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Parametrization of the Kerr-NUT Solution

J. Gariel,! G. Marcilhacy,” and N. O. Santos»*
Received January 30, 2004

The dragging of the Kerr-NUT solution does not tend to zere at infinity. To modify this
solution in order to produce a good asympiotic behaviour we transform it by introducing
two further parameters with the aid of a SU{1,1) transformation followed by a unitary
transfommation. By imposing a cenain relation between these parameters we obtain a
new solution with a good asymptotic behaviour for any value of /, the NUT parameter.
The rew solution corresponds to a parametrized Kerr solution and we show that / is
linked to the form of its ergosphere,
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1. INTRODUCTION

It is well known that the axisymmetric stationary Kerr-NUT (KN) solution [2] of
Ernst equation has not a good asymptotic behaviour, the dragging o does not tend
to zero at infinity. This solution depends upon three parameters, one describing
mass M of the source, another its angular momentum a and a third, the NUT
parameter usually called . In particular when / = 0 the solution reduces to Kerr.
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The object of this paper is, starting from the KN solution, to obtain a new
solution with a good asymptotic behaviour for any value of /! and give to this
parameter a physical interpretation which completes the one given in [3].

The method that we use to attain our aim has already been applied in a previous
paper [4] to another solution of Ernst equation. The first part of this method lies
in the introduction of two new parameters through a homographic transformation,
belonging to the SU(1, 1} group with one parameter, and a unitary transformation.
The second part consists on imposing a relationship between these parameters
such that they produce the required asymptotic behaviour for the new solution.

The Emst equation is given by [5]

(6 — )V = 2EVE - VE, (0

where V arld_V2 are the gradient and the three-dimensional Laplacian operators
respectively, & is the conjugated complex potential of £, and in general its solution
can be expressed as )

)= P p) TiQQ, p), (2)

where P and @ are real functions of the prolate spheroidal coordinates, A a radial
coordinate and g an angular coordinate satisfying —1 < g < 1.

The KN solution £xy of (1) is usvally obtained from the Kerr solution &y
ufter a unitary transformation [6]

Exn = explif)Ex (A, 1), (3)
where &; is a constant and
Ex = Px +iQx, Px=pi QOx =qu, 4
with p and g being constants satisfying
Pt+eg’=1 (5)

The paper is organized as follows. In section 2 we present the SU(L, 1) and
unitary transformations and the new solution produced by them with two new
parameters. In section 3 these parameters are determined by imposing a good
asymptotic behaviour of the new solution. The two possible choices for these
parameters are discussed in sections 4 and 5. The reduction to Kerr solution is
presented ib section 6 and the paper ends with a conclusion,

2, CONSTRUCTION OF A NEW SOLUTION OF ERNST EQUATION

To introduce two new parameters into £x » in (3} we start with a homographic
transformation SU(L, 1) with two complex parameters ¢y and d|
_ cifgn +dy _ crexplify /2)Ex + dy exp(—if, /2)

= = = s 6
T dikrn+ 8 d)exp(i6 /g + & exp(—iy/2) ©




-3- CEPF-NF-016/04

with
(5‘;5;-:) € SU(1, 1) € SLQ2C) M
and
ferf? — 1di [} = 1. (8)
We define
expiti /2y = p1 +iqu, [¢)]

where p; and g| are two real constants, and to simplify the calculations we restrict
ourselves to a one parameter transformation by introducing a real parameter o
such that

¢ = 14iay, 4 =uoy. ’ (10)
With (4), (9) and (10} we can rewrite (6) like '
&= g—:{—}% (n
where A, B, C and D are real quantities defined by
A = (pL—aiq)Px — (@p1 + )Lk + g, (12)
By = (1p1 + q)Px + (1~ 1q1)Qk +a1p1, as) .
CiesaiqiPx +apQx + pL—1qu, (14)
D =—apPx+tagQx —cipr+q1- (15)
Now we perform a unitary transformation on &,
Er = explith)s, = (m +in)éy, (16)

where m and » are real constants. Then we obtain from {11) and (16)
A-+iB AC,+ 8D, BC,—ADy
fr= s N R W, T
Cl+lD[ C|.+Dl C]+Dl

=Py +iQ. an
with
A=mA, —nB, B=nA +mB,, (18)
and
Py = —ai(eym + n)(PE + 0% +1)
+{[(1 = 20})m = 201n] (} = gf) — 2 + 200m)p14s} P
—f{tn+ 2a|m)(pf —qt)+2[{1 - 2at)m - 2 n)pin} Qx, (19)
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02 = —aylayn —m){(P§ + 0% + 1)
+{[(1 = 20})n + 20,m] (p} — 47} + 2(m — 2c;1) prq1 } Px
—{—tn —2a1m)(p} — q}) + 2[(1 - 200)n + 20m] pip} Qx. (20

3. DETERMINATION OF TWO VALUES FOR o, OF THE 8U(}1, 1)
TRANSFORMATION

Calculating the dragging o from the Ernstequation (see (9) in [4]) we obtain an
expression that is the quotient of two polynomials of the 6th degree each in A {they
are too long to be written here). The polynomials depend upon the parameters o,
Pu 41 P, q. m and #, which means that there are in fact 4 independent parameters
since from (5), (9) and (16) we have

P+g=1 pl+egi=1 m+n’=1 2D

In order to have « tending to zero at infinity we have 1o cancel the coefficient of
highest order of A in the numerator of w, producing two independent values for
o, which we call oy, and oy,

2a1a=cot(&)—tan(§l)=m+l*g-l—, 22)

2 2 n Pi

2a|b=cm(@)+cot(ﬂ)=m+l+£—l—. (23)
2 2 n q

We recall that 8, or equivalently from (16) » = sin 8y, is the parameter associ-
ated to the unitary transformation; that 6, or equivalently from (9) p( = cos(8,/2).
is the parameter associated to the NUT parameter / by the relation / = M 1an(6, /2)
as well as to another unitary transformation of the Kerr solution; and «, is associ-
ated to the SU(1, 1) transfarmation. Hence, it remains two independent parameters,
By and { or 8y, plus Kerr parameters for the mass and angular momentum.

One can verify that for g, = 0, implying p, = 1, &, in {(22) reduces to the
expression (19) of the parameter ¢ of the SU(1, 1) transformation used in [4].

4, SOLUTION FOR o,

For this solution we obtain for the gravitational potentials f and o (see (1)
in [4])
e (P22 + ¢*u? — D)ma
= T ph — 12 + gl
2kg(pr — 11 — p?)

©T AT+ g — imy @

(24)
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where k£ > 0 is a constant and
& 2p?
ma = cos? | = }csc? (f?_ =B m| <1, (26}
2 2 l—m

If mz = 1 then (24) and (25) reduce to the Kerr solution.
To interpret the parameters X, p and ¢ we introduce the Boyer-Lindquist
coordinates,

r—M
A=

, o= cosé, (27)

where r and # are the radial and angular coordinates and M the Kerr mass. Then
with (27) we obtain asymptotically for (24} and (25)

fwl+%}+o(riz). 28)
K2q(1 — m) sin® @ 1 '
%WT-'.O(:"). (29)
Hernce, from (28) and (29) we have to choose
k= (M2 —a'md)'"?, p= —}f?. ¢=7 (30)

where M is the mass and a is the angular momentum of the source. With these
values for k, p and ¢ we can finally write for (24} and (25)

2Mr

=1-—-—7 31
f r? + a?m3 cos? § eh
gaMr sin?
= . 32
@ 72 22Mr + a?micos 0 ©2
5. SOLUTION FOR ¢y,
The gravitational potentials f and w now become
21‘2 2,21
f=(p +q°u );"3 33)
(pr+ 17 + ¢
_ 2kg(pr+1X1 — p2)
= 222 | gig2 ’ (34)
- PP+ qfpt - my
where
2
my = sin? (El— csc? ﬁ) = ﬂ—— [m| < 1. (35)
2 2 1—-m

Here too if m3 = 1 then (33) and (34) reduce to the Kerr solution.
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To interpret £, p and g we use the same previous procedure and we obtain
asymptotically for (33) and (34)

2k1 1
fﬂ‘ﬁl—-p—F'FO(r—z). (36)
k2q(1 —m)sin* ¢ 1
w B p3qf . +0 ) @D
and we have to choose
k
k= (M2 —atmd)'?, p= o =22 (38)
With (38) the solution (33) and (34) becomes
2Mr
r=1-a + a*m3cos28’ .9
. 2
= 2aMr sin“ 8 (40)

r: —2Mr + a?micos? 6’

6. REDUCTION TO KERR SOLUTION

We observe that the two solutions (31, 32) and (39, 40) are identical if the
two parameters m; and a1y are identified. Furthermore, these two solutions can be
written in the form of Kerr if one introduces the transformation

m=2 - @n
» M3 2

without changing &, or a similar transformation for ms. These transformations
introduce a parametrization of the Kerr solution, which has been studied in [4].
There it is shown that varying m (see (30) in [4]), here m; or m3, produces
a topological deformation of the Kerr ergosphere, Since my and mj are linked,
through (26) and (35), to 8, which constitutes the third parameter ! in the KN
metric, we can say that { is responsible for the form of the ergosphere of the new
solution which has a suitable asymptotic behaviour, i.e. w — 0 for r — oo, for
any value of /.

7. CONCLUSION

Starting from KN solution, which is not asymptotically well behaved, we built
a new one after using a one parameter group SU(1, 1) transformation followed by
a unitary transformation. The two new parameters thus introduced allowed us to
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choose a relationship between them and M, « and/, given by (22) and (23), produc-
ing two new solutions with good asymptotic behaviour, w — 0 whenr — o0. The
two tranformations do not commute and only in the order here presented allowed
to have conditions for the required asymptotic behaviour. Both new solutions have
the limit of Kerr parametrized selution as studied in {4]. The two new parameters
involved in the solutions have range m; € (0, c0) and m3 € (~oc, 0). But since
only the square of these parameters are involved in the two sets of solutions, (32,
33) and (40, 41), then both correspond in fact to the same solution, The conver-
gence of these two solutions into a single one respects the unicity of Kerr solution.
The parameters m; and m3 describe the form of the ergosphere and are linked to
the NUT parameter /. Hence we interpret / as being responsible of the form of the
ergosphere.
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