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SUMMARY

‘In this paper it is‘presented a curved finite element
for the solution of shells of revolution. The shell geometry
in éeneral, is approximated by a third order ihterpolation '

' function. The displacemént field has féur coméonenté, three-

: o

~ displacements and the rotation of the meridional plane of thg

shell. The displacement field is interpolated with cubic énd_
lqﬁintic pol&nomials: The linear system involving the nodal
unknowns is obtained from the Principle of Viftual Work, plps_
the colateral condition relating the rotation with thé other
components of the displacement fiela. It is sﬁown that brcken
generating lines for the shell surface do not limit the
convergence of the solution. Finally four numerical applications

for static and dynamical problems are presented.

.



INTRODUCTION

Several types of curvéd elements'have been presented
for the solution of‘shells‘of revolution * > 7 7 .. 1in
general, these elements require information about the first
'~ derivatives of the variables defining the shell geémetry .
Aléo, tﬁe first derivative of the component of the dis~
placement field norhal to the midale surface has to satisfy

some continuity requirements, in order to ensure a good

fperformance in the numerical solution.

In this paper it is presented a curved finite element
‘forAWhich the geometry is approximated independently'bf the
derivative of the variables defining the shell geometfy.‘On
the other hand the displacemént field, which involves .the

rotation in the meridional plane, has only to be continuous.

BASIC GEOMETRIC RELATIONS

Let Q be a bounded open subset with contour defined by

I, of a two~dimensional Euclidean space E2. The material

points of the shell structure are associated to a vector field

Cefined as follows:
X =X (5) =X (&) + |t] n

where:

Xo: O = E3, defines the reference surface S,.

~

n , is the unit vector orfhogonal to Sy at Xo(&).

-~

1zl <3+ h=h(f) is the thickness of the shell at X, (%).

£=(gheh e T = aur, ¢

= Nl

and 52 is an intrinsic pair.

of coordinates on the surface S,.



Se is assumed to be regular, that is:

9X
Xopd.:_’:‘& ,U.='l,2
- 3E
are linearly independents for all ¢ ¢ (. This requirement
however is not essential for the convergence of the finite
element method, provided that the sﬁell'geometry is

approximated uniformly within each elementS.

In the case of shélls of revolution (FIGURE 1) the

" reference surface S, can be represented in the following form:

Il

r

r(g) & e [Ep. 78] =1

z = 2(E)  LEeI

Xy =rcos g e, +.xrsin g e, + z e,

-~

wﬁere ¢ is the angle formed by e. and e,. The triplet {ei},

~

i < 3, represents an orthogonal basis of unit vectors. The
-domain @ can then be expressed in terms of the selected

coordinates system as the carteéian product:

G-1x 0,27 ,E =t ,8 =9

call z' = dz/dg , r' = dr/dg. , s' = (r'2 + 2'2)1/2, then
the coefficients of the first and second fundamental forms

of the middle surface are:

gun = Xp 1.Xp 1 = s12 r 922 = Xp 2.%Xp 2 = r?
~ o~ ~T ST
g1z = g1 =0
Ln =“§o,11-9_= (r''z' - x'z'')/s', E .
“Lpy ==Xy 22.n = - rz'/s'



Note that & = cdqst. and 8 = const. define two families
of orthogonal lines ofjprincipal curvature. The triplet
ty = X0 1/ on,1N Pty = Xo'z/ ”Xo,zn r 1= t; X t, is the
~ ~ g < ~ ~ ~ ~

intrinsic orthogonal basis of unit vectors (FIGURE 1).

The principal radii of curvature and the area of a surface
element are given respectively, by:

1 _ Ly _ (r"z'j— r'zt") : 1 L22 A

= = — T e D2 -

il_ g1 533 ' " R 922 rs'

ds, = /g a&r 4o

where

-9 = 9L1gzz - g%z =rs'

VARIATIONAI, FORMULATION OF THE FLUGGE THEORY FOR SHELLS OF
REVOLUTION 3 ‘

Under_the-simpliﬁications retained in the,Flﬁgge théory—
and Love theory aé welﬁ - the diéplacemént field of a"shell’
subjected to the actiob of arbitrary external loads is'uniquely
defined'by the displac%ments field of its middle surface

12,12
SU

- Let u, i=1, 2% 3, be the components of the displacement

vector associated to ab arbitrary point of the middle surface,

~along the local basis Htl r o, n}. Let moreover
g =4 _ 1 Bu,

4 R, s' ¢

t . Define the generilized displacement vector:

repr@éent the rotation of the normal n around

_ - T
u —;(ul, U,, u,, u,)

~
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The external load is assumed to act on the middle
surface S, , and'fl, f,, £, represent the components along the

local basis {t;, t,, n} .

Expanding u and £ in Fourier series it can be written the

following expressions:
0

_ ) s .8 a .a
Y= h=0 (Qn Uy t Qn Bn)
_ ) (&S ¥S L wa Fa
£=hn20 © N Qn e

where the superscripts s and a designate respectively the
symmetric and antisymmetric components of u and £, and the

diagonal matrices Qﬁ and Gi for 2= s,a are defined as follows:
'Qi.= [cn 6, - sn 8, cn &, cn 6], Qg = [sn 6, cn 6, sn 8, cn 6]
Gi = [en 6, -sn 8, cn 6,0] , ﬁg = [sn 6, cn 8, sn 6, 0]

cn 6 = cos nbd ' Lsn ® = sin nb

and where:

L % 2 L L

T _.2‘
u = u u2 u
( ln' n’ 3n' l'rl

y I, = (fh

2
~n In £

’on’ 3n

-n , 0)°, 2= 8, a

The constitutive relations assumed here allows for
Hookean orthotropic materials, provided that the planes of

orthotropy contain the principal lines of curvature.

With the assumptions explained above it is not difficult
to show that to find the displacement field of the shell

subjected to arbitrary loads is equivalent to solve the

following variational problem derived from the Principle of



Virtual Work 3 “» 9 12,

Find the vector field:uﬁ € Kinﬁ (n =0,1,2...: 2= s,a)

such that:

€1
k f {E(B
n

0

=]

for any ﬁﬁ e Var

8

condition:

where:

K'z
in

2).B I A I I A O N dg =0
n n n n

~ ~N N ¢ ~

(n =0,1,2...; % = s,a) with the colateral

TN et = e

is the space of the kinematicaly admissible

'xdisplacements related to the nth harmonic,

varl
n

. to the h}

symmetric or antisymmetric according to the
superscript 2.

is the space of virtual displacements related
th

harmonic, symmetrié or antisymmetric

according to the superscript L.

is a constant, equal to 27 if n = 0 and to
mif n # 0.

are matrices depending oﬁ'the shell geometry

and material properties. Their explicit

form are given in the Appendix.b

is a matrix differential operator depending

on the shell geométry. Its explicit form is

"given in the Appendix.

is the second derivative with respect to the

time t of the Vector field ug.

gy e
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‘ By inspectiqn of the operators defined above (see
Appendix), it can be seen that the ﬁrdman—Weierstrass corﬁer
conditions for the variational problem requires that the
components of the displaéement field u v referred to the
global system of axis {er, egr €, 5,93} must be continuous

uhrespectively of the continuity of the shell surface.

A possible approach for the finite element solution of
the variational problem consists on the introduction of the
colateral condition in the functional itself. " This option,
which is followed by a number of authors 5’7’il,leads to an
unnecessary regularity for,fhe displacement component u%n
since the~&ariational problem is solved within the spaces
Kinﬁ, Varﬁ asseciated with'Hl(I) X Hl(I) x'Hz(i) ae can be

seen immediately by inspection of Bn (see Appendix). -

Here Hm(I) represents the space of functions v defined
in I, square integrable, and with all the derivatives up to

the order m also square_integrabie, in the Lebesgue sense.

The approach followed in the present paper will deviate

from the previous one, in the sense that all the four components

will be kept in-the solution. That is, the variational problem

will be dealt with the four fields u® , u¥ , u¥ , u? ,
n n n n

and
the solution is then defined on Kini associated to the space

HY(D) x #8Y (1) x BHY(I) x HY(I).

For sake of simplicity we will drop in the sequel the

superscript £. The development for both hérmo%ics, symmetric

P
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and antisymmetric, are entirely similar and the following

" development will cover both cases.

THE CURVED ELEMENT

In the solution with the present finite element two

kinds of approximations are involved:

i) Approximation of the surface geometry (FIGURE 2). The
middle surface defined by X, will be approximated

within each element by:

0, =3¢ OE2 - DA -8, o

(982 - 1) (1 + £)

Bl

2

= (1 - €2 ) (1 +3£)

0, == (L= £2)(1-30), o, =%

and
i i . ' .th
(r~,z7) are the nodal coordinates of the i node used

for the approximation of the geometry (FIGURE 2).

ii) Approximation of the displacement field. Within each
element, the displacement field u. will be approximated

by Eg with the components defined as follows:

uln =i=I ¢i Yip
b 3

- i
Yzp _iz ¢ Y2p



3 i
i In. . i.
u; = X tyo, uy  + 8'" Yy, (3 = uy )}
n =1 1 n ci R% n
3 X i ,
) 1 s! i
u, = (- ¥, =) w0
*n 1-2‘—'1 R; s i,k RJI. n

where:

e mFEE-D, 6 mFEE+D 4 =1-E
dy;,
- . 1 . .
lpli,g,—. 4 g . ‘ -
o, = 82 - 02 @+ 2
2 2 3 5
b, = 2+ 0% -3¢

B, = (1 - £%)7
by, =58 W-02 @+p

2 1+6)2@1-¢

RN

lpl ==

2

v, =€ (1 -7

- -

Also, s'' and R% stand for the values of s' and R, at

" the ith node used in the approximation of the displacement
(FIGURE 2). They are evaluated using the representatidn of

the shell surface given in i).

s i i i .
The guantities Uln’ uzn, u3n represent respectively

the compdnentvof,the displacement field of the ith node -
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- used in the approximation of the diéplacement - and u n

1

is the rotation of the i node about the axis t,.

Within the limits of the approximations involved in

the solution the following conclusions can be stated:

1.

By inspection of the operators involved in the

functional associated with the variational problem ,

it is clear that they generateﬁthe coefficients A(E)
which are algebraic expressions of r, z and its first,

second and third derivatives with respect to £.

-C@lling respectively A(&) and Ah(E) the exact ‘and the

approximated coefficients it can see that:

lim |Aa(E) - aP(e)| = o

"h=>0

uniformily, where h stands for the arc length of the

element..

.

For the particular case of a constant radius of curvature

R,, the exact coefficient A(f) is related to r(g), z(f)
and its first and second derivatives. Hence the shell

geometry can be approximated by quadratic polynomials:

. i i '
with r" and z© related to the three nodal points used

in the approximation of the displacement field (FIGURE 2).

[}
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2. The fields u?n, u?n, u?n refered to the global system
e.r €gr €, = e, are continuous unrespectively of the

possible discontinuities of the middle surface S,.

h .
3. u,, is continuous.

4. u?n verifies the colateral condition within each element.

h h

Indeed, with the proposed interpolation for Wy s Uz and

u?n it is easy to show that:
du
dg

w

h
u, n

-1
*n 1 n s'

This is exactly the colateral condition. In summary,
the space King generated with the curved element presented
here satisfies all the continuity requirements for uln' uZn'

u, and u,*n preserving moreover the colateral condition for
n

every point of the shell surface.

NUMERICAL APPLICATIONS

To check the numerical performance of the method, several

static and dynamic —both eingenvalue and time-history-problems—

were solved. The eingenvalue problem was solved using the
subspace iteration technique10 and the time-history solution
was performed with Duhamel's integral. Some selected
applications are presented in the sequel, comparing the results
with data available in the literature. In all cases the radius
R, is constant and therefore, the shell geometry was

approximated with curved elements with three nodal points



coinciding with those used for the representation of the

displacement field

1. Toroidal shell under internal pressure p (FIGURE 3).
In Table 1 the results obtained with the proposed method
using 60 elements are compared with the results presented
by Kalnins® and obtained by direct integration of the
differential equations of equilibrium.
Table 1
Stress resultant N,, and normal displacement usz for an
internally pressurised torus.
Angle ) 909 1126 @ {162 @ {180 @ |198 @ {234 2 {270 @
N1i 3 Kalnins [|1.601 {1.650 }1.832 |1.,990 }2.254 |3.168 {3.997
s 0 |This study [1.597 (1.647 [1.854 [1.912 | 2.255 | 3.167 | 4.006
U, 103 Kalnins {1.298 |1.427 |2.159 |14.815]4.162 |1.269 {0.100
b This study [1.296 {1.426 {2.165 |4.804}|4.179 |1.272 |0.100
[ .
2. Circular éylindrical shell clamped at both ends. The

shell is sﬁbjected to an internal pressure p and a uniform
temperature rise T,. FIGURE 4 compares the results
presented by Kraus’ and the results obtained with the
element proposed in this paper for h/R = 20 and different
ratios L/R. L is the length of the shell and h its

thickness.
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In this example.the natural ffequenbies of a cylindrical
shell capped by a hemispherical head (FIGURE 5) ' are
determined and compared with £he reéults présented by
Galletly and Mistry '°. The solutions presented by
these authors are based, one in the finite difference

solution of the variational problem (BOSOR 3) and the

other in the finite element method (MiST 1). In

‘FIGURE 6 it is plotted.the natural,freQuenqies vs the

number of.circunferencial waves for three cases of axial
modes (m = 1, 2, 3). Two cases of boundary conditions
are analized, namely u, = 0 and u, free at the base of

the shell. .

In Table 2 the solutions obtained by several authors are

presented for the first axial mode.

Table 2

Natural frequencies for the axial mode m = 1

Circunferencial
mode n

Hammel **|Mist 1 |Bosor 3 |Kalnins ° |This study

0 - | 2.0584 | 2.0587 | 2.0589 | 2.0597 2.0583
1 o 0.9431 | 0.9438 | 0.9435 | 0.9436 0.9431
2 1.6091 | 1.6205 | 1.6222 | 1.6207 1.6206

3 1.3057 1.3070 1.3100 - 1.3072

4 1.0942 | 1.0940 | 1.0978 - 1.0945

The discretization using the curved element was performed

with 11 nodal poinfs for the-cylinder and 21 for the

A Rt SRR AR
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hemisphere, resulting in a considerable reduction in
the number of elements as compared with. the solution
using the code Mist 1 where 61 nodes in the'cylinder

and 63 in the hemisphere were used.

4..  In this example it is presented the response of the

‘cylinder represented in the FIGURE 7.

In the FIGURE 8 and 9 .it is plotted the variation with

respect to time of the non-dimensional Fourier

coefficients of the normal displacement u, for n=0,l,2.v

In the FIGURE 10 it is plotted the non-dimensional
Fourier coefficient of the axial bending moment M. at
the‘clamped edge vs time. All the results are compared

' 16
with those obtained by Johnson and Greif .

CONCLUSIONS

- From the'tﬁeory and numeriéal applications preéented
above it is seen that it is not necessary to require tﬁe
continu?ty in the first derivative of Uy, - The rotation Uy s
which involves Uy, anq'the first de;ivative of Uz, » must be
continuous and satisfies the colateral condiﬁion. It is
worth-while noting that this continuity of Uy, allows for

corners in the shell generating line.

As it is shown in the numerical examples the curved
element proposed in this paper leads to very. good results.
Also the number of elements necessary to obtain these results

was relatively small.

A e
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APENDIX

N e R §

.
b
3
i

In this Apendix it is defined the operators used in the

paper.

‘Definition of the operator E:

— - ab, , .
C1 + T \)lﬁ.cl 0 0 . —aD1 0 0 0
1 : :
ab, :
| aH G 0 6 =-aH_. 0
Git R 2
H 7
E = / - a 1 - %
¢ =x, o 0 -af
Sym, .. D, v,Dp 0 0
D, 0 0
H, H,
H, L
where: ‘
a=20 ; ~for the Love theory
a =2 - %’ . for the Flligge theory
R R, , ,
h3
3
h
G = = ) ——
1 daah' Hl daa 12
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o
1

E;/(1 = Vy,v,,), 1= 1,2

ii

d;3 = Gy,

E, , E; | Young modulus of elasticity in
the directions t; and t,
respectively

G, : . " transversal modulus of elasticity

Vij Poisson coefficients

Definition of the operator F :

F =J FJ
n n n
where:
[‘1 0 0 0]
0 1 0 0 :
0 0 1 0
J ="
n 0 0 0 1
0 1/R, -n/r 0
| 0 0 0 0 |
r—cl' 0 0 c, 0 0
- c, 0 0 c, O
C, 0 0 C,
F = p
’ c, - 0 0 ,
Sym c, 0
- C3

L
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p material density
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1 12R,R, ' 2 ~ 12 'R, R, " T3 " 12 80 R R
b = 0 for the Love's theory
®
b = 1 for the Fliigge's theory
Definition of the operator Bn:
1 4. 0 1 0 ]
S'dg R1 .
_x -n 1 0
s'r r’ R,
0 1d. 0 0
s' dg
B =
- n
n ~r' 0 0
r s'r
0 0 0 1 4.
s' dg
0 -n ) 23 ‘ r'-
rR, r2- ’ s'r
0 afa 1,, 1. a,] n_xr' _a&.
sﬁ[;g(R2)+ Rz(dg) s'r'r dag ) 0
0 -r' nr' n
i Serz gip2 r

The element (1/s') (d./df) operating on u, will produce the
;erms with the highest derivatives with respect to £ (third

order derivatives),

B g RIS

Vg L
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With the above definitions andthe definition of the

2 .
vector un we obtain:

2 ) [
EB, u- = (N11,szIN121N21:M11:Mzer12er1)n

The quantities Nij(i,j = 1,2) are the in-plane stress
reéultans, while Mij (i, = 1,2) are the bending and twisting

moments. e

Making a = b 0 (Love's theory) in the above definition

-we obtain:

N2 = N and - M;, ="My

SR et B ¢ T
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FIGURE 6. Natural frenquencies of vibration () for cyiinder/hemisphere
' combinations. (L/D = 0.5, h/D = 0.01, E =1, p =1, v = 0.2).
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FIGURE 10. Nondlmen51onal Fourier ‘coefficient of axial bending moment
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