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I. INTRODUCTION.

Any systematic program to explore the analytic structure
of a secattering amplitude which restricts itself to the physieal
Riemann sheet in the energy variables does not seem complete. The
properties on the physical sheet must be supplemented by a know-~
ledge of the analytic behaviour on the second Riemann sheet as
well as some idea of the dependence of the position of any singu-
larities on the parameters of the theory. For example, the sim
plest way in which the analytic properties on the physical sheet
can change as some parameter of the theory is varied is that singu
larities on the second sheet migrate to the physical sheet through
branch cuts already present.

Such a behaviour occurs in the problem of anomalous

thresholds.laa

I% is found that as the external masses increase,
a branch cut moves through the normal cut into the physical sheet
and extends the threshcid below the canonical value. As is demon-
strated later, the formation of bound states in field theory is
also a matter of poles and cuts moving to the physical sheet as

the interaction becomes more and more attractive.

The problem of unstable particles and the resulting scajf
tering resonances has also been discussed.in terms of poles on
the second Riemann sheet. The conjecture. of Peierls3 is that a
pole on the second sheet is to be identified with an unstable
particle. These poles depended strongly on details of the theory
and thelr physical interpretation is not clear. It is not clear

to us, for example, what characteristics the singularities on the
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unphysical sheet defined by crossing the three-particle branch
cut must have in order to yleld a consistent physical interpre~
tation. These singularities are discussed, and are shown to have
a reasonable interpretation in terms of an unstable particle. Due
to our lack of knowledge of unitarity, we are ﬁnable to make very
definite statements in the inelastic case. However, we prove that
in the two=-particle casey, the only additional singularities al=-

lowed on the unphysical sheet are poles.

It is_possible to discuss the many-channel problem by
utilizing the matrix formulation of Bjorken4 and Nauenberg.5 Only
the one-channel problem is dilscussed here,y, but most of the e-
quations we develop are true in the many-channel case if they are

looked upon as matrix eguations.

We consider first the case of individual partial waves
because the application of unitariéy is s0 simple in this case.
We further restrict our attention to the scattering of scalar
"nucleons" of mass M, exchanging pions of mass JAe It is a"shmﬂe"

matter to extend the discussion to more interesting cases.

In order to discuss the convergence of a partial wave
expansion on the second sheet, the full amplitude at fixed angle
must be considered. This is done by assuming that a double
dispersion relation holds on the physical sheet and discussing the
amplitude on the second sheet by means of a Fredholm solution to
the defining integral equation. Finally, the full amplitude at

fixed momentum transfer is discussed.

The possibility that singularities originally on  the
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second sheet could produce singularities not found in perturbation
theory is discussed in the case of anomélous thresgholds in form
factors and scattering amplitudes. The problem of bound statesis
clarified by showing in detail how the poles and cuts assoclated
with this mass state are produced on the physical sheet as - the

interaction becomes sufficiently attractive.

II. PARTIAL WAVES.

The analytic properties of the partial wave amplitudes
have been well discussed.6 The essential result is that the

function defined by

fpl_(”-l- ie) = exp[i& (y):} sin 8 (¥)/ p(>), (2.1)

where p(¥) = vay-FMZi]% is an analytic function of the square
of the relative center-of-mass momentum, v, with a cut alqng. the
entire positive real axis and along the negative real axis from
minus infinity to (-}42/4) where 1/P‘is_the range of the effective
potential. The superscript one is to emphasize that this equation
is defined on the physical sheet.

Below the onset of inelastic channels, the phase shift
is real along the physical cut and the unitarity relation  takes

the usual form. We next remark that by trivial manipulation.

f,f(u -ie) = i{(u +1i€) 87 (v + 1€) ’ (2.2)

where

Sy(v+1ie) = exp[Ziﬁg (v )] = 1+21ip(v) fQI(V-f- ie). (2.3)
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The scattering amplitude on the second sheet is  intro-

duced as the continuation across the positive branch cut below the

the inelastic threshold in a counter-clockwise direction:

fgI(p+ ie) = fg(y_ ie) = fg(v+ ie)SE(V—Fie). _(?.4)

It is immediately obvious that f%I(v) has the same reglon
of analyticity as fg(v) except that there may be poles due to
zeroes of the S matrix and the trivial kinematic cut coming from

the factor of p(¥).

The {th partial cross section, which is defined as
_ oLl I
o (¥) = £ QV)fl(V), (2.5)

is easily seen to enjoy analyticity in the v plane cut along the
negative axis to (m}32/4) withhpoles due to the zeroes of Sj. The
fact that cn has no positive cut in the elastic region is easily
demonstrated. Similar statements hold for the functions pIm fg

and Re fﬂ’ An interesting and amusing fact, which can be demon-~

strated readily by writing

I I =1
- -+ .
Re fp % £ (1 Sy ) (2.6)
is that
I I
Re £ ———> % £y
lwhereverfg approaches -infinity.

Let us now see whether or not Si has zeroes close to the
physical region. The simplest place to look for a zero is in the
gap between the positive and negative cut where Sl is real. The

complex zeroes of the S matrix which might lead to scattering reso
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nances are strongly dependent upon the details of the theory and
are therefore difficult to discuss in general. It can be shown
that 8, has at least one zero between »= 0 and (-‘}12/4) for
every other @ if there is a one-particle exchange contribution

to the negative cut and no bound states.

Since there ‘are no bound states present, SQ is boﬁndéd
in the gap. Further, if there is no zero-energy resonance or-
anomalous threshold, the S matrix is unity at zero kinetic energy.
As » approaches (- }12/4)', the singular part of the  Yukawa-type

Born term approaches

fo(v) 2 —--~=—P, ([1+ — |JIn (14 —
2 2y Q 2y }42

2A
< — In (0+) Py (-1), (2.7)
Z .
}J
where A is negative for an attractive potential. Thus, if { is
odd, the Born term has the sign of the potential, A, and ap=
roaches infinity. On the other hand, s
\
if { is even, the sign is reversed. AN
\\
In the gap, the S matrix is SR = /’ 1
2
- p/r
=1-2 fﬁ [— v/ +MZ]%. The two pos- 4 o
sibilities are shown in Fig. 1. These
curves, of course, could cross the
axis several times. It is obvious in Pig, 1 - § matrix with
any case that the function SE must no bound state.

have at least one zero in the gap for every other f. If there is

bound state present then S is not bounded in the gap. The Born
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term discussion is not changed and since the residue of a bound-

~state pole in S must be positive, the two possibilities are as

shown in Fig. 2.

To summarize the situation with an example, we consider
the =.0 partial ﬁave for the case of an attractive poteﬁtial.
We have seen that if there is no"bound state, then SO must have
ét least one zero in the gap. If the potential is made attractive
enough’ to produce a bound state, the zeroes may disappear fronfthe

gap. We return later to an instance of this sort.

The discussion of a theory in which there is no one-parti
cle exchange, or Born term (for example, m-m scattering), is less

conclusive. One trivial statement which can be made is that if the

scattering amplitude is positive near the negative cut, which
starts at VY = = Fag Sﬂ must have a zero. The infinity in this
case comes from the phase=-space factor ¢. Vg
! \
) \
Let us turn to a discusgion : \
. - 1
of the nature of the cuts of a par- ‘
' n}xzja A o ¥
tial wave amplitude. Consider  the \
\ .
general problem of the type of singu rQ
\
larity at s = a of the function
1 Q0 W(S ?) 4, -8 N rith
JI(s) - ds ¢ . g 2 matrix with a
T a s =g bound state.

On the unphysical Riemann sheets, defined by crossing the

cut in the neighborhood of a, we have, for example,

TH(s +1e) = Xs+1¢) - 20wl(s +1e),
- T
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THI(s+1¢e) = Tl(s +1€) - Zi[WI(s +1e) + wil(s +i€)] ;

wherey if the point a is a branch point of W, we choose the cut
to run towards +oo. Thus 1f Wi(s) has a square-root type of

111 _ LI

singularity at s = a, then J J” and J also has a square=-root

type of branch cut. However, if W is analytic in fthe neighbor-
hood of s = ay then J has a logarithmic singularity.

The general form of the partial wave amplitude for  the

process depicted in Fig. 3, i.e., 2Ma-——>-2Mb through a state of

1 [® gst)y 1 [® B(st)
G(s) = - ds! + - ds! )
T | o0 st=-8 7 4}12 s!-g

: -1
B(s) = p(s) H,(s) Hb(s).[l-Zip(s.) fﬂ_w(s)} )

Z}n's, is

where

and H[a,b] is the partial wave annihilation amplitude for the

process ZM[a ,b] _ 2).(.

Since B(s) has a square-root singularity at s = 4F2 com-
ing from the explicit factor of p{(s), the positive branch cut in
G(s) connects only two Riemann sheets. It is clear that this two
-sheetedness property holds for each two-particle singularity in

a multichannel situation.

If there is a one-particle exchange diagram, then its
contribution to g(s) has singularities of the form s - 4M
(s - 4Mb.2)]'-%. Thus g(s) is analytic
in the neighborhood of s = a and the % ﬁ
left-hand cut of G is logarithmiec in Fig. 3 - Scattering graph.
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nature.

The discussion in the cases that have no one=-particle ex
change graph is more involved. Let us consider for definiteness
the case of pion~pion scattering. If the complications due to
isotopié spin are neglected, the results of Chew and Mandelstam

are that a = 0, and

2
2 “(V"'“}l ) p1 ,;.}12
g, (s) =~ dvt Py | 1+2

2
00 Y+ )
[:4:(.) OL['PQ' (1 +2 ""'"—""') ImGQ.( » )] ’
1= )"

where ¥= (s -4)°)/4. Since we have just shown that InG,(v') has

a square-root singularity at »' = 0, this implies gﬁ(s)' has a
square-root type of singularitj‘at s = 0. In fact, it is easily
seen that

/2

3
2
: gﬂ(s) ~ PE(«--:L)a0 (=s)

where a, is the S-wave scattering length. In addition, g[(s) has
a logarithmic cut starting at s = 4p2. The square-rooﬁ behaviour
at s = 0 implies that the negative cut in GQ<S) from two-particle
exchange connects two Rliemann sheets. This result is true in more
general circumstances. For eiample, in nucleon-nucleon scatter=-

ing, the two-plon exchange contribution is easily shown to be two

-sheeted in character.

Let us now turn to a discussion of the scattering ampli-

tude without expanding in partial waves.
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III. FIXED ANGLE.

In order to discuss the analyticity of the sgattering
amplitude at a fixed angle, we assume that'a Mandelstam represen-~
tation holds in the physical sheet. This then allows a determi
nation of the radius of convergence'of a partial wave expansionon

the second sheet.

The scattering amplitude F is written in the form

00
FI(v,z) = du!' Az(u',v)/ u'*-Zv(l-sz}
FZ
os)
+/ dt! As(t',y)/[:t'+2v(l—z)]. (3.1)
pe |

Subtractions do not affect our general conclusions and
are therefore suppressed. The only property of the weight func-
tions %Z and‘A3 that is needed is that they are analytic fune-

tions of v with a cut along thé positive real axis.

T S 1
ImF~(v,z) = p(¥) | =~ F(v+ 1€, x)F (= 1le,z'), (%.2)
) 4w ‘

where

4 .
X = zz'4-[(1-z2)(l-z'2i] cos ¢ .

In exact analogy with the partial-wave discussion, the
scattering amplitude on the second sheet is inﬁroduced as
aQr
FIl(0,2) = Fl(vy2) - 2ip(») | — Flo,x) #1Hr,20). (3.3)
4 ' '
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It 1s convenient to transform this into a nonsingular

integral equation of the form
1

FII(p,z) = FI(v,z) - 24 dz? K(z,zJ;R)IFII(w,z'), (3.4)
=] |

where

(v) B
K(zyzl3v) = P / d¢ FI(V,X),
, 4

This azimuthal integration is carried out readily and the result

is
p(») 2
K(zyzi3v) = du',AZ(u',v)[(l+ zzt+ ul/2y)
dar ‘ .
2 213, PO
- @-2Pa-2®)] s dtt A (t1,»)
- ‘ a1 5

X [(1-zz’+t'/2v)2-(l.-z‘2)(l-z'a)]"% o (3.5)

Our next task is to solve the integral Eq. (3.3) for
FII(u,z) and to discuss its analyticity in v and z. Even if Fl
did not satisfy a Mandelstam repfesentation, it is clear from the
integral equation that the domain of analyticity of FII 1s closely
connected with that of FI, except for poles arising from the homp
geneous equation and the trivial kinematical cut from the explicit
p(¥) factor. The Fredholm solution to this equation can be ex-
‘amined readily. This solution can be written in the canonical

form 1

FII(v,z) = Fl(v,z) +

dz! N(z,zj;xd FI(v,z'), (%.6)

D)/ 4
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where N and D are the usual Fredholm determinants.

Since the region of integration is finite, it follows
from standard arguments that the analyticity domain of FII(v,z)
in v is at least as large as that of Fi(v,z‘) for all z', except
for a branch point at v = -MZ from P(u) and possible poles arising

from .the zeroes of D(v).

The connection between these poles and the onesdiscussed
earlier in the partial wave amplitudes is made apparent by con~

sidering the eigenfunctions of the kernel. If we write

K(zyzt3p) = Z(Z,Q*-l).Pﬂ(z) Pl(Zl) p(») fQ(V), (3.7)

then it follows from general arguments7 that

©
200 =TT [1421p () £,0)]. (3.8)
From these results it is possible to discuss the ana-

lyticity in z for fixed complex ¥. In particular, we are inter-
ested in the possibility of mzking a partisl-wave expansion of
FII(V,Z). If the nearest singularities in z are either  complex
or real but a finite distance outside the interval (=1,1), i£ is
possible to pass an ellipse inside these points enclosing tﬁe physieal
region. Then an expansion in a Legendre series is convergent

within this region.

From the expression for the kernal K(z,z';»), it is
readily seen that for fixed » there is analyticity in z except
when

z2+' z1%+ (l+x/2v)2 i Zzz'(l-f-x/au) = 1, (%.9)
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where
}12<x<oo, - 1<z1<1,

The condition that this singularity lle in the physical region of
z is 1:4-p2/4. Thus, as long as v 1s not on the negative cut,
a Legendre expansion is valid for FIIG/,Z). Of course, if v is
in the neighborhood of a point where one of the SR(V) has a zero,
say at v, then a singular term, of the form ri IPR(”Z)/(V- VR), is

present in the expansion.

Iv., FPFIXED MOMENTUM TRANSFER.

We take up now the analytic properties of the scattering
amplitude on the second sheet as a function of the energy at fixed
momentum transfer. We content ourselves with a brief discussion,
since a more complete treatment has been given by Zimmerman.8

The integral equation for the second sheet amplitude is evidently
IT = wi I II

Fo(vytyg) = F (v,tla)-aip(V{/[dgz Fo(vsty,) F otoz)y  (4.1)

where the subscripts on the momentum transfer mean

:_Zp(l- z..). (402)

tij ij

Now assuming that a two~dimensional representation holds on the
physical sheet, the azimuthal integration can be carried out as
in the previous section. One obtains the integral equation given
previously, Eq. (3.4), with the understanding that z is to be ex
pressed in terms of » and tlB' Since for fixed Zo) FII(V,ZZ) is

analytic in the cut plane,'this integral equation representation
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implies that FII(v,t) is analytic in a region bounded by the

vanlshing of one of the denominators:

(AAt2,)% - (AF-1)A°-1) = 0, (4.3)
where

Al = 1+t1/2y, A=1+t/2».

Solving for v, we find

&
V= o= {t +tr [Ztt=(1iz2)] } /2(1-'Pz2). (4.4)

Since in the physical region, t <0, and also t'> 0, these roots
are complex; |

r=x1tiy, (4.5)
where

x = =(t+t1)/2(1F5,)5 5 = -t1(1E 2,)/2(17 2,)°,

For fixed t' this point moves on a branch of a hyperbola as 25

varies. Eliminating Zpy We get

2

7o = ottt x(ax+ b+ £1)/(% +11)5.

The boundary of the region of analyticity occurs when t!' reaches

its minimum value pa. The equation of the boundary curve is

72 = tpfxCax +pf 4 1)/ (4 po)2, (4.6)

IT t > -pa, then the left-hand branch of this hyperbola
is the boundary, whereas if t < -p?, the right-hand branch takes
over. This analyticity region is, of course, not the largest
possib}e since we have not used any analytic properties of the

kernels in the integral equation. Thus we conslder the iterated
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solution to see if a larger region emerges.

Using our previous results, the solution can be written

as
FIIv,t) = Pl(v,t) + S, I o (4.7)
where
I, = (~2rip)® /dto...dtndzo...dzn_l PRI
2 2 2 -t
x [Ap- 2, p% - AZ-D2-n] T L
x |2 2y -2 2 - (a2 102 - 1)|Fa - 207
1“1 o 1 1 1 Mo o !
and

}\1 =1+ ti/zp .

The welght funetion w 1is an analytic function of » in the plane
cut along the poéitive real axis. Any permutation of the At!s in
the integrand is permissible, since it becomes a symmetric func-

tion after the z; integrations are performed.

The integration over z_ can be done lmmediately and the

O
result can be studied as a function of z;j for v in the physical

region, the integral over z_ can be written in the form

o]
0
j/- dAl'[x(AO,Al,ll'i]"l (Al'u zl)"l,
zl'(V)
where
2 =24+ [a2-neZ-n)t,
and

4 y‘_2‘+ zZ-ny;-l 3 .

-

X(x,752) =|:x
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Now introduce the variable 71 given by
Ayt = A+ 7y R8-vaZ-n)?
1 oMt MM -t .

The integral becomes

7 an-(nZ - 1) (ay1-z)7L
Apy (-1 gt -zg)
1

Now the integral over z can be performed and the above argument
repeated successively. The final representation for In that we

consider is

— s n

@ dn,
X ——— - =
1 gnZ-1F  gZo1f An -z

dey 1

?

where
A= 40 [A2 -0 '3-1)]‘}
1 171-1" 7 M i-1 :

This function has branch points in the » plane for 31? =1, or

Vo= "t1/4 and V¥ = 00, where In becomes logarithmically divergent.

In addition, there is a branch point when

ln'-z 20,

with 7y = 1 for all i. This equation is symmetric in all the

A's and may be written

z = cosh(§ +E;+ ... 6§ ) = 1+1t/2»
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where

coshgi = Aio

The roots of this equation are, in general, complex. Therefore,one

concludes that for a fixed momentum transfer, FII has complex

singularities.

V. APPLICATIONS.

The simplest applications of these results seem to be in
discussions involving indi#idual partial waves. We are interested
in those processes in which the singularities on the second sheet
should be guite important. The most obvious example 'is one in
which the singularities on the physical sheét conspire in such a
manner as to force S2 to have a zero in the gap jgst below the
physical cut. The resuliing pole on the second sheet has a
drapatic effect on low~energy seattering. This can easily occur
even if there are no nearby singularities on the physical sheet.
A nearby pole on the second sheet can be just as important as a
Eona fide boundstate pole. A second example is found in  the
problem of the anomalous thresholds. In this case, we know that
one is forced to extend the physical cut into the gap reglon, T'ms,
if one of these poles were present in the integrand, it might
éause a breakdown of the dispersion representation which could not
be disce:ned from perturbation theory. We now turn to a detailed

discugsion of these problems.
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A. Anomalous Thresholds.

As a Tirst application of the previous results, consider
the form factor for a scalar particle of mass Ma which interacts
with a scalar photon through a pair of scalar particles of mass
}1’as illustrated in Fig. 4. Eor this discussion'it proves 1l
luminating to folldw the procedure developed by Mandelstaml ine-
stead of the equivalent method described by Blankenbecler and
Nambu,Z sinece in the former method, the difficulty with poles on
the secoﬁd sheet seen suberficially more dangerous. The latter
authors introduce a representation of the form_factor which  has
only normal cuts and then they continue to the physical sheet.
The Mandelstam procedure makes use of the analyticity of the
Green's functions in the masses and continues from the normal
to the anomalous case. In both of these methods one is fo;ced to
continue certain functions to their second Riemann sheet and it is

this aspect of the problem which is of interest here.

9

Following Frazer and Fulcoy” the form factor in the nor-

mal case (Ma small) can be written in the form
1 [ .
F(s) = = dyEﬂyﬂ/Equ, (5.1)
i ?FZ - ,
where

A(s) = P(s-') explA¥ (s) +4 (s)

a
xj[ dt(t-s)-la(t)exp[} A (ti].
=00 :

(5.2)
Here «ft) is the discontinuity across
' HM‘;—M
,.l

the negative cut in the partial wave :

amplitude for the annihilation process )
Fig. 4 = Form factor graph.
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and A (s) is the usual line integral over the relevant phase
o / .
shift of p=p scattering,/4}12 dst §{st)}/(st=s).

If an analytic continuatioﬁ to larger values of the ex-
ternal mass Ma is made by giving it a small negative imaginary
part, the point a moves in the path illustrated by the solid line
in Fig. 5. The line integral from 4p? to infinity in F(s) must
be deformed to avoid this protruding branch cut A(s) as indicéted
by the dotted line. In order to perform these continuations, one

must introduce the S matrix in the form
* _ - -1
exp[A (s)] = exp[A (s):[ S (s) ,

and also continue the factor exp[«- IA) (t)]in the integrahd of A

onto its second sheet as the upper limit a moves around the point

4F2° These continuations yield

2
4p~=1y
A(s) = p(s) exp[ZA(s):lS"l(s)x.\q dt(t-=s)_lo¢(t) exp -A(t)]
w00miQ
atin ) '
=1 at(g-s) () S(t) exp[- Al (t)]}.,
ap=in

(5.3)
where we have used the fact that the

function «(t) has a square-root type

cut starting at 4}120

One might superficially ex- Fig. 5 - Anomalous threshe
pect that when the anomalous thresh- old behavior.
0ld a reaches the point where SE has a zero, the continuation

would break down in a manner foreign to perturbation theory.
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This is not the case, since from the integral over «(t) a factor

of S appears to cancel any such pole. The final result after
collapsing the line integral to the real axis 151011
2
1 [4K 1 1 [ _
F(s) = ~ ds'(s'-s)"IB(s1) + = dst(st-s)™e(s1),
‘ g T 2
a 4 (5.4)
where :
B(s) = 2rip(s) als) exp[A (s)] ;
and
a
c(s) = p(s) exp[A,* + A] { dt(t—s)fl a(t) exp[- A(t):'
' _ ~00
ap? |
+ dt(t-s)-ld(t) exp[— A(t)] [1-!- S(t ]}
a !
Results similar to the form factor case hold also for

the anomalous scattering situation depicted in Fig. 3. The ab-~
sorptive part of the scattering matrix G has the form

ImG(s) = p(s) H *(s) H (s),

where

H[a,b](S) = exp_[& (Q)J Lot dtgt—s)’lx expl:-. A(‘t)] El(t), [3(1:)] ’

=00

if M_ and M, are sufficiently small. Fjrst consider the case
where only Ma is large enough f.or an anomalousg threshold. By the
same procedure as before, the scattering amplitude G(s) is found
to be 00
G(s) =

3 1+

dt(t-s)'l_th), (5.5)
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where the imaginary part of G in the anomalous region, a<:S'<4F?g

i
° 3(s) = 2rip(s) als) K (s). (5.6)

Now if the mass Mb is increased until b >a, which can obviocusly
occur even if Hb(s) has a normal threshold, then J becomes  com=-
plex. The condition b>a is just the condition fouﬁd in pertur-
bation theory by Karplus, Sommerfield, and Wichmamn'Z for the
"super'" anomalous case. There 1s no ambiguity or difficulty in
continuing past this point if all the masses are given negative
imaginary parts as required by the definition of the Green's
function of interest. The essential point  here for our pur-
poses 1s again that the superficially dangerous factor of Sml
cancels. It wonld seem that in any approximate evaluation of a
scattering amplitude with anomalous thresholds,; one must make

sure that the approximations made do not destroy  this cancel=

lation.

B. Bound States.

Another interesting application of the 'analytic prop-
erties of the scattering amplitude on the second sheet is found
in the problem of bound states. One may entertain the question
of whether any_célculational program based on unitary and ana=-
lyticity i1s complete in the sense that it ylelds the masses and
coupling constants of bound states in terms of more fundamental
constants. The difficulty is that the bound state must be pres-
ent in the sum over states in the unitarity condition. This

seems to introduce arbitrary constants. We show that by making
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very reasonable assumptions about the analyticity of the produc=
tion amplitudes, the bound-state problem can be solved completely

within such a framework.

A physicalrexample is found in nucleon-nucleon scatter
ing. If one applies the standard N/D procedure without explicitly
putting in the deuteron pole, then it is reasonable to expected D
to develop a zero at the deuteron mass. This can even be demon-
strated rigorously in the case of potential scattering. However,
in field theory a new problem arises. The‘entire.mass spectrum
singularities due to the deuteron must be genefated. For example,
the contributlion to the inelastic physical cut from the n;Fp-Fw
intermediate state must extend its threshold from (2M + p)a to
(Md-PPJZ, and this extra cut must have the two=-gsheetedness proper-
ties associated with two=-particle cuts. The canonical explanation
is that these extra poles and cuts migrate from the second sheet.

We show in detail why this explanation is correct.

We consider scalar nucleon~nucleon scattering as an ex-
ample. The process nucleon-nucleon scattering is called reaction
one with energy s. The crossed processes, nucleon-antinucleon
scattering, have energies t and u. The Mandelstam representation

is written in the form

o)
G(s,ytsu) = — dst(st-g ) 7* Imf(st)+Gi(s,tu),
™ 4M2 , '
(5.7)
where £(s) is the QL = O partial wave amplitude. Therefore
Imf(s) = p(s) £(s) £(s) S-l(s), (5.8)

in -the elastic region.
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The essentilal point is to recall now that if there are no
bound states and the effective potential is attractive, S has a
zero for s In the gap. As the potential stength increases, this
zero 1ls expected to move towards the physical region, S >4M2.
Guided by what does occur in potential scattering, we assume that
this zero moves in the path illustrated in Fig. 6 and that the
scattering amplitude is an analytic function of the position of

"this zero. We need not assume anag-

2
lyticity in the coupling constant. %%

. s &
This zero is trapped in the gap and v

in? ®

on the real axis. Either it moves
in the path shown ‘or it never
reaches _4M2. In the latter case Fig. 6 - Bound-state pole
the analyticity of the amplitude behsvior.

does not change. When the zero passes around the point 4M2, the
line integral over Im f(s) must be analytically deformed to avoid
thls wandering pole. The deformed‘path cap_be'shrunk to a small

2

clrele about the pole plus the contribution from 4M~ to infinity.

The small circle ylelds a contribution to G of the form

/(s -1y, (5.9)

where the pole has been placed at M Z, This is the mechanism by

which poles move from the second to the first sheet of the scatter

ing amplitude as true bound states are formed.

Now we examine the contribution of the n:ﬂp'+nﬁ)inelastic
intermediate state before a bound state has formed; The ab=-

sorptive part of G probably cannot be expanded in the relative
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angular momentum of the two nucleons. However, we restrict our
attention to the configuration where the neutron and proton are in
an Q=0 state without making such an expansion. This par-
ticular contribution to thé abscrptive part of G therefore can be
written as an integration over the center-of-mass energy of the
nucleon pair and the angle variables of the pion. The result,y ex
cept for constant factors, is

S%“}l %
At = dQ aw M (S}W,Qfgg) M(S,w’g-g «Q-i)
M

2 242 +
x (Wa_mz)%[(w ms oK) _}@jl . (5.10)
45

The general form for the production amplitude M must now be dis-
cussed. Since the neutron and proton are in a relative S state,

perturbation-theoretic arguments suggest that we can write
M(s W59 Q) = J(s3W,Q Q) exp[A (WZ)} 9 (5.11)

where A (W2) is the line integral over the neutron-proton S-wave
phase shift, and J is a very complicated complex function  which
| we cannot completely characterize at the moment but it does not
have the physical cut in wz. We assume that whatever its proper

ties, they do not interfere with the following discussion.

When the amplitude A' is formed, there occurs a factor
* -
of exp[A ], which must be rewritten as exp[A] S Lwey, Now

- we further restrict our attention to the pole term in S‘l, which
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occurs at M&ao The other singularities need not be discussed fur

ther. Then the pole contribution to the absorptive part can be

written as

s¥-p i
An(s) = dW(W2-4M2)% [(wz-s - }.12)2-45)12]
| oy
asL
x W2-u,2) [ — (s ,9,,0)
2s
x J(s W,y 2,) exp[&d(wa)]o (5.12)

We now need to discuss the analyticity of A" as a function of s.
The singularity which is of interest to us is one of the endpoint
%_F)a _

= Mazu The branch point closest to the physical cut is S% = Qo+

singularities due to the pole at M 2, These occur at (s

+ Md” If the coupling is now increased, this branch point moves
in a path shown as the solid line in Fig., 7 (see also Fig. 6).

Then the line integral over A" from (2M43ﬁ)2 to infiniﬁy must be
deformed to the dotted line in Fig. 7
to avoid this oncoming branch cut,.

When this deformed integral is  col-

lapsed to the real axis, it can be
rewritten as a line integral from Figs 7 - Inelastic cut
(Mg+ p) to infinity. Thus  the bebavior as &  bound

, state develops.
correct two particle cut  has been

generated in the same manner as an anomalous threshold.

Similar statements hold for all the higher inelastic

states. 'Thus, if our agsumptions about the structure of produc-



292

tion amplitudes are true, a new particle of mass Ma has been added

to the mass spectrum.

This argument concerning bound states can also be  used
to elarify the problem of unstable partiecles. First, assume that
Sg has a complex zero at M*Z, which is near the physical cut and
produces a scattering resonance. We have seen that If such a pole
exists on the second sheet across the elastie cut, then there Iis
a branch cut starting at-s = (M* + PJE on the unphysical sheet
across the three~-particle branch 1ine. This cut can be drawn
parallel to the real axis toward plus infinity, if we like. One
possible interpretation which is consistent with the identifi-
cation of G as a pole due to a one (unstable) particle state is
that this latier branch line singularity represents the rescatter
ing of a pion with the unstable particle in the intermediate state.
If there is a resonance in the three-particle system (n+p+r),then
it should show up in the s dependence of the funetion J. One
would like J* to have a simple pole in order to be conéistentwith
the interpretation in the two-particle case. It still is not
clear that this is a consistent and/or unigue interpretation of

these types of singularities.
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