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Abstract

We describe a real space renormalization group procedure
to calculate geometrical and thermal equations of states for
the entire range of values of the external parameters. Its use
is as simple as a Mean Field Approximation; however, it yields
non trivial results and can be systematically improved. We il-
lustrate it by calculating, for all bond.concentrations, the
site mass density for the complete and the backbone percolating
infinite clusters in square lattice: the results are quite sat

isfactory.
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Renormalization group (RG) techniques have been employed
mainly to evaluate critical points and exponents. However a RG
theory has been developped[l] to evaluate the free energy for
the whole nange of the thermodynamic parameters. From the free
energy all other quantities of interest (such as magnetization,
specific heat, susceptibility and so on) can be evaluated. This

(2]

theory and similar ones apply to systems which can be des-
cribed by a Hamiltonian formalism.

In this paper we want to develop a simpler real space RG
formalism which, besides covering Hamiltonian systems, may be
useful in particular to calculate, for the whofe range of vari
ation of external parameters such as concentration, geometrical
quantities which cannot be described by a Hamiltonian formalism.
These include, for example, the density of sites in a full per
colating cluster and in its backbone for different types of per
colation problems (random, correlated, bootstrap, valence, chro
matic), and the conductivity for random resistor and random su-
perconducting networks, etc. An intensive effort has already
been accomplished with great success in the use of Large cell RG
techniques[3] for calculating critical points and exponents. The
present method illustrates how this effort can be easily a-
dapted (and systematically improved) to extract, with precision,
the interesting quantities for the whole range o4 varilation of
the external parameters. Last but‘not least, let us compare the
present procedure with the standard Mean Field Approximation:
(i) they share the fact that the entire equation of states is
obtained; (ii) for small cells it is, operationally speaking,

even simpler; (iii) it yields non trivial results which, assaid
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before, can be systematically improved.

To illustrate this method we consider first the particu
lar case of random bond percolation. In this problem one sup-
poeses that each bond of a d-dimensional hypercubic lattice of
linear size L has a probability p of being active. In the L-®
limit, the order parameter P_ can be defined as Pm=NL(p)mO[ﬂ%
where NL(p) is the average number of sites in the infinite
cluster and m is the>adimensional "mass" associated with each
site. Usually no such m, is introduced (i.e., mo=l), but here
we leave it as a variable since it will change under renorma-
lization. Following the original idea of scaling as introduced
by Kadanoff, we divide the system of Ld sites into a system
of .'¢ cells of linear size b=L/L' > 1. Then we associate with
each cell new renormalized variables P'=f1(p:mohfﬁ-mg=f2@hﬁbh
The renormalized variables depend on the particular RG, but
they all satisfy the condition that the total mass of the in-
finite cluster in the system of cells be identical to the mass

of the infinite cluster in the original system, namely
NL.(p')mg = N(pIm (1)

Dividing both terms by Ld we obtain

P (p‘)mg = b"P_(p)m (2)

After n iterations from (2) we havg

Pm(p(n))mén) - bnde(P)mm (3)

hence
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ne:)
P (p) = lim Pm(p(n)) "ﬁ%—“—' (4)

n->-oo b mo

(n)=0.

For p less than the percolation threshold P, lim Simce
P_(0) and lim mén)/bnd=0, we have the expectedn;:sult p_(p)=0,
forn alk p‘:;j. For p >p_ . lig (n)_ 1, and since Pm(l)=mo, we
find :
o
P (p) = iiﬁ Toad (p>p.) (5)

This gives the desired expression of P_ for all values o4 p.
Let us illustrate the procedure on the square lattice by
constructing a RG (noted RGlz)which maps the cell of Fig. 1l(b)
into that of Fig. 1l (a) (hence b=2). The renormalized bond proba-
bility p' is given by the probability of connecting the bottom

to the top of the cells, namely
p'=p°+5p*(l-p) +8p°(l-p)? +2p*(1-p)° (6)

To find the equation for m, we consider all possible cell confi
gurations and the corresponding total mass of the spanning clus
ter. Then we impose that the average mass is preserved, and ob-
tain

m' = [0S+ 4pS 4 21 2, 13 3 3, 2 4
p'm; =[p’+4p°(1-p) +p’ (1-p) +—p" (1-p) " +— p° (1-p) +p” (1-p) "] 4m (7)

2 2

which, together with Egs. (5) and (6), provides P_(p) for all
values of p (see Fig. 2(a)). The resulting critical exponents v

(for the connectedness length £(p)) and B (for P_(p)) are given
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in Table 1. We have also performed the calculation renormali-

zing the cell of Fig. l(c) into that of Fig. 1l(a) (RG b=3),

137
and into that of Fig. 1l(b) (RG23;b=3/2). The results improve

as shown in Fig. 2(a) and Table 1.

Backbone percolation. We have also calculated the mass densi-
ty Pi(p) in the backbone of the spanning cluster. The calcula
tion is analogous to the percolation probability P_(p). The

RG12 equation for p' still is Eq. (6), and Eq. (7) is replaced

by

p'm , = [p*+4p° (1-p) + p* (1-p) +2 p*(1-p) 2 + 6p? (1-p) * +p? (1-p) *] 4m . (8)
2

The full curve for Pi(p) is given in Fig. 2{(b); the corre-—

sponding critical exponent B, equals £n(64/49)/4n(13/8)=0.550 ,

to be compared with the Monte Carlo result[s] BB=O.53.

Random nesistor network. In this problem one supposes that each
bond of a d-dimensional hypercubic lattice of linear size L
curries a conductance 9, with probability p and O with proba-
bility (l1-p). Following the same procedure as before we find

for the average conductivity ) (p) the relation

z(p(n))gén) _ bn(d—2) E(P)go (9)
where p(n) and gén) respectively are the renormalized probabi
lity and conductance after n iterations. From (9) we have,

for P<p.r z(p) =0, and, since 2(1)::90, we have, for D>P.s
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(n)
\ . (p)
(p) = lim 9
: n-> bn(d—2) (10)

Calculations of ) (p) along similar lines are already available

[6]

in the literature .

Connectedness Length. The standard RG equation for  the con-
nectedness (correlation) length £' = £/b can be rewritten as fol

lows

¢(p = n

In this case, £ vanishes in both trivial fixed points p=0 and
p=1l. Therefore, in order to calculate £ (p), one needs to know
the asymptotic behavior of £ in the vicinity of these fixed
points, which usualy can be done very easily within the RG frame
work itself. This problem has been investigated with very good
results for the correlation length of the g-state Potts ferro-

[7]

magnet in d-dimensional hypercubic lattice .

Sunface tension. Closely related to the correlation length, the
(longitudinal) surface tension y(T) can be calculated as a func
tion of the temperature T for all temperatures. The RG equation

is given (see[8] and references therein) by

y(r') _ bd-l Y (T) (12)
T! T

which, after n iterations, becomes
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ve™) a1 y(m (13)

T(n) P

Hence

Y(T(n))

n(d-—l)T(n) (14)

n*>© b

By using the facts that y(x) =0 and that Y (0) is expected to be
finite, the entire function Y (T) can be calculated. This has
already been performed with very satisfactory results for the
Ising model in sqguare lattice[s].

In conclusion we have described a method based on real
space renormalization group which allows to obtain the varia-
tion of various interesting quantities {ox all values of Zhe
exteanal parametens. This method applies especially to geome-
trical quantities for which large cell renormalization groups
have successfully been employed to get accurate critical points
and exponents; it uses essentially the same information, pro-
vides the fullf vardiation of the quantities, and is normally ex
pected to recover the correct asymptotic behavions in the vici
nity of the trivial fixed points, i.e. when £+0 (p=0,1 for per
colation problems). For thermal problems, this method is, for
small cells, operationally even simpler than the Mean Field Approxi
mation; it gives, however, non trivial results, and can be sys

tematically improved.
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CAPTION FOR FIGURES AND TABLE

Fig. 1 - RG cells used for the calculation of P_(p) and Pi(p)

Fig. 2 -

Table 1-

(see Fig. 2) for square lattice. RG12: cell (b) is
renormalized into cell (a); hence b=2.RG13: cell (c)

is renormalized into cell (a), hence b=3.RG cell

23°
(c) is renormalized into cell (b), hence b=3/2.
(a) RG percolation probability P_ and (b) RG backbone
mass (reduced) density Pi as functions of the bond
concentration p for the sgquare lattice. b is the RG
linear expansion (see Fig. 1); pc=l/2 for all values

of b; the dots represent Monte Carlo data[4].

RG critical exponents v(Emlp—pcl_v) and B(Pw“(p—Pcﬁ)

for several values of b (see Fig. 1).



CBPF-NF-015/84

5f3
oo
)cté

*—*¢ %
L

(a)




CBPF-NF-015/84

- 10 ~

()

1¢0

¢9ld

G0



CBPF-NF~015/84

- 11 -
TABLE 1
b=2 b=3 b=3/2 exact
3
~ »@Vl3 - /ZVL-E - _L_l_:l 333
13 1.428 Z;jﬁ;ﬁr-1.380 Z;j@;@fu—l.BOS 3 .
2048 3328
49152 39936
In === n ===
- 37547 _ 37547 5 .
=0.428 iarzgir-—0.338 Z;jﬂ;fr——o.l98 36 0.139
2048 3328






