Pt
’) - —
4 — Zﬁ Z:: \_1) ,m;s) kESJ k'("m 2s=1 tfm gﬂﬂn(kc)dkl’
;L!T ..11"'".4‘“ S""O -00 (3.13)
where
ry, = residue gl(k)l = (-—l)Q Q /(ZiK2Q+l)
’ k = il{un

The expression within square brackets in the left-hand side
of (%.13) is the entire part of the meromorphic function gg(k),
and ggu(k) = fiB(k)/kaﬁ isy according to (3.7), an entire func-
tion of k. Thus, the right-hand side of (3.13) is the expansion
of an entire function, which explains why it is valid for all k,

in contrast with the case of a supsrposition of Yukawa potentials.

According to Humblet (17, p. 53), the entire part of fﬂ(k)
iz associated with potential scattering, whereas the pole terms
are assoclated with resonance scattering. Thusy we see from
(3.13) that the coupling of each partial wave to the higher=-order

ones is related with potential secatiering of that partial wave.
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IV. Ambiguities in the solution

A dispersion relation involving a single partial wave .is
usually verified by a large class of functions, rather than
having a unigque solution. This was first shown by Castillejo,
Dalitz and Dyson (19), in connection with Low's equation for
meson-nucleon scattering. The resulting ambiguities are known

as CDD ambiguities.

In the present problem, the partial wave amplitudes must
verify the infinite system (3.4) or (3.6), in which each par=-
tial wave is coupled to all the others,.ﬁogether with the uni-
tarity condition (3.8). The total amplitude, given by (2.12),
must fulfill conditions (a) and (b) (or (b*)) of Section IIA
and have the correct behaviour aﬁ infinity in the K plane.

The question which will now be investigated is: are these
properties sufficient to determine f(k,Y) or do additional
solutions exist, besides the physical one ? If they do, Mandel
stam's program cannot be carried out in this form unless -sup

plementary conditions are given to select the physical solution.

We shall restrict ourselves, for simplicity, to the hard
sphere case and to the case of potentials wlthout bound states.

The extension of the results to include bound states is straight
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forward. With this restriction, it follows from condition (a)
and (3%.1) that
(1) 5(k) is a regular analytlc function in the upper half
k

-plane.

According to (3.1),; the behaviour of Sﬁ(k) for |k| = .
in the upper half-plane depends on the behaviour of £k, =
= 2k sin %) for Ikl—w>-oo. In the hard sphere case, this be=

haviour is given by (2.11), so that we get

Si(k) exp(2ika) = 0(k)

for |k{-—= o0 in the upper half=-plane. 3Jilnce ]SL(k) exp(aika)i=
= 1 on the real axis, it then follows from the Phragmén-LindelSf

theorem (20) that
(ii) ISf(k) exp(2ika)] ¢ 1 in the upper half-plane.

This result is also known to be true for a cut-off PO~

tential without bound states (17, Z1).
The unitarity condition

(1i1) Sﬁ(k) SE(k) =1 (real k)

enables us to extsend the definition of Sﬂ(k) t¢ the lower halfe
~plane, with the help of the Schwarz reflection principle, by
(22} N
* = *
5, (k*) [Sq(k)] : (2.1)

hecording to (4.,1), the only pessible singularities of S in

the lower half-plane are poles, corrasponding to the zeros in
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the upper half-plane, so that
(iv) Sl(k) is a meromorphic function.

The symmetry relation f{-k, -t) = £*(k,¥) (real k), to-
gether with (3.1), implies

(v)  §(-k) = S§(k)  (real k).

Conditions (i) to (v) are well-known properties of the §S-
-function in the present problem. Let us now introduce Wignerts

R-function (23)
' 1 | Spafk) -1

ik S[a(k) +1

(a:2)

H

2

where

n

Sla(k) (-1)1 exp(2ika) SQ(k) . (4.3)

It was shown by Van Kampen (22, 24) that (1) to (v) imply
the following properties of the R-function:

(1+) Ry is a meromorphic function of kzs

(ii1) Ry is real for real values of x%;

(11i') all the poles of Ry 1ie on the real axig;
(1vt) Ym RQ_ has the same sign as Ym kz;

(v') the Mittag-Leffler expansion of RQ is

yad
¥n
2
Rﬁtk_) = 3 5 (4.4)
n M -k
n
where 7, and PQ are real and the pbles'pn cannot have an ac~

cumulation point at finite distance.
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It follows from (v!) that any ambiguities in the solution
can be expressed in terms of changes in the parameters ¢h, Fn’

just like the CDD ambiguities (19).

Let £(k,T) be the physical solution, and let us assume
that there exists another solution f£'(k,Y) differing from f in
a single partial wave, 3 being replaced by Si and RQ by Ri,
Then, according to (2.12), (4.2) and (4.3),

2 (m1
0 (SQa+l) (Rl«-RL)

Pk, ) = £(k,T) = & (-1)" (20+1) .
’ ’ 2 [2-1%(8 ), *1)(R} - By J]
2
A exp(-2ika). (4.5)
2

It follows from (ii), (4.2}, (4.3) and (4.4) that the right
~hand side of (4.5) has an essential singularity of the type
exp(-2ixa) for |k| —> o in the upper half=-plane. Thus ,
£i{k,T) violates condition (b) or (b?) of Section IIA, so that
it is not an acceptable solution. The same is obviously true
for any funetion differing from f only by a finite number of

partial waves.

Thus, it ig not possible to construct an extra solution by

modifying any finite number of partial waves: there are no CDD

ambiguities. This contradicts a result due to Barut and Ruei

(25). Their argument, however, 1s incorrectlo The unitarity

condition played an important role in the derivation of this
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result, by allowing us to extend the definition of Sl(k) to thé
lower half-plane. The analytic properties of f{k,Y) as a
function of both variables wefe also requifed iﬁ the derivation
of (1). However, the behaviour for |Y| — oo entered only in

the form (2.11), i.e. when |k| — o simultaneously.

At least in the hard sphere case, the.physical reason for
the absence of CDD ambiguities can be explained by causality
considerations. In fact, in this case, the amplitude is identi
cal to that for scattering of a classtcal massless scalar field\
by a totally reflecting sPhere, SO fhat signals with -sharp

fronts can be built.

The exponential factor exp(-2ika), which dominates the be=-
haviour of Sf(k) in the upper half-plane, represents the phase
advancement .of a spherical multipole wave upon reflectioh at the
surface ofrthe scatterer; This factor cannot appear in thé
forward scaftering amplitude because it would lead to instan-
taneous transmission of signals across the sphere. It can be
shown that the same condition also prévents the appearance of

this factor for fizxed non-zero momentum transfer (10).

Thus, although each term of the partial wave expansion
(2.12) blows up exponentially for |k|— oo in the upper half-
-plane, the phases of the partial waves arelcoupled by causali
ty in such a way that the full amplitude has at most a linear
divergence. This result,remains true for non-relativistic parti
cles, although the classical causality condition can no longer

be applied in this case.
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It is not possible to modify a finite number of partial
waves without destroying the phase relationships that are
responsible for the eliminatlon of the exponential factor.

This explains why CDD ambiguitles cannot exist.

Possible ambiguities, if any, must therefore involve
modification of an infinite number of partial waves. Partial
wave analysis ls then no longer of any use: one can work
“directly with the total amplitude. However, any extra 8§0=
lutions must satisfy the uwnitarity condition in  the form
(2,26}, and it is very hard to see how they could be con=

astructad.

The above arguments allow us to eliminate CDD ambiguil-
ties in principle, but not in practice. In fact, one would
have to sum the whole series of partial waves in order to
make sure of the cancellation ¢f the exponential factor in
the asymptotic behaviour in the upper half-plane, and this
would be extremely difficult by analytical means. The same

applies, g fortiori, to approximate solutions.

V. Sum rules for the poles of the S-matrix

It has been shown by Van Kampen (22) that a function
SQ(k) satisfying conditions (i) to (v) of Sectlon IV can be

represented by a canonical prodact expanslion



(kn+k)

$¢(k) = # exp(-2ike) TT ,
n (k_ -k)
n

where k are the poles of Sﬂ(k)’ taken in order of increasing
modulus, and aga. In the present case, according to (3.4)
and (3.6), we must take the + sigh, because SI(O) = 1. Moreover,
it has been shown by Regge (26) that «=a for a cut~off
potential. The same is true for the hard sphere (27). Thus,

(kn + k)

8¢ (k) = exp(-2ika) 1T . (5.1)

n (knfk)‘

This expansion is a counterpart of (4.4), and the CDD
ambilguities can also be expressed in terms of the positions of
the poles k_, instead of the parameters (7 P However, in
addition to conditions (i) to (v), the infinite system of par~-
tial wave dispersion relations also imposes a condition on the

low-energy behaviour of SE(cf. (3.1), (3.4) and (3.6)):

S(x) -1 = iCQ(ka)ZQ+1 + 0(x2*2) (k — 0) , (5.2)

where Cg is a real constant. According to (3.4),

2
C = - (50 )
L (20- D1 (21+ )11 3

in the hard sphere case,

‘It will now be shown that (5.2) gives rise to additional

restrictions on the positions of the poles kno In the first
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place, by taking the logarithmic derivative of (5.1) at k¥ = 0,

we get
Z 1 . 1 (0) 1 A ) ( )
J'i f Lo |
n kn Vad 2 ’

where 61’0 is Kronecker's delta and the last equality  follows

from (5.2). The "sum rule" (5.4) was derived by Van Kampen
(2z2).

Now let us take §2 1 and let us consider the integral

dk

I =j log Sl(k) (Lspshl), (5.5)

2p+z
G k

where C is a contour consisting of the real axis, from - R to
~ & and from € to R, a half-circle 7 of radius €(€ — 0) and
another one [ of radius R(R =~ o), centered at the origin

(figure 1). A

Fig. 1. Contour of integration in the k plane.
XXX Poles of Sﬂ(k); ooo Zeros of Sﬂ(k).



We have
=& R R :
dk
j + J=J log |8p(-k) Si(k):l = 0, (5.6)
_ 2p+2
E E -k

because SQ(-k) Siﬂk) = 1, It follows from property (1i) of seg
tion IV that

J‘ = 0 (Rwap) -0 for R — w . (5.7)

r

Finally, according to (5.2) and (5.5),

- 29+1
1im ‘[ =7 a 8,9 (5.8)
€—>0 "

It follows from (5.6), (5.7) and (5.8) that

lim I =mc, a2t g (5.9)
2 Pel _
E =0
R =0
On the other hand; by patrtial integration,
log-Sﬂ(k) 1 Si(k) dk
I=-4; o mm—— | y (5.,20)
c - . : .

where 4 C‘f denotes the variation of f round the contour C.

According to a well-known formula (28), we have |
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A g [}og Sn(k)/kapﬂ] = pr i (N-n)/REPL )

J‘Si(k) dk 1 1

CSQ(k) k2p+l”2vi §k52P+1 ) % (1 2P
where N and n are, regpectively, the number of zeros and the
number of poles of Sl(k) contained within the contour C, k! are
the zeros and i, are the poles in the upper half-plane ( bound
states). According to Humblet (17, pp. 45, 71), N = O(R) and,
according to (2.1), n = 0(1) for R = o, so that the first
term of (5.10) vanishes in this limit. On the other hand, to

each zero ki in the upper half~-plane corresponds a pole kj =

= = kj in the lower half-plane; so that we finally get

2ri 1
lim I ==~ © (5.11)
€ =0 (2p +1) KeP+l
R : n
where the summation 1is extended over all the poles of Sg(k),
both in the upper and in the lower half-plane.
Bguating (5.9) to (5.11),; we get
1 1 1
— = zpe e g s =S 1w Py
n 2l 2 P 2 k=0 P>
n

(p = l? 23 LI R)a (5»12)

According to (5.4) and (5.12), we have, for 1= 0,
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1 1 o
2, —=ia+-80)=1a |1+— (5.13)
n k_ - yad z
n
and, for f>1,
1
2 — = ia, (5.14)
n kn
1
=0 (p=1,2y oo 8=-1) , (5.15)
n k2p+1
n
Sd (k)
| 1 1 g
X == 1im = S (2g+ 1) i 2% Cpr (5.16)
n 281 2 k =0 128 2
n -

These relations,; which give the sums of the inverses of odd
powers of the poles of the S-matrix, will be called sum rules.
For the Lth partial wave, {+ 1 sum rules must be fulfilled.
Any modifications in the positions of the poles (CDD ambiguities)
must be compatible with these rules.

VI. The hard sphere case

We have seen in Section III that the infinite system of par
tlal wave dispersion relations is a "triangular" system. This

suggests trying to solve it backwards, stérting at some very
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high value of € to find the asymptotic form of the solution for
large K, and then golng back step by step to lower values of {.
For each Q, one then has to solve a partial wave dispergsion re
lation with known inhomogeneous term. Since fg should tend to
Bornis approximation fﬂB for { — a dne could take as [irst

approximation, for sufficiently large 4,
QefleQB, tfmflxo,

which would effectively reduce (%.6) to a finite systen. Slows
ever, one would encounter CDD ambiguities at each step of the

solution.

In ordef to investigate further this "backwards" methed
of solution, let us now consider the hard sphere case, assunming
that the exact solution of (3.4) is known for Q>& . Substitug
ing the solution in the right-hand side of (3.4) for &= % _; one

gets an egquation of the form

242 T dm £
P

Re £, () = dkt + FQ(I«:), (51

T 220
-0 k (k1-k)
where Fy (k) must be computed by summing the series of pCly=
nomials in the right-hand side of (3.4). We shall assume  that:
this summation has also been carried out. In order to campute
the result, let us consider the exact solution (2.15). We shall

denote the corresponding partial wave amplitude by
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fl(k) = . (6.2)
2k k hil)(ka)
By the same method which led to (3.12), we find 2
22 ¥ Yo (et
- Pf dkt = e £y () -
m ) 220 1)
/o Neb+2 Pn 1
- 2 e > K - ) — - = CQ kaﬂ az£+l, (6.3)
n \kn (k-k ) 2

where C¢ is given by (5.3), En are the poles of fl in the lower
half-plane, and

pn = residue §Q(k) k=§n . (6.4)

The poles are the roots of: hgl)(ka) = 0. There are exactly 1
poles (27). It follows from (6.1) and (6.3) that

k -k

n=] n n

. i ;’ k 29’+2 .pn "

(6.5)

Let us consider the funection

_ 28+2 _ o 20+2
gy () = [fﬂ(k) - (0] x212 - [fg (x) - fﬁ(k):'/k .
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ijﬁ(ka) L P

+ + 3 +
k21f3h1(2’(ka) n=1 Eﬁl*z(k-ﬁn)

L p ¢
+ - - et 2B (6

nal (@022 )zl

In terms of this function, (6.1) can be rewritten as follows:

Re g (k) =% P ax’ . (6.7)

%0 fn g,(k")

J‘ L
kt=k

-00

According to Titchmarsh's theorem (29), (6.7) implies that

gn(k) has an analytic c¢ontinuation which is regular in the upper

half plana and tends to zero for |k| ~> . It ls readily seen

that the expression within curly brackets in (6.6) also has

these properties. Thus, the same must be true for the remain-
ing term [S»l(k) - B0}/ (21x21*3),

The function

gk +%)
Az(k) = 8)(x) - §L(k) = S’E(k) - oxp (=2ika) 111 TR

(6.8)

is therefore regular in the upper half~-plane and ¢ (k2n+3) for
|k|=> o0. 8ince IAﬂ(k)ls 2 on the real axis, it follows from
the Phragmen-Lindeldf theorem (20) that
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lAnﬁk)ié 2 in the upper half-plane. (609)

Thus, according to (6.8),

5,(0) = (-1 ﬁmemwﬁ+gxﬂﬂ+gu> (6.10)

for k| = in the upper half-plane.

It follows from the above results that Sﬁ(k) satisfies con=~
ditions (i) to (v) of Section IV. Furthermore, its behavior for
k =0 is given by (5.2) and (5.3). According to Section V,

this implies
(kn+k)

8, (k) = exp(-2ika) TT ) (6.11)
(k, -k)

n

where the poles kn in the lower half-plane must verify the sum

rules (5.13) to (5.16).

It follows from (6.10) and from the unitarity condition on
the real axis, [Sg(k)l = 1, that-there cannot be an accumula~
tion point of zeros of Si(k) at infinity in the upper half~
-plane. Since the poles in the lower half-plane cannot have an
accumulation point at finite distance (22), the total number of

poles kn must be finite: we shall call it m.

This implies that kl’ kZ’ eoey km aré roocts of an alge~-
bralc equation of degree m. Let us write this equation in the

form

oy K+ ay KM 4 v a k+1 =0, (6.12)
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Then, the inversegsof the poles, Xy = l/kl, soey X = l/km, are
roots of
m

x4+ a8, 4 va o xta =0, (6.13)

and (5.13) to (5.16) give the sums of the first f{+ 1 odd powers
of the roots of (6.13),

It is well known that the coefficients of an algebraic g
quation of degree m can be expressed in terms of the sums of
the first m powers of the roots. It was shown by Vahlen (30)
that they can also be expressed in terms of the sums of the

first m odd powers.

Let m
=5 k '
SK - Xn ] (6014:)

n=

Then, according to Vahlen,

Z+ag, 20 + oo

al 3 m .
= - tanh | 2. tanh™L (x, 2)| =
1+ a5 ZZ+ coo ' n=1 '
72 7o |
= ~ tanh SlZ+83—3-+85-5—-+°.° . (6.15)

The first member of (6.15) 1s the ratio of the odd—power'
terms of (6.12) to the even-power ones, i.e. it is a rational
fraction of order m. This implies that the continued fraction

expansion of the last members
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75 75 COZ
~ tanh | 8; Z+8; — + 55 — +... = (6.16)
3 5 a. 72
1
1+
2
GZ Z
1+
1+.
2
1+ cm-lz
terminates with the term Cm-l ZZ.
By identifying the coefficients of the power-series ex-

pansions of the first and second members of (6.16), one canexpress

'Ck as a rational function of Sl’ 83, cony SZk+l° For instance,

o 1°?
3
81 - 83
C, = ——m—,
1
3 8y

On the other hand, by identifying the first member of (6.15)

with the second member of (6.16), one can express ays az,..},am

in terms of CO, Cl’ seay Cm_lo In this way one gets expressions

for 815 853 esey 3, 8S rational functions of Sl’ S

2, .iﬂ, S

2m-1°
Any symmetric function of the roots, in particular 82m+l’

is therefore a rational function of S 82, cvoy Szm_lz

Qm(SI,SB,».o,SZm_l)

S = (6.17)
2m+1 ?
Pm(slgszgcoegsa _1)
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where Pm-and Qm are rational eritire functions without a common
factor. The function
) =8 Pm(s ) -

Rm+1(slg SB, LIRS ] SZm+l 2m+l 1} SB’ L | sznl"'l

- Qm(sl’ 83, “e ey SZm—l) (6018)

is therefore an irreducible entire function of Sl’ 83"°°82m+1’
which vanishes 1if Sl’ 83, coes 82m+1 are sums of odd powers of
the roots of an algebraic equation of degree m. To each value

of m there corresponds a (uniquely defined) function Bm+1’-

It was shown by Vahlen (30) that

1 D
= . (6,19}
(z-1)(2&+1) R, Ry,

Now let us apply these results to the sum rules (5.13) to
(5.16). These relations are fulfilled by the poles
ﬁl’ EZ’ cevy EQ of (6.2), which are roots of an algebraic e~
quation of degree 0. According to the above, the first L sum
rules suffice to determine the coefficients of this equation,
and therefore its roots El’ EZ’ ceey EQ. The last sum rule,
which gives the value of SZQ+1’ must therefore be a conseguence
of the first { rules, so that, according to (6.18), we must

have
=0 , (6.20)

CE/ =0 (6-21)
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in (6.16), Therefore, the equation

CO Z

= -1 (6.22)
2
Cl Z
1+
1+,
2
1+ CE-l Z

is an algebraic equation of degree I which, according to

(6.15) and (6,16), must follow from the original equation of
degree m (6.12):

3
al Z+a3 4 +.0.

= -1, (6.23)
1+a, N

This leads to the following alternative possibilities:

(A)m = !, so that k = k.

n
(B m>{. In this case, the numerator and
denominator of (6.23) must have a common factor, which is a

polynomial in ZZ, and can be factored out in the left-hand side
of (6.12). Then, in addition to the poles.ﬁl, ooy EQ, there
would exist pairs of equal and opposite poles (kn, - kn)°

Clearly, such pairs would not alter the value of Sl’ 33""’SZQ+1‘

Alternative (B), however, is excluded by the fact that
Sﬁ(k) cannot have any poles in the upper half-plane. Thus, (A)
must be valid and, according to (6.8) and (6.11), this implies
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Sﬂ(k) = Sﬁ(k) . (6.24)

The solution of (6.1) is therefore unique and it is glven
by (6.2). Substituting the result in (3.4) for (= [ -1,we
get another equation of the type (6.1)3; the same procedure can

therefore be applied to all remalning equations of the system.

Thus, if we know the exact solution of (%.4) for > Ly s
the solution for ﬂéiﬁo is uniquely determined and follows from

the sum rules.

VII. Conclusion

Although a double dispersion relation in the usual  sense
does not exist for a cut-off potential, we have seen that one
can obtaln an infinite system of coupled partial wave dispersion
relations by projecting the partial waves out of the dispersion

relation for flxed monmentum transfer.

It is generally meaningless to speak of the solution of a
dispersion relation involving a single partial wave, because
there is a wide class of possible solutions. However, in the
case of the infinite system, the analyticity requirements in
both variables for the full amplitude (including the behaviour
at infinity), together with the unitarity condition, imply the

non-existence of alternative solutions differing from the physi
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cal one only by a finite number of partial waves. On the other
hand, 1t seems very hard to mocify an infinite number of partial

waves in a way compatible with the unitarity condition.

If one considers an isolated dispersion relation taken from
the infinite system, its solution still involves CDD ambiguities,
which can be expressed as ambiguities in the position of the
poles of the S-matrix in the lcwer half of the k-plane. However,
the low-energy behaviour of the amplitude, which follows from
the dispersion relation, leads to a series of sum rules which

must be fulfilled by the poles.

In the particular case of a hard sphere, if one assumes
that the exact solution is known for angular momenta larger than
some (arbitrarily given) value; the remaining finite system of
partial wave dispersion relations can be explicitly solved with
the help of the sum rules, and the golution is unique. This is
probably due to the specially simple structure of the S~-matrix
in this cases there is a finite number of poles fér each value
of the angular momentum, wherezs the number of poles is infinite

in the general case of a cut-off potential.

The above results suggest that Mandelstam's program can
lead, in principle, to a unique solution in the present case.In
practice, however, the elimination of ambiguities is an extreme
ly difficult problem, and it seems to be practically impossible

when approximation methods are employed.

* % %k
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Appendix A

Asymptotic behaviour of g(k,t) for |Y|—» w.
In order to determine the behaviour of the scattering ampli
tude for Itl — @ , Regge (2) applied Watson's transformation

(31) to the partial wave expansion (2.12), reducing it to  the

integral 2 a
(2a+1) v A
(k1) = | ~—— [S/\(k)-ljp —_—-1 | ——, (A1)
4k A 232 sin(wA)
C

where C is the contour shown in figure 2. The contour is then
deformed onto the imaginary axis. In this process, 1t sweeps
across the poles of Sg(k)’ which are located in the first quad-
rant. For a suitably restricted class of potentials of the

type (1.1), Regge showed that the number of poles 1is  finite.
| A A -

(o]
P
MX

Fig. 2. Contour of integration in the A plane.
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The behaviour of (Al) for |T1 = o0 1is then determined by the
residue of the integrand at the pole having the largest real

part.

In the case of a hard sphere (2.15), this method cannot
be employed, because Sl(k) has an infinite set of poles, which
are the zeros of h;})(ka) (31). We shall therefore follow a
different procedure, which combines Watson's transformation

with the saddle-point method.
It follows from (2.15) that

| 4 3§ (ka)
|8y (&) =1]% = : (42)

jf(ka) + n%(ka)

where ng 1is the spherical Neumann function of order f. For

i» (ka)z, we can apply the expansions (32)

3y (ea)] (1a Y212 ag+2 )
= - a) +
-(ka)4
+ 0 "“E;- (A3)
|
and

ENCIERIE =4[jg(ka)/nﬂika)]2 =4[jl(ka)/nl(ka)]4 +eee  (A4)

Although the expansions (43) and (44) are valid only for
sufficiently large L, we can replace them in (2.13) for all

§, vecause the difference affects only a finite number of terms,
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which contribute at most a polynomial in VY. Restricting our=-
selves to the main terms of these expansions and employing also
(2.14), we find that, up to a polynomial in v, the behaviour of
g(k,¥) for |¥| = oo 1s the same as that of the function

00 - 2 2 2f
g (2 a~ k1)
>(k,¥) = k a? > (-1)il \\—-m—:{ . . (45)
1=0 (2e) (2g+1)!

Just as in (Al), this series can be rewritten as a contour

integral,

1 L[ rrhasy 2 @afxvft ar
(}(k,'t’) ==1%k a"

2 [T (aa+1) [ (2a+2) sin(mwA)

c ' : (A6)
where C 1s the contour shown in figure 2, [ (2) is the gamma
function,; and the integrand is rendered single-valued by  re-
stricting ourselves to k>0 and to the first gquadrant of the
Y plane:

O<arg(ralss . (A7)

RN &

The behaviour of g in other quadrants follows from the symmetry
relations
g(k,t) = g*¥(k, - v*) = gk, -1) = g*k, t*), (A8)
which are an lmmediate consequence of (2.13).
To determine the asymptotic behaviour of (A6) for |¥|=>o0,
we shall apply the saddle-point method. For this purpose, let

us deform the upper half of the contour C into the upper half-

-plane and the lower half into the lower half-plane, away from
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the real axis. The mailn contributions to the integral arise from
large values of |A|9 for which the gamma functions can be replaced
by Stirling's approximation. Moreover, if lim-ki is sufficiently
large,

(sin(mra)] “lx¥ o exp(% iAmw) , (A9)

where the upper signs correspond to Jm A>0 and the lower ones

to Jm A<O. Thus, we find

-

Yk, )™ > 3 < j exp[F+(A,k,'t)]dA -J exp[F_(A,k,t)]ax )

™
c, c_

—

(A10)

where C, and C_, shown in dashed line in figure 2, are the upper

and the lower half of the deformed contour, and

F (Ak,Y) = - 42 loga+ [2 log(2 a% k v) -
= 2(3 log 2-2) * ivr]/l - -;2 logA+ o(A™1) | (A11)

The saddle points of P + are located at

A 23.(_4;1};1')% ) (412)
+ 2

respectively. According to (A7), A, belongs to the first
quadrant and A_ to the fourth quadrant, as it ought to be.

Evaluating the contribution from the saddle points,y we find

that the asymptotic behaviour of % and therefore also of g, is
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given by

ka J exp [Za( ik ‘L')%] exp [Za Fik"t’)%] (
+ .
25/2 [- (1xv)? (-1x0)®

g(k,f)z Iltl—"'CO)o

(A13)

Although this expression has been derived only for values of Y
belonging to the first quadrant, it 1s readily seen, with the
help of (A8), that it remains valid in the other quadrants as

well, provided that we take: - w<arg(ral)gm,

The first term within curly brackets dominates the asymptotic ke
havior-inthe lower half of the v plane, whereas the second
term dominates in the upper half-plane. On the real axis, both
terms are of the same order, and we find

g(k,r)za”3/2 ka(kr)"”% expEe},c'r)%r a:lcos[(Zkl’)% a-%] . (A1s)

Thus,y we have an oscillation with exponentially increasing

amplitude.

The contribution from the second term within brackets in
(A%), which was neglected above, is of the order (ka)3/2 (“Ca)ﬁ%
relative to the first term. Thus, the conditlons for the va~
1idity of (Al3) are: |k‘t|-!2h a>>1, ]‘Ca]>>(ka)3, Similarly, the
second term of the expansion (A4) gives rise to contributions
of the order of exp[t?ca(_i 1 k:';'t')l/’%‘], which are negligible in

comparison with (413) for |Y|~> oo,

This method can also be appnlied directly to f(k,Tt) by writ

ine (2.,12) in the form
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ey [ 3ga)  350ka)
fk,v)* Y [ + ] —— -
£k nylka) 1) (ka)
3 :
Jl(ka) TZ
- — L, Pﬂ 1-—— . (A15)
n%ﬁka) 2%2

The sum of terms containing even powers of jﬂ/n£ in the above
expansion is equal to ig(k,Y). The first term within square
brackets gives rise to a contribution behaving asymptotically
like - a cos{va) (ef. (2.9)). The contribution from . the
third term is of the order of exp[%a(iikz Y)l/B:], and so on:
the nth term gives contributions in exp[;a(: i kn-l‘t)l/n:].

Thus, while (2.10) is indeed correct for |Y|— oo along any
direction in the upper half-plane, it is not valid on the real
axis, where the imaginary part of f, given by (Al4), dominates

the asymptotic behaviour.

Notice that, although the first term within squarerbrackets'
in (A15) is much larger than the second one for R)b-(ka)z, it
is the latter which determines the asymptotic behaviour on the
real axis. This is due to the zlternating character of the
series (45). Since this might give rise to some doubts concern
ing the validity of the approximations which were employed in
the derivation of (A13), 1t is worthwhile to establish some

inequalities which confirm this result.

It was shown in Ref. 10 that, if { > 2 ka >0, (log E)% >>1,
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iy (ka) o wa L

hi})(ka) 2L+

On the other hand, according to Picone's inequality (12, II, p.

276),
(28- 1) 14 ]
IPQ(Z)I-S TR (1+1{z]) . (417)
Substituting these results in (2.13) and (2.15), and employing

Stirling's approximation for the factorials, we get, for %>k,

s ap+l
e X a 1 e altk]
le (k)< - 2 Y £
k| £ (mp)T\ 2t+l
3/ 2 40+1
2 k 1 e .
— 7 ) (zalri )2
k2 D I}:»:vr(c.uwl):I’iv 44+1
/ exp(ZaIYkI%)
252 sk a . (A18)

< lrkl%

An inequality in the opposite sense can be obtailned on the
imaginary axis, T= * iIYI, because (2.13) then becomes a series
of positive terms, the sum of which 1s certainly larger than
any one of its terms. For sufficiently large |Y|, the largest

1
term of the series corresponds to Lxalkv|%/2, leading to
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I:a% exp(Za]TkI%)

le(k, + 1Y) > . (AL9)
23/4 ﬁ% Itk|3/4

The inequalities (A18) and (419) confirm the result (A13),

Appendix B

Evaluation of the integral CE)R(X)

To compute the integral (3.2), let us employ the result
(li’ I’ P 15):

L (Lt +p)! 1-cos 6\
PR,(l—x-Fx cos8) =2 . (-1)P > xP <__..,...._._> .

p=0 (»1)% (Qr-p)! (B1)
We have (12, II, p. 219)

1
1 g\ _
zjk—;ﬂ P (tdap = 0 if p< £,

-1

(ph)©
= ~1 E P > ﬁ. (BZJ

(p~0)! (p+i+1)!
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Substituting (B1) and (B2) in (3.2),; we get

CR%(X) = 0 if v L (B3)
0 £ (-1)P (grp)!
C.. (x)=(-1)"(241+1) Pir grag .
g EE% Lo oDl (ot = M vt
p (B4)
In particular,
Cpglx) = <2 (B5)
It is readily seen that, for m> 1,
(- 2p+2m+1)!
C2+m,u (x) = LYY xE+m F(-2{-m~1, =~mj; =2{-2m; % ),
(B6)

where F(a, bj cj Z) is the confluent hypergeometric function.We
have (33)
F(a, b; c; 2) = (1-2)°72"P Plc-a, c-bs cj 2) .

(B7)
It follows that
me~1
Coam,p X) = 2V (1) I (-1)° (Usmys) x5 (m =1, 25 «.a),
5=0 (B8)
where
(2{+2m+1) (2)+m+s+1)!
( sm3s) = . (B9)

n(2l+m+1) si(m=s-1)! (2f+s+1 )]
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3 % ¥

Footnotes

The argument is based on the assertion that the expression
vy (k) ff(k; [:1 + yg(k) fp’(k)j”l (Refs 25, Eq. {19)) tends to zero for |k|—>co
in the upper half-plane if fy behaves like exp(=21C k) (C>0) and yo be-
haves like k¥ exp(k?) for |k|=> . However, this is not true below the
first or second bisector, where the ahove expression behaves like exp(-21iCk),

so that it has en essential singularity at infinity.

2 The following treatment applies to £ > 13 it must be slightly modified
for L =0.



