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In this paper we present a numerical study
of the variational inequality proposed in [_1_] as a model for

a pile driven into the ground under the action of a pile-hammer.

To solve numerically that inequality, we
approximate the non-differentiable functional involved by
differentiableones, thus obtaining the so-called regularized
equations. Then we use the Galerkin technique in the space
variable and a predictor-corrector type scheme for integration

in time, getting an unconditionally convergent algorithm,

Results of some numerical experiments
performed by implementing this algorithm with a basis of quad-

ratic finite elements are exhibited.



Apresentamos, neste artigo,um estudo numeri
co da inequacao variacional proposta em [1:] como um modelo pa-
ra a penetracao de uma estaca no solo, sob a agcao de um bate-es-

taca.

Para resolver numericamente aquela inequa -
cao, aproximamos por funcionais diéferenciaveiso funcional nao dife
rencidvel envolvido, de modo a obter as chamadas equagoes regula
rizadas. Usamos entao o metodo de Galerkin na variavel espaci-
al e um esquema tipo 'predictor-corrector'" na variavel temporal,

obtendo assim um algoritmo incondicionalmente convergente,

Resul tados de alguns experimentos numéricos
realizados implementando este algoritmo com uma base de elemen -

tos finitos quadraticos s3o apresentados.



INTRODUCT ION

To simulate the motion of a one-dimensional
pile which is driven into the ground under the action of a pile
hammer, a variational inequality was proposed in [_17]. The aim
of this article is to present theoretical and computational
results about an algorithm designed to calculate approximate
solutions of that inequality. Some of these results were

announced in a slightly weaker form in [ 2] and [[3].

In Section 1 the physical model we adopted
is explained. The functional framework employed and a theorem
asserting that we have a mathematically well-posed problem are
described in Section 2. Section 3 contains a description of
the numerical algorithm and the convergence results deduced,
all proofs being postponned to Section 5. The numerical

experiments performed are exhibitted in Section 4.

1. THE PHYSICAL MODEL

The physical model developed in [[ 1] can
be understood through the diagram in Fig. 1 and the postulates

adopted for the forces acting upon the system.
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In Fig. 1 two states of the system are
shown: the initial (t = 0) and the state at some subsequent

instant (t > 0),

We assume the pile to‘be a cylinder of
length L and uniform density p, a uni-dimensional repre-
sentation of it being thus adopted. A particle which is at
position x in the initial configuration, occupies the position

Xx +u at instant t, u = u(x,t) being the displacement field.



Let us describe now the postulates we have

adopted.
(i) CONSTITUTIVE LAW : The pile is described as made of a
visco-elastic material with short memory. - That is, we assume

that, under small deformations (although large displacements

are expected), the stress tensor has the form

(1.1) o = a, du/dx + a, du/ox

Here the dot denotes 3/3t and the constants ag and a,6 are

the modulus of elasticity and the viscosity factor of the

material, respectively.

(ii) A VISCO-ELASTIC CHARACTER FOR THE SOIL REACTION TO
PENETRATION : By this we mean that the force exerted at

particle x = L is given by

(1.2) r= -k, oulht) -k, all,t)y

ke and kv being the elastic and viscous coefficients of the

soil.

(iii) RANKINE"S LAW FOR THE NORMAL FORCE FN EXERTED BY THE

SOIL ONTO THE PARTICLE x: This law describes that force

as having a hydrostatic behavior so that



(1.3) |F.| = Rwt « (x+u-1L) Hx+u-1L1 ,

v

where R is the Rankine coefficient, w is the specific weight

of the soil, and % is the perimeter of the pile cross-section,

cf. 4], pp. 240.

0f course, this force only acts after the
particle x has penetrated the ground, and this is the reason

for the appearance of Hesaviside step-function H(s) in (1.3).

(iv) COULOMB'S LAW FOR THE BEHAVIOR OF THE FRICTION FORCE g

This law asserts (cf.[ 5 ], pp.135):

" at a time t and at any point of the

contact region,

i) if |g| < F IFNI then u = 0 ,
(1.4) ii) if |g| = F [FNI then there exists A > 0
such that u = - Ag ,

where F 1is the friction coefficient".

(v) A _FORCE BALANCE LAW, THE PRINCIPLE OF VIRTUAL POWERS : This

principle states (cf. E}S] s PP.25):

"In a Galilean frame and for an absolute
chronology, the virtual power associated to the inertial forces

of a system S equals the power generated by all forces applied



to the system, internal as well as external, for any virtual

motion of the system S we consider".

We emphasize that, as long as we are consid-

ering the friction force, the use of the principle of virtual

powers can not be dispensed of, since we must deal with global

equilibrium conditions.

Let us denote by &8u an arbitrary virtual

displacement and by F(t) the external force that acts on the
particle x = 0. Further let £(t) Dbe a body force and let
S be the area of the cross-section of the pile. Then the

principle of virtual powers(v) implies that

L L
(1.5) J S p Ui (80) dx = - [ Scr(a{lx) dx + [r(aﬁ)jX:L

0

x=0

L L
+ J f(su) dx + [ g(8w) dx + F(t) [30]

0 0

holds for any admissible virtual displacement §u.

As shown in Ref.[C17], consideration of

Egq. (1.1) - (1.4) implies the equivalence between (1.5) and

L L
(1.6) ( S p U (Swdx + S a, ux(gux)dx + ke Eu(a&)]X:L +

0 ]



L
+ ] S a, l.lx (Gflx) dx + Kk, Eu(éu):]X:]_
0

L
+ { R w & F . H(x+u-D)(x+u-D{|a+su|-|ul} dx >
0

x=0

L
[ £(80) dx + F(v) [su ]

0

for any virtual displacement du.

Relation (1.6) 1is called a variational
inequality. It should be mentioned that it does encompass all
properties described in postulates (i) - (v). Its mathematical

aspects will be analyzed in the following section.

2. THE MATHEMATICAL SET-UP

We introduce now the terminology and functional

framework we shall make use of.

Let Q Dbe an open set of the real line IR

or the plane IR2?. By H°(Q) = L?(R) we mean the set of



(classes of) square-integrable real functions on Q. For Q=(0,1).
we shall consider also H!(Q), the subset of L2(Q) consisting of

functions whose distributional derivatives of first order are

also in L*(Q). For u, v in L?*(Q) and 4, v in H¥Q), we
put
<ulv> = u(x) v(x) dx R
Q
<ulv>, = <al|v> + < Vo>,
x! Ux
[ul = <u|u>l/?
0
and
1/2
Iul = <uL]u>1 .

Finally, for m = 0 or 1 and T in (O,%]

fixed, we denote:

11

L2(0,T; HNQ)) = {w : (0,T) » H™Q)

T
| vl = ( (0)[2 af]'/? <=1
L2(0,T;HE™(Q)) C 0 o (01 4t]



L°C0,T3H™Q)) = {w : (0,T) -~ H(Q) 3

il

|l n = ess sup |w(t)| <o} .
L (0, T;H (Q)) 0<t<T m

For the sake of simplicity we shall take
from now on Sz1, L £ 1 and assume that the system is at rest
for t = 0. We are thus led to the following initial-value

problem:

For any fixed T € (0,»] and 9 = (0,1) ,

find the function

u: 0,7 ] ~ HY(Q)

with u = du/dt in H!(Q) almost everywhere (a.e.) and

U = d%u/dt? in L2(Q) a.e. such that

(2.1) p<i|v=-u> + A, (u 3 v = +
AV (Q s v -u) + J (u 3 V)
- J (u 3w > <L | v - u >,

for any v in HY(Q) , and

(2.2) u(0) = 0



(2.3) u(0) = 0 .

The notation employed in (2.1) 1is

i) Ae(u;v) = a<u v, > o+ kg u(l) v(1)

and

I

Av(u;v) a, <ufv, >+ kv u(l) v(1)

are bilinear, coercive and bounded forms on H'(Q).

(This implies the equivalence between the

*{; - norm and the norms associated to both quadratic forms
Ae(w) = Ae(w;w)
and
A (w) = A (wyw)
\% \Y%

In other words, there exist some positive

constants o B _, s BV , for which the relations

e’ Te

o !wli < A ) 2 By iwl? >
(2.4)
| oo T = A @ < osy

hold, for any w in H'(Q).)
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1i) J(usv) = cof H(x+ulx)-1) [x+ul(x)-I] [v(x)]| dx
0

is, for each fixed u in H!(Q), a continuous and convex

functional on v e H'(Q), ¢ standing for RuwfF.

iii) <L|lu>; = <flu> + F(t) u(0,t)

is a bounded linear functional on  H!I(Q).

A theoretical justification for adopting
our model is given by the following result quoted from [:L:[ )
which essentially guarantees that we are dealing with a well -

posed mathematical problem:

Theorem 1.

Given f in L2(0,»; L2(Q)) and F
in  L?(0,») such that df/dt e L2(0,»; L2(Q)) , dF/dt e
L2(0,») and F(0) = 0, there exists, for any given T in

(0,o] , a unique u in L°(0,T; H}(Q)) with
du/dt in L7(0,T; H}(Q)) N L2(0,T; HY(Q)) |,

(2.5)

d?u/at®in  L7(0,T; L2(Q)) N L2(0,T; H(Q))

satisfying (2.1) - (2.3). Furthermore ,
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(2.6) lim | du/dt ll = 0 ,

Tt

which means that the motion tends asymptotically to rest.

On the other hand, the numerical experiments
described in Section 4 i1ndicate that our mathematical model

does provide a good simulation of the physical system.

3. THE APPROXIMATION ALGORITHM

To compute approximate solutions of (2.1) -
(2.3) we first regularize the inequality. By this we mean
take in (2.1) instead of J(ujv) a functional Je(u;v)
obtained through replacement of the functions P(s) = H(s)s and
¢(s) = |s|, appearing in J(ujv), by convex, differentiable
approximations @E(s) and ¢€(S) . As shown in [:l:] s
this procedure leds us to the variational inequality for
approximate solutions U

(3.1) P <u€|v—u€>+ Ae(ue; veu ) o+ Av(u8 3 v-u)

t . (usv) = J (a5 ud> < Lofv - ug>y

for any v in HY(Q).
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On the other hand, (3.1l) is seen to be

equivalent to the variational equation

p < U_| w> + A (u_ 3 w) + A, (u_ 5 W)

(3.2)

+ ¢ < wa (ue) ¢; (ﬁe) | w > = < L| w o>

for any Ww in H'(Q).

In (3.2) and in the sequel ws(ue) stands

for ﬁe(x tu (x,t) - 1) .

From now on we'll suppose a certain
regularization was chosen for a fixed value of e > 0. We shall

take $€ and ¢_ satisfying, for real s,

(3.3) ﬁe(s) =0, if s<0; |$€(S)I < s, |$€(5)"m(5) | < e,
and

(3.4) 9,00 = 0, ol ()] <1,  [o_(s) - ()] < &
and shall drop the index € in the notation for the exact

solution of (3.2), (2.2) and (2.3).

We first consider semi-discrete Galerkin

approximations to u : take the variational equation (3.2)
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restricted to a finite-dimensional space Wy < H'(Q) and not

in the whole space, getting

(3.5) p < ﬁh[ Wo> o+ A (uh 3 W) + A (u ;,W)

o <P _(u) ¢é(&h) | w >
:<Llw>1

for any w in Wh.

The parameter h > 0 1s associated to
the discretization in the x - variable and we assume that as
h > 0 the subspaces W, yield strong approximations of

H1(Q) , in the sense that for any w ¢ H!'(Q) there exist

functions Wy € Wh such that
1im | w - Wy | 1 = 0.
h~0
M
Taking a fixed basis {e', ... , e '} of

Wh, equation (3.5) when coupled with initial conditions (2.2) -

(2.3) is equivalent to a Cauchy problem for a system of Mh

second-order non-linear ordinary differential equations: the
unknowns are the coefficients of uy with respect to {ed} .
as shown in Section 4. Before showing how to deal with this

system, let us introduce once more a piece of terminology.



1y

Let T > 0 be finite and fixed once for all,

let N be an arbitrary positive integer and let us denote

k =T/ (N+1) , t_ = nk , n=0,1, ..., N+1

We intend to define approximations

Ut = u™(x) for u_ = uC-<, t.)
n n

For any function c¢™ = e™(x) € Wy associated

to the time level tn s, we'll consider, for 1 < n < N

i) The quotient differences

(3.6a) 2,67 =@t -eh /s x (n=0 also)

(3.6b) 6,67 = (3.6" + aten’l)/z = (g™ g™y ok,

(3.6¢c) a%en = (ath - Bth—l)/k = ™ 26 4 ey k2
ii) The weighted averages

(3.6d) GMHL/2 o (gl oty , (n = 0 also)

(3.6e) Wy 6" = 06" 4 (1-20) 6" + 0 "1

1ii) The step functions
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(x,t) = 1; N RS
(3.6f) ST = I X, | ,
= 3 K y 2. &7 (x)
(3.6g) 3¢ Gk (x,t) = nEO Xy (t) 3, G ,
G . (x,t) = ? <) s, 6T (x)
] 2 (x,t) = I§ <o) 82 6" (%)
(3.61) 9% Gh,k X, = L Xp i
and
N-1
. ~2 - k 2 n+l/2
(3.63) A (x,t) = nzl X, (t) 36 (x)

where Xi (t) 1is the characteristic function of the interval

I—-tn i tn+l)'

To discretize (3.5) with respect to the
time variable we use a predictor-corrector type scheme: at
each time level t, s we simulate (3.5) replacing the time

derivatives, by quotient differences. This leds us to obtaining

an initial approximation ﬁn+l , which is used to define the

Un+l

final approximation . For the ease of notation, the

following convention will be employed in the sequel: whenever

n+l ~n+l

we replace U by U for any of the operators 93, , §

ai or Wy in (3.6), that operator will be denoted by 3t

t

b



t i or
for example
(3.6k)

and so on.

propose to study is the following:

(3.7)

and for n =

recursively by

(3.8a)

for any w in

(3.8Db) P

1,

16

=>

, respectively. In this fashion, we put

5,0 = @™ -uh s,
For any © in [0,1/2], the algorithm
define
Ul = Ul = 0
2, ««. 5 N, characterize gt and Un+l
< 5i Ut | w o+ A Wy U 5 w)
2 n n n-1
A SL Usw) + e <p_(UD) o0 (3. UTT) | w>
=<Ln|W>1
Wy,
22 Ut | w4+ A, (W U™ W

+ A (8, Uhw) + e <¢€(U“) 5! (StUn) | w >

we
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for any w 1in Wh ) where

<t | w>, = < f(-,tn) | w> + F(tn) w(0) .

The positivity of the forms A, and AV
implies that an+l and Un+l are uniquely determined through
(3.8a) and (3.8b). Further, an important feature of the
scheme should be mentioned : as shown in Section 4, the

coefficient matrix associated to equation (3.8) is independent

of n , so that triangularization is done once for all.

Notice that the equation for the predictor
has a (local) accuracy of order 0(k), while the local error
for the corrected equation is of order 0(k?). We shall not
obtain a global estimate for the error because our interest
lies on inequality (2.1) whose solution may lack regularity
properties. Any error estimates gotten for the regularized

equations could not be carried over for the original inequality.

The algorithm (3.7) - (3.8) is unconditional-
ly stable for 0 < 0 < 1/2, while for ©0 = 0 stability is
proven only if h,k = 0 wunder the condition

(3.9 k S(h) < C 5

for some constant C. Here S(h) satisfies
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(3.10) lw[1 < S(h) lea , any w in W ,

and is called the stability function of the pair (L%, H!), cf.

7], pp. V-16.

In more precise terms, we can state the
following result, the proof of which will be postponned to

Section 5:

Lemma 1.
Assume that the hypothesis of Theorem 1

in Section 2 hold, take 0 e (0,1/2] and construct with the

solutions U™ of (3.7) - (3.8) the functions described in
(3.6£) - (3.65). Then
i) { Uh,k } and {Bt Uh,k} are both bounded families in

L7C0,T; HI(Q));

ii) { 5% Uy 1« } 1s a bounded family in L*(0,T; H'(Q) );
M
iii) {82 U } is also bounded in  L7(0,T; L2(R)).
t “h,k

The same conclusions hold for © = 0

provided h and k always . satisfy (3.9).

The estimates in this lemma are basic to

prove the following result, which corresponds to Theorem 4.1 in

Ced:
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Theorem 2.

Llet © e (0,1/2] and € > 0 be fixed, and

assume the same hypothesis as in theorem 1. Choose regularizing

functions @E s ¢€ satisfying (3.3) - (3.4) and let Uh,k =

U be the approximations to the solution u_ of (3.2) ,

€
h,k
(2.2) and (2.3), computed through (3.7) - (3.8). Then, letting

QT = (0,1) x (0,T), as h,k > 0 we have

- 0
(3.11) th,k USILZ(Q ) -
T (strong convergence)
(3.12) 5,07 .- u > 0
-t h,k € LZ(Q )
T
J
T
(3.13) [°<3% U;,k - U fw>y dt >0 ¥we L2(0,T;H1(Q))

(weak convergence)

The same conclusions hold for @ =0

provided h,k - 0 subjected to condition

(3.14) k s(h) < Ypag /B,

with the constants ag > Be as appearing in (2.4).

For the proof of this theorem, we again
refer the reader to Section 5. When this result is put together
with the convergence properties of the solutions of the regularized

equations, as obtained in the proof of theorem 1, we are able to
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formulate the following

Corollary. Under the hypothesis of theorems 1 and 2, the follow-

ing equalities hold for the iterated limits:

lim 1im lu - Uu” | =0
£+0 h,k>0 k2 (g

1im 1lim a -, UE | -0,
e+0 h,k»0 2 LZ(QT)

u being the solution of (2.1) - (2.3) and us

h,k being defined

by (3.7) - (3.8).

4,  THE NUMERI!ICAL EXPERIMENTS

In this section we present some numerical
results obtained by implementing the proposed algorithm with

the finite element method for constructing approximating spaces

Wh.

The pile length is set equal to L and the

interval [ 0,L ] is partitioned into E sub-intervals (elements).

In each of them we take

ey _ (ei
(51> u) = gLuh S e o, GO
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as a local representation for the solution up of (3.5), where:

(el)
u

(1) n (t) is the displacement of the i - th node of
element ¢ at instant t;
(iid @i(x) is the interpolating function associated

to the 1 - th node.

Using this representation, equation (3.5)

implies the following relations for the nodal displacement

(e) .
vector Eh associlated to element e
(e) ..(e) (e) (o) (e) (e
(4.2) M u + AV Eh + Ae U

L - @

(e), =«(¢)
L Je (uh 5 Uy ) .,

for ¢=1, ... ,E and t e [0,T].

The notation employed above is:

(e) -
(M )ij = P < ®i l @j > ,
(e) _
(Ae )ij = A (0. 5 0.) ,
4 (e)
(AV )ij = Av (@i ; 0.) ’



22

(e) - .
(L (t)), = < £ | o, > i#0,
¢ (t)), = <) | ¢y > + F(D) ,
(e) (e) =(e¢) - (¢) . (e)
[:Je (uh 3 U ):]l ¢ < we(uh N (uh ) | o >

Assemblage of equations (4.2) leads us to
the following second  oprder non-linear ordinary differential system
for the global displacement vector of all nodes, which is

represented by Uh

(4.3) MO, + AU+ A U = LD

- J (gh 3y U

Py h

where the notation for the matrices appearing is self-explanatory.

The initial conditions are

(4.4) U0 =0, G0 =0,

Equations (3.8) assume thus the form

a2 n g ol " n _
(4.5a) M at Uy + Ae Wegh + AV 6t gh =

n n-1
Lit) - J_ (Up 5 3, U™
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2 n A n R n -
(4.5b) ML UL o+ AW U o+ A8 UD
n o n
Lt ) - g9 (U 5 8, U,

with 1 <n<N, T= M+k, ©0¢ [0,1/2] and a natural

vector extension for the operators introduced in (3.6).

These equations together with

1)
[an)

0 _ 1
(4.5¢) Uy, = gh

uniquely define the approximations gﬁ for gh(nk).

We implemented algorithm (4.5) with
three-node quadratic elements. The interpolating functions

are then

2. (x (g))zail £ (§=-1)/2 + 6i2 (1 - £%)

+ 6, g(g + 1)y/2

with

x(g) = {&(xy = x) + X+ x, 12, -1 <g<1

X and Xy, being the coordinates of the extreme points of the

element under consideration and Sij as Kronecker's delta.
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The choice for the regularizing functions

was 55(8) = 5(8) and
|s] - €/3 ls| > e
¢€(s) =
e [(s/e)? - |s/e]®/3] Is| < ¢,
L
so that
sgn (s) ISl,i £
$2(s) =
2 s/e - (s/e)? sgn(s) ls| < €.
Using a non-differentiable @6 did not

affect the quality of the results obtained. 1In all examples a
five-element regular partition was used, and the calculations
were performed on the IBM 370/145 at CBPF with double

precision. The parameter © was chosen as equal to 1/4.

ExamEle 1.

We study a bar with one of its extremities
fixed. This must be understood as a test case for validating

the code, as no friction is involved.

The value adopted for At = k was .1 , the
other data being shown in Fig. 2. For the elastic case, the
solution is compared with the one proposed in [:9:] . The

stress was also computed, its values being plotted in Fig. 3.
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Examgle 2.

We study the motion of a pile for a system

with the following characteristics:

a, = 1003 a, = 1 3 k= .1

t/5 0 < t < 10
F(t)

n

In Fig. 4 the displacements of the
extremity x = L are plotted and compared with the solution
obtained in the quasi-static case. We took At = .05 and

£ = 10—7 .
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A better simulation of the dynamic force exerted by the pile
hammer was considered by taking the externalAforce () as
described in Fig. 5. In that figure, the displacements of both

extremities of the pile ave plotted. The physical constants are

the same as in Example 2, except for a, =1 and p = .01.
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5. THE MATHEMATICAL PROOFS

In this section the technical details of the

proofs of Lemma 1 and Theorem 2 from Section 3 are presented.

Proof of Lemma 1.

The first aim is to reach an estimate of

the form

(5.1 Ju. .| + 8, Uh’kl

bk o, TH (o)) L2(0,T3;H(Q))

A
(@]

+ |3, U |
B,k e L) )

for the step-functions defined in (3.6f) - (3.6h), with C = C(T)
independent of € , h and k. For this, as well as for all

other estimates, the technique is to choose convenient test -

functions and to operate upon the relations thus obtained.

Take in (3.8b), w = 8. U to get

p - _ n-1,, n, n
(5.2) =—{ |3 _uU |3, U |0 b+ A Mg Uy 8L UD)

ny__ n T n
t A (8 U= <y (U )pl(s. U ) 5, U >
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Thanks to the hypothesis about f and F ,

the estimate

holds for some constant K, independent of T, k and n and thus

(5.3) |< L

Using the assumptions (3.3) and (3.4) on

the functions $€ and ¢é , we get

(5.4) c |< "“e(Un) 6! (St u™y | 8. Ut s | <
n n
e L Uy | s U | =
2 1 n n
CC+|U|1) ldtU|0.

n

To handle the term Ae(WOUn;cSt U") when
0 € (O,I/Z] we make use of the identity
NG ™ s (2t o U™l gt LTl

o Ca,(0™hH - a W™

n+l _n-1
+ (=200 A (Ut 3 T2V o
2k
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and of the inequality

n ny2
|a_(u™; 8, UM< A (U2 A (8.U /2 <8, [yls, U712

+ lUnli /4 i] R

getting from (5.2):
o {]a,U%|2 - ER s LI T
+ 0 [:Ae(Un+l) - A (UH 7 <
(2-40) k Be’{ylstUnlf + |Un[§/uy}
+ k {y latun]f + K2/ )
+ 2 k {c2(1+1un11>2/y + Yiétunlj}
< c? Y k ldtUn[i + c? k |U“|f /Y
+ k (K + 4 c?) /y
<a, k (6tUn(f + kK (1L + [Un[j) .
Here X is a fixed constant and we assigned the value Yy

aV/C? . When we sum these relations for n varying from

to L, 1 <L <N, taking (3.7) into account,

1
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L
Li2 n g
U
o [3,U7[0 + o n§1k l§.U°17
+ o Ca ™y + a4 awh ]

L
<K (T + }

kU™ )
n=1 !

follows, and thus:

L
L2 N9 L'l"lz
plBtU [0 o, nzlklﬁtU [1 + 0 o, |U [1
L+l n
<K (T + §J k |JUI®
- n=1 1

In the case of the implicit schemes that
is, for 0 < © < 1/2, we can recall the discrete form of

Gronwall's lemma to get

L-1 Lol n L
6,072 + ¥ k|8 U2 + |UT|? < constant,
t 0 - t 1 1 -
n=1
independently of h , k and L < T/k . This inequality
implies (5.1).
For the explicit scheme, i.e., © = 0, we

must follow another approach to take care of the term-

n . n
AL(UT 5 8 U,

Using inequalities (5.3), (5.4) in (5.2) we

get
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n n+l n-1

: nj2 _ n-1,, . _
p { IBtU [0 [, U |0 b+a, (U050 U

n
+ 2 k AV (StU ) <

k {y |6tUn|? + K (1 + [Un!f) / vy}

and then sum from n =1 +to L <N

1,
o 13, U2 + T kA (5,UM +a kot
t 0 n=1 v t e

L
- AL (U 5 UY) <y ]

k|8, U™ 2
n=1 T 1

L
+ K (T +

k Jut2y /sy -
n=1 !

Now we recall (3.7), the coercivity of

A and AV s take vy = a, / 2 and rewrite
L L+1, _ L L L
Ae(U ; U ) = Ae(U ) + k Ae(U 3 0,U )
to obtain
L
Lz ,1’12 L2
N EMY |0 + (o /2) nzlk [6,U |1 + a, |U |1

L
<2 K(T + 5 k |U™2)/a +
- n=1 v

Lyi/2 Lii1/2
k Ae(U ) Ae (BtU )
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The last term is estimated as follows:

L1/2 L1/2 L L
k AU AL (3 UMD < Kk B |U lllatU |1

L L
< o lu lf/z + (B |3,V l1 K2 /2 o

]

L L
<ag [UP[2/2 + B2 K s()? [3,U7[2 /2 g

where S(h) 1is the stability function mentioned in (3.10) . 1f

we let h,k - 0 in such a way that (3.14) always holds, we

obtain

L
n
nzlk |5tU I? + aelU

L L
a0t + o, :

4 K(T +

"o~

k[Unlj )

n=1

which again implies (5.1).

For the sake of brevity, from now on we
shall deal only with the implicit schemes. The computations
shown above should point up clearly the changes one has to

carry in the proofs to make them valid for the explicit case.

To get another fundamental estimate, this

time for the predicted approximation,take as a test-function in

(3.8a), w = dtUn , with 1 <n <N , and use the relations

S .. R o n-1
GtU + t ) /2
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and

t+hat follow from the conventions in (3.6k). We are left with

£ 3tz e A, (O™ + oA GBUD =
2 k 0 2 k

n, s N Ny Ly n=1,y3 1
(1-20) A_(U38.U) - c <y (U6 (3, U )[6,.U7>

+ <L lgtUn>1 + 2 s, Ut

A bound for the quotient differences of
of second order constructed with the predicted approximations

is gotten as follows.

Thanks to (3.6c¢) and the identity
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n—l}

2

N2 .n -1 _ A o} ~ =1 2
Bt U - 9. U = 2{(6tU - GtU )/k + atU

when we subtract equation (3.8a) considered for n-1 from the same
equation taken for n, 2 < n < N, with w = (cStUn - étUn_l)/k, we

obtain

A A 2 ~ N
: | 5, U= U071
)

, GtUn—étUn_l
+ k 0A ( ) <k|A ((1-20) 3_U
e Kk - e T

n-1

+ 200 UM 5w |

n n-1
w€<u >—w€(u )

<{ 3ol (3 UM >

k

1 n-1 1 ﬁ—?
n—l) ¢€(3tU )-¢€(8tU )

| w

|
+ ck <w€(U
k
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Denoting by o the right-hand side of this

inequality, it is seen that

_ n-1l,1/2 n-2,1/» 1/2
o <k {(1-20) A3 U/ 2+ 20 A (3 U DEE A (W)

n-1 n-1
+ Xk |o.L ]1 lwl1 + ck cllatu |o |w|0
n-1
+ckc, c,l32u ] Wl o,
where C, = C, (Wé) and C, = C, (¢g) . This dependence

of C, omn ¢g implies our estimates will vary with e, as we

must have [¢ | 4+ » with e ¢ 0. It is possible to handle

(o o]

the above inequality in the standard way to get:

IStUH-StUn‘l 5, U"-8 U" ok lEtUn-StUn'l 2
(5.6) + k + k?
K K Kk .
0 1
< ¢ (|o2u™ Lz 4 glaunTh2 4 s URTY 2
— t Q 't 1 t 1
n=1,» 2 n-1 2
+ |3, L |1 + [93U [o 1D B
The aim now is to bound 62U and

t°h,k
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aiuh K Consider equation (3.8b) for n and n+l, and take
2
for both
- n+l n _ n _ o +1/2
w = GtU - 6tU = k 6t BtU = k BtU .

After subtraction, the following relation

is reached

]‘;'p ¢ Jazu™ e - fazu” |§}+&Zi s, (320712
+ %— A, (a7 atUn+l - atUn'1>

= kP< g M | 92 UMHH7 5,
- ek<[P U™y _(UPT] 025 UMy a2yt /2 s

- ok <y (UM 323 U™ -41 (8 UMY 220725

The left-hand side of this relation has

the same form as that of (5.2). To deal with the last term
in the right-hand side, (5.6) must be used, while estimates

for the other terms are straight-forward:
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ii)

iii)
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n +1/2 n
P <0 LT N0 ) < w1 suy
n+l/2
+ oy IB%U | 2

ck [<[@ U™y (U] ¢1(8 Uy [a2pntl/2;)
€ € et +

n n+l/2
SKREC LU Sy yagutt R 2

ekl < (UM B B U™ - 91(R U] 220" 1/2 5

~ ..n+l -~ n
2 s, U -8, U
<k ecCC t t IazUn+l/2l
= ) i
k
0
~ n+l ~ nl?2
6. U -85, U )
< k2 ¢ { t t /ey o+ y lazUn+1/2l
- €
k
0
ke (y[agutttizye Clagu™[2+ k[ ]2, 02 + |a

+ Iathlj + |a§_Un;: ) /oy

b
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Putting these relations together we reach

n+l/2

2+l |27y 2 2
P {IBtU [ [32U |0} + 2k A (32U )

0

n+l _ n-1 _ nyi/2 Nyi1/2
+ 0 [A (U T-A (3 U] < (1-20)2k A(B U ZA (8.8, UM
+ 2k 02 o2 2yl 2
{8, L ll/uy +C_|3,U |o /uy + C_|32U |0 /4y

n n-1 n n
+ k (]a, U ]f +]3,U lf + |o, L lj * |a2u ls) /uy}

+ 12 y k |a2ut*l/2)2
t 0

>

from which

{Iaiun+l]2

- 1'1+l/2 2
) |

27104 2 2
KXY |o} + 4k [a2U
n+l n-1 n
+ [:Ae(atu ) = AU T < Cck {]aU |2+
N2 n,, 27100 2
+ IBtL ll + o, ]0 + ]StU I0 }
2 2 n-1,, n n
+ Ck* (|a,U |1 + U |1 + oL |f + 92U l; )

nya n n-1 n
= CkA{]a LT 4 fau [T+ 1 U712+ 2y 123



41

follows, by assuming k < 1. Summing up from n = 1 to

n=L<N-=-1 we obtailn

L
IBZUL+1|2 + K 2 lazUl’l+l/212

L+1 2712 1 0
+ A (U < |afU |° + A (3 U + A (B U)

L
I S AR E 70 7l L T R A i
n=1 ! ! 0

and therefore, by recalling that 3,U% =0

L
12 27711 (2 2.0 12 2 Ny
<c {la.U |1 + |afut|? +kn§l[:|atu |0 + 8,172 + o U 12773

The bound we are looking for will be obtain

ed as soon as we can estimate |3,U'[ and |3iU1[ . With
1 0

w = BtUl = 2 6tU1 kaiul = U2/k in (3.8b), we obtain

2
p Ik [R2UM|2 + 0 A (UP)/k + A (3, UN)/2 = <L'[3.U'>,

where use was made of (3.3) and (3.7). This relation implies

that



L2

latUll1 < constant

In the same fashion, by taking w = Bi Ul=

U2/k? = 2 atul/k = atul/k in (3.8Db) we get

u

2:4112 2 k 2771 1 1
o |33U |0 + 0 A(U2/K) + = A, (32UY) = <3, L |3, Ut>,

2

+ <f(0)|8%U1>

| A

2 1{2 2 277112
< {|atL1]1 + lBtU |1 + |f(0){0/ p + ploiU |0 } /o2

and consequently

|azut|? < constant.
t ey =
Thus we can conclude:

~

(5.7) |3, U + |3

| U
h,khy (0,T3HI(Q))

2 |
Thykire g piHt(Q))

A
(@]
-

+ [a2u .|
ths ke i)

where C = C(e,T) does not depend on h and k. This finishes

the proof.,
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We remark that (5.1) and (5.7) are the

discrete analogous to estimates (3.28) and (3.32) in [1].

Proof of Theorem 2.

The conclusion of Lemma 1 implies the
existence of a sub-sequence of {Uh k} s for which we shall use
?
the same notation, as well as the existence of functions U = Ue,

U, , U, € L%(0,T;H'(Q)) such that, as h,k - 0 we have the

weak convergence

2
(5.8) Up e > U Uy > Uy s 330 4 > U, .
(Notice that the weak-convergence of B%Uh X
k]
is a consequence of having 32U 8] weakly.)

_>
t°h,k 2

We claim that U, = U and U, = U .
Indeed, denote by D(0,T) the space of infinitely differentiable
real functions ¢ on [@,?j thaf vanish outside a sub -
interval [ §,T-867] with & = 8(y) > 0. Now take the vector-
valued distributions D'(0,T;H!(Q)), that is, the set of
continuous linear mappings from  D(0,T) +to HI(Q). It is
seen that the functions f e L?(0,T3;HY(Q)) are naturally

associated to the distributions T(f) in D'(0,T3;H!'(R)) through

T
Y e D(O,T) » <T(H),y> = { J PCO)£(t)dt}r e HY(Q)
0



in such a way that, for f, g, fn

i) if <T(£),9> = <T(f,

then £, = £, ;

ii) whenever fn > £,
< T(fn),w >

that is T(fn) - T(fo) in

For
than §(¢¥), use of the
Lil
(b. .=b.) = =~
520 1+l 3
gives

<T(atUh,k)’ P> =

mn

e L?(0,T;H ()), n = 0,1 ... ,
), u> , ¥ ¢ e D(0,T)
weakly, then
> < T(E£)Dsv >, ¥ v e D(O,T) ,
the sense of distributions.
fixed ¢ e D(0,T), if k > 0 1is 1less
summation-by-parts formula
L-1
jgo (aj+l—aj) bj+l +ap bL - a bO
t1’1+l
N n+l .n
y LU p(t) at =
n=0 k
t
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N Thel th
= - Y vt { J pt)dt - J p()dt ¥}/ k
n=1 tn tn—l
= = < T(Uh k s Bt v o> .

with Btw(S) = {y(s+k) = P(s)} /k

Now recall that if ¢ e D(0,T) ,

|3, v=1] ~ 0 , so that
t 2
L2(0,T)
<T(8t h,k Y>> = <T(U), ¥> = <T(U),¥> >
from which we conclude that Ul = ﬁ because from (5.8) we

can infer that

<T(3 > <T(U,),y¥>

t Un,10 ¥

The equality U, = U is deduced in a similar

way, and therefore we can rewrite (5.8) as

, .
(5.9) Upk > U » 3, U > U, 32U > U ,

the weak convergence in L?*(0,T3;H!(Q)) always being meant.

The aim now is to show that U equals the

solution u, of (2.2) - (2.3) and (3.2) and that the modes
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of convergence described in (3.11) - (3.13) do hold.

Observe that, as long as we show the
equality U = U s by using the uniqueness property of (2.2) -
(2.3) and (3.2), we can deduce that the choice of a sub-sequence
is unnhecessary : convergence of the whole family Uh,k
occurs.

To prove that U = u, we show that U is

a weak solution of (3.2), in the sense that

T
(5.10) J {p<ﬂ|v> + Ae(U;V) + AV(G;V) } dat

0

T T
- J <L|v>, dt = - J c<1p€(U) ¢e (W |v> 4dt
0

0

holds for any v e L2(0,T3;H'(Q)). Then we make use of the
same reasoning as in Theorem 3.1 in [:1:] to deduce that any
solution of (5.10)satisfies (3.2) , so that by the uniqueness

property, the conclusion U = u. is reached.

In order to get (5.10), denote

N
(5.11) Lk(t) = z

LB x]; (t) e L2(0,T;HI(Q))
n

0

so that
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(5.12a) 1im L - nl 1 =0
>0 L2(0,T;HY(Q))

Take also an arbitrary v e LZ(0,T;H!'(Q))

and strong approximations vt oe Wy, in such a way that
(5.12b) lim |V - v =0
h,k 2 RS
I, h0 ’ L*(0,TsH*(2))

For n=1, ... , N, take w = V' in (3.8b);

multiplication by k and addition yields

n

N
7ok {p<3%Un V0> e A_(Wg gy vt
n=1

)

N
n, ,n n {1l n
+ A (8 UV b+ e nzl k <y (UDeLSUD v >

Employing definitions (3.6f) - (3.61) and

(5.11), we rewrite this relation in the equivalent form

T
(5.13 <52 . .
) J {p atUh,klvh,k>+ Ae(weUh,k’vh,k)+Av(6tUh,k’Vh,k)} dt

0
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T T

- <L |V, >, dt= - ¢ | <y (U '(§,U_ )|V > dt

Lk Pe Oty 1 1V
0

where we are denoting

v, ) = %I Ky M
be h,k -] *n we i
' (3, U ) = Izq Ktrpr(8, u™
o (O¢ Up i) = Lo X 004 -

Relations (5.9) and (5.12) imply that the
two integrals in the left - hand side of (5.13) converge +to the
corresponding ones in (5.10). All left to show is the convergence
of the non-linear term. For this result, stronger modes of

convergence than the ones described in (5.9) must be obtained.

Let x e [0,1 ] be fixed. The family

Uh k(x,°) is uniformly bounded in L2(0,T) and satisfies
b

H
(en]

(x,t) % dt

T-o
1lim [ th,k (x,t+0) - Uh,k

g0

uniformly with respect to h and k. Thus by Frechet-Kolmogorov

Theorem, (see [:10:1, PP.275), Uh K remains within a compact
b

set in L2%(0,T). By using Tychonov's Theorem on product of

compact spaces (see [_107], pp.6), we conclude that Uy . is
9
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contained in a compact set of LZ(QT), so that the existence of

a sub-sequence of U -still denoted by Uy o ~ for which
th b

(5.14a) lim |U - U | = 0

h,k>0 DK L2(Qy)
is guaranteed. By a similar argument we arrive at a sub-sequence
for which
(5.14b) lim [d, U_ . - U] = 0

h,k»0  © Dbk L2(Q,)
holds.

The last step in the proof is to obtain

the pointwise limit

(5.15) lim ¢! (3, U ) = ' (0) .
h,k>0 € €

This relation together with (5.12b) and
(5.14%a) plus an application of Lebesgue's Dominated Convergence

Theorem shall yield the sought conclusion:

T T
(5:16)  Lim [ Ve lUn, 100 CO0p Uy 10 1V, p>dt= [ W (W (U ]v>at .
0 0

Notice that, since

oo s Un + (Gn+l

n+1l

b
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(5.14b) would imply §, U > U in L?(Q;) provided we have

t “h,k

~n+1 n+l (2

= 0(k)

(5.17) sup

OfpiN—l 2 k

uniformly with respect to h.

Picking as a test-function in both (3.8a) and
(3.8b) w = (Gn+l—Un+l)/2k, after subtracting these equations

we are left with

2

~n+l .n+1 |2 0 o R
2 p U U s e ‘Un+l _ Un+l .
k 2k 2k 1
0
1 1 :
~n+ n+
-
| 2k |
1
2 2 ) Tk
< 2 ié Ut -y T +
a t t 0
v
2
\ %y g+l _ yntl |
2 2k

which implies
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~n+l _ n+1

Consequently (5.17) follows, if we use the

identity 2 St - 5t U™ o+ at Un-l and the estimates (5.1)

and (5.5). The proof is thus concluded.
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CONCLUSIONS

For a numerical simulation of the motion of
a pile propelled into the soil by a pile-hammer, a variational
inequality is proposed in Egs.(1.6) and (2.1) - (2.3). Theorem
1 in Section 2 asserts that they give rise to a mathematically
well-posed problem, while a physical Jjustification of the
modelling is shown by the computer experiments exhibitted in
Section 4. These calculations also confirm the theoretical

studies of the algorithm used, as described in Section 3.
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