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Abstract. In this talk I discuss the results of a joint paper with Z.
Kuznetsova, where the split-division algebras are introduced to construct
generalized supersymmetries in different space-time signatures. In particu-
lar, in D = 11 dimensions, it is shown that split-octonions allow to introduce
a split-octonionic M-algebra which extends to the (6,5) signature the prop-
erties of the 11-dimensional octonionic M-algebras, only existing in (10,1)
and (2,9) signatures. The three space-times above form a triality-related set
of (split-)octonionic, eleven dimensional, spacetimes.

1 Introduction

The maximal division algebra of the octonions can be regarded as the re-
sponsible for the existence of various exceptional mathematical structures.
It is well known, e.g., that four of the five exceptional simple Lie algebras
arise through the so-called “Tits-Freudenthal magic squares construction”,
see [1], when octonions are involved. The remaining exceptional Lie alge-
bra, G2, corresponds to the group of automorphisms of the octonions.

Some arguments have been introduced linking the octonions to the
possible existence of a “Theory Of Everything” based on exceptional math-
ematical structures. An interesting discussion of these topics can be found in
[2]. On the other hand, it was proven in [3], that the eleven dimensional gen-
eralized supersymmetry algebra commonly known as “M-algebra” admits
an octonionic reformulation, in terms of octonionic-valued spinors, with sur-
prising new features. For instance, the bosonic sector is split into rank-1, 2
and 5 antisymmetric tensors which are no longer independent as in the stan-
dard M-algebra case. It has to be mentioned that the M-algebra is expected
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to be the fundamental building block underlying a still-to-be-constructed M-
theory of unification of all interactions. The existence of an octonionic ver-
sion of the M-algebra is therefore strictly linked to the cited “exceptional
program” of ref. [2].

Higher dimensional (generalized) supersymmetries (i.e. formulated in
space-time dimensions D, with D ≥ 8) admit the peculiar feature that they
come in several related copies of given signatures. The associated supersym-
metric theories are all dually related (“the space-time dualities” of ref. [4]).
The 10-dimensional superstrings only exist for the three (9,1), (1,9) and
(5,5) signatures (the latter with five time directions). The 11-dimensional
supergravities are encountered, besides the Minkowskian (10,1) signature,
also in the exotic (2,9) and (6,5) signatures. It was proven in [5] that such
dually-related versions are in consequence of the triality of the D = 8 dimen-
sions (the dually related theories are indeed triality related and close the S3
group). We recall that it is eight-dimensional the transverse space of both the
light-cone formulation of the 10-dimensional superstrings and of the super-
membranes evolving in a flat 11-dimensional target spacetime. In D = 8 the
triality allowed signatures are (8,0), (0,8) and the exotic (4,4).
Both the original Cartan’s triality, see [6], and the space-time triality of ref.
[5] are a consequence of the octonions. In this respect, it is quite puzzling
that, while the standard M-algebra exists for the whole set of above signa-
tures, the octonionic M-algebra only exists in (10,1) and (2,9) (the (6,5)
signature is missing). Essentially, the reason is due to the fact that the seven
imaginary octonions have to be accommodated either in the time-like, or in
the space-like directions. Obviously 7 cannot enter either 6 or 5. The puzzle
is solved if we relax the condition of dealing with division-algebras. The
exotic signature (6,5) can be constructed in terms of the split-octonions. In
[7] we reviewed the construction of the split-forms of the division-algebras
and pointed out some of their applications. We used in the construction of
graded algebras, Clifford algebras and spinors, of both unconstrained and
constrained generalized supersymmetries and, finally, in the formulation of
generalized Dirac equations of split-division algebra-valued spinors for the
allowed space-times. Due to space constraint, only the application to gener-
alized supersymmetry will be detailed here.

2 The Cailey-Dickson construction and the split-octonions

Following [8] we can construction the (split-)division algebras through re-
peated applications of the Cayley-Dickson doubling construction applied to
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the reals. A composition algebra possesses a unit, a non-degenerate quadratic
form (norm) N and a conjugation denoted as “∗”. The Cayley-Dickson dou-
bled algebra A2 is obtained in terms of the operations of the original algebra
A. Multiplication, conjugation and norm in A2 are respectively given by

i) multiplication in A2: (x,y) · (z,w) = (xz+ εw∗y,wx+ yz∗),
ii) conjugation in A2: (x,y)∗ = (x∗,−y),
iii) norm in A2: N(x,y) = N(x)− εN(y).

The unit element 1A2 of A2 is represented by 1A2 = (1A,0).
In the above formulas ε is just a sign (ε = ±1).

It is convenient to denote the Cayley-Dickson’s double of an algebra
A by writing the ε sign on the right of the original algebra. For division
algebras ε is always negative (ε = −1). We can therefore write

C = R−, H = C− = R−−, O = H− = C−− = R−−−.
The split division algebras are obtained by taking a positive (ε = +1) sign.
We have ˜C = R+, ˜H = C+ = R−+, ˜O = H+ = C−+ = R−−+.

Other choices of the sign produce, at the end, isomorphic algebras.

Among the other properties, the seven imaginary split-octonions ˜Ei

satisfy the relations

˜Ei · ˜Ej = −ηi j1+Ci jkηkr ˜Er, (1)

(the Einstein convention over repeated indices is understood) together with

˜E∗
i = −˜Ei,

N(˜Ei) = ηii. (2)

In the above formulas ηi j denotes the diagonal matrix (+++−−−−) with
three positive and four negative eigenvalues (normalized to ±1), while Ci jk

are the totally antisymmetric octonionic structure constants. The algebra of
the split-octonions is, just like the ordinary octonions, an alternative algebra.

For our purposes here the most interesting feature is that the anticom-
mutators {˜Ei, ˜Ej}= ˜Ei ˜Ej + ˜Ej ˜Ei between two imaginary split-octonions pro-
duce the basic relation of the generators of the Clifford algebra with signature
(4,3). Higher-dimensional Clifford algebra relations can be realized in terms
of (split-)octonionic valued matrices, see [9], through repeated use of lifting
algorithms. The 9-dimensional (5,4) signature is realized in terms of 2× 2
split-octonionic valued matrices, the 11-dimensional (6,5) signature of inter-
est here in terms of 4×4 split-octonionic valued matrices (4 purely real ma-
trices while the remaining seven ones are given by the seven split-octonions
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each multiplying a unique, common, real 4 × 4 matrix). Following [9] it
is possible to construct an octonionic (and split-octonionic) variant of the
original Clifford algebra, by regarding it as the enveloping algebra produced
by the (split-)octonionic valued matrix generators. The (split-)octonionic
spinors can be constructed on similar lines. The “oxidized” forms (see [10]
for a discussion) of the split-octonionic Clifford algebras are encountered for
the (4+ k,3+8m+ k) and (5+8m+ k,4+ k) space-time signatures, where
k,m = 0,1,2, . . ..

3 Split-octonionic generalized supersymmetries

The ordinary supersymmetry algebra is such that the anticommutator of two
spinors produces a translation. Generalized supersymmetry is an extension,
allowing the bosonic r.h.s. being decomposed into higher order antisymmet-
ric tensors (in physical applications related to extended objects like branes).
In the Minkowskian D = 11 space-time, the M-algebra is given, e.g., by
32-component real spinors and a maximal saturated r.h.s. with 528 bosonic
elements entering a 32×32 symmetric matrix. We have

{Qa,Qb} = Zab (3)

with the bosonic symmetric matrix being decomposed into rank-1, rank-2
and rank-5 antisymmetric tensors, for a total number of 11+55+462 = 528
elements.

The introduction of spinors valued in division or split-division alge-
bras other than R (admitting a non-trivial conjugation) allows to split the
supersymmetry algebra as follows

{Qa,Qb} = Wab, {Q∗
a,Q

∗
b} = W ∗

ab, {Qa,Q∗
b} = Zab, (4)

with Wab a symmetric matrix and Zab a hermitian one. Sets of constraints
for the bosonic r.h.s. can be consistently imposed, see [11] and [10]. A
consistent constraint sets Wab =W ∗

ab = 0. In D = 11, for the signatures sup-
porting octonionic and split-octonionic spinors, the 4× 4 (split-)octonionic
valued bosonic hermitian matrix Zab admits 52 components. As in the real
case, these components are accommodated into rank-1, rank-2 and rank-5
totally antisymmetric tensors. Unlike the real case, however, rank-5 tensors
describe the same degrees of freedom as rank-1 and -2 tensors (whose total
number is 52 = 11 + 41, so that there is no further room to accommodate
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independent rank-5 tensors). The number of 41 rank-2 totally antisymmet-
ric octonionic tensors is due to the relation 41 = 55− 14 (we recall that the
octonions describe the Spin(s, t)/G2 coset, see [9]). It can be proven [7] that
the construction of [9], introduced for the octonions, can be extended also to
split-octonions, leading to the split-octonionic M-algebra in (6,5) signature.

The ordinary M-algebra admits an equivalent 12-dimensional presen-
tation, named F-algebra, in terms of Maiorana-Weyl spinors for the non-
Minkowskian (10,2) space-time signature. This signature carries also the
octonionic F-algebra whose bosonic r.h.s. is given by 12-dimensional rank-
2 totally antisymmetric tensors with 52 = 66 − 14 components. A split-
octonionic version of the F-algebra is encountered for the (6,6) signature
of the space-time.
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