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ABSTRACT

An analysis is made of the interaction between classi
cal electromagnetic and gravitational fields and quantized com-
plex scalar fields. In the case of homogeneous electromagnetic
fields and a cosmological model of Kasner's type, we obtain
explicit expressions for the parameters of the Bogoliubov trans

formation and for the number of created particles.

I - The Interaction Between Classical Gravitational and
Scalar Fields

In this section we briefly review the interaction bet
ween classical gravitational and complex scalar fields in order
to obtain some expressions which shall be used after. We also

analyse the properties of the scalar fields under conformal
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transformations. In what follows, the sources of the gravi-
tational and scalar fields are supposed to be specified inde
pendently of each other. The metric tensor has signature

( + - - - ) and we use a system of units in which Planck's
constant, the velocity of light in vécuum and tha gravita-
tional constant are equal to one. In our conventions, for
any arbitrary vector field Va we set VUIIAIIO - Vullollkz

= R V€, where the double bar means covariant derivative.

HEAP

It is well known(]’z) that conformal invariance of
the equation of motion for the scalar fields has significant
consequences on the mechanism of creation of particles by
a non-stationary gravitational field. Due to this fact we
shall consider the scalar field conformally coupled to the

gravitational field and so the Lagrangean is

* *
L} (9%F 0| 40| - (m* + ZR)670) (1-1)
where R= gOLBRmB is the scalar of curvature. From the Euler-

-Lagrange equations we obtain,

1 — aB 2 .1 _ _
= (79 9o g (07 agR)e =0 (1-2)
If m=0 this equation is invariant under the conformal transform
ation defined by ¢ > ¢ = ﬁ](x)¢ and g =+ g = Qz(x)g

uv uv pv’
Associated with the scalar field, the object of

main interest in Cosmology and Astrophysics is the energy-mo

mentum tensor Tuv(x) which is defined as

o
8 f d4 X af ='f TOLBGQOLB d4x

The result of the calculation gives



T =4 L+ (R * 1-3
aBf ¢i0"¢IB - gas + '6-( QB-QC’-B + VO(.VB)¢ ¢ ( - )

where [] = gxpvk A

vative. This tensor is symmetric, trace-free and divergen-

Vp and Vv, is the operator of covariant deri-
celess. With the help of the energy-momentum tensor as given
above one obtains the conserved quantities s* associated

with the scalar field as
s% = 7% P | (1-4)
where 58 is the Killing vector field associated with the given

metric tensor, defined as EUIIX - glllu = 0.

The momenta m , m conjugated to the fields ¢ and

*
¢ are defined as
0 * 4,
IS A M T AR e L (1-5)
& | u y
Y 5¢|O

With these quantities we may calculate the Hamiltonian H de

fined in the usual way,

1,3 * K o
H = Id X(“¢io +om ¢lo - 2)

3 nw* T 0J n* 0J
= |d°x [ = - A by T 9 4. (1-6)
g V-9 g ) q°° |
ok 0] % Ca o 2 *
+ /g (igg I 533 b5 7 9006 5+(m +3R )0 ¢{]

Hamilton's equations of motion are

on _ _ 1g% ok % o ij * 2,10y,
N '(£§35)|j+(zg%377 o1k 9 )11'(/75 q ¢lj)| -(m7+zR) 0

3¢ . 1 * 0J
(m - V-gq . I-7

For details see(3’4).



I - Field Quantization in a Non-Stationary Riemann

Space-Time

To begin with, we shall consider a general linear
free field ¢ in a given Riemann space-time. The quantization
procedure can be carried out in the same way as in the flat

space-time case. Let

by = 0 (IT-1)
be the dynamical equation satisfied by the field ¢ , obtai

ned from a Lagrangian e " through the Euler-Lagrange equations

(S\/

éw = 0. 0 Is a self-adjoint operator.

Let us assume that in the region Q of the space-
-time of interest there are complete space-like Cauchy
hypersurfaces o for the equation (II-1). We introduce the

equal time canonical commutation relations

W(X,t),w(Xx',t)] = [n(X,t),m(X',t)] =0
T - . (3),2 > (11-2)
L‘.”(x3t):m(X',t)] = i¢§ (X X')

8

The next step should be a choice of the represent-
ation of the commutation relations (II-2). However, some
difficulties appear at this point which are consequences of
the fact that we are considering a non-stationary space-
-time(3). As we shall see later, this choice is not unique
due to the fact that there is not a conserved energy as a
generator of the symmetry group. So, the vacuum state
as defined in the usual way is not uniquely determined.

We shall further proceed to stablish the forma

lism. Let ¥y and by be two complex solutions of eauation



(II-1). Because ¢ is self-adjoint we may define an inner
product for w] and wz in the usual way.

We may now introduce a complet set of conjugated
pairs of solutions ¢j and ¢; of equation (II-1) which sa-
tisfy the orthornormality conditions

*
(65005) = 855 » (b505) =0 (11-4)

and the following expansion for the field y :

bk
Y é E (Ak¢k + Ak¢k) (II'S)

In the above expansion Ak and Az are operators which due to
the commutation relations (II-2) must satisfy the following

commutation relatijons

1.
[Ak,Ak.] = §(ksk') » [A LA =0 (I1-6)
which define the algebra of these operators. Then, it is

possible to define a Fock space of state vectors and a va-

cuum state by the relation
Akl0> = 0 (11_7)

for any value of k.

Let us apply the scheme developed above for the
case where ¢y is a complex scalar field and the space-time
is homogeneous with metric

-

ds?-= dtz-gij(t)dxidxj (I11-8)

The equation of motion for the scalar field is given by (I-2).
We may write the following expression for the sca-

lar field:

o 3 N P |



In (II-9), wk(;) are eigen-functions of the three dimensio

nal Laplacian operator with eigen-values -kz. Clearly, we
L >

ik, x

have wk(x)~ e The time dependent functions @k(t) sa

tisfy the equation

2 do
2
E%Z o, + 73— + al(t)e, = o (I1-10)
where
2 2 ij Vo= 9::9ij
Qf(t) = m“+ =R - K.k, iJ I1-11
(6 =% gk - g (kK L THEY (11

Due to the commutation relations (II-6) the functions @k(t)

must satisfy the relation

u (11-12)

O b - by =
It is clear that the functions ¢k satisfying equation (II-10)
are not uniquely determined by the above condition and so we
may have different non equivalent representations for the
canonical commutation relations (II-2) as we observed before.
In other words, we may have alternative sets of operators
(K,B) in which the field may be expanded, and these operators
will be related to the old ones by a time dependent Bogoliubov

transformation(4’5)

*
B, = o (t)A, + 8, (t)B,
(I11-13)

— *

Due to the commutation relations (II-6) we have the following

relation between the functions a (t) and Bk(t):

oy (t)]°

- B ()] =1 (I1-14)

To see how this transformation comes into play, let

us consider the case where the gravitational field is assvmp



totically flat in t » +e, We shall write the scalar field in

the Heisenberg representation as

3 1 = +ik.X
¢(x) ~ |d°k —— (Kk(t)+Bk(t))e
ARG (11-15)
{ L > >
- d3k Gk(t) e+1k.x

where Qé_) = 1im Qk(t). Let us introduce the new variables de

t> -

fined by

dt = v/ 3 dn, e =3y (I11-16)
Equation (II-10) then turns into

d? 2

8—7 wk + Qk(n)wk =0 (I1-17)

n

Note that the Wronskian N(wk,w:) of any two solutions of (II-17)

—

has the value 219(' .

The operator Gk(n) in (II-15) satisfy the same equa

tion as the function wk(n), namely

(n)6, =0 (11-18)

R, = a (n)A, + Bk(n)BTk
(11-19)
— * 1.
Bk = Bk(n)Ak + ak(n)B_k
where *
* 1 ) * i
oy o P
k (11-20)
o ) Ay
B (n) = ) (2 "o + 1 g77)



and A, B_, are the operators K, and B_ in the limit tote,

k* "=k
Condition (II-14), which gquarantee that the commutation re-

Tations if imposed at one time will hold for any subsequent
time, can be easily verified to hold as lak(n)lz-lBk(n)|‘=
- ] H * - J 1 -
= E;ETTT h(¢k,wk) = 1, in virtue of (II-20).

k It should be observed that charge conservation still
holds, as it should be. From equations (II-19) we see that

.f.

only operators of the type A, B' and AT, B are mixed due to

the process of evolution.

Let us now turn to ecuations (II-15). If the func-
tion Bk(t) does not vanish then the vacuum as defined by
(II-7) "changes with time". If we suppose that there were no
particles present at the initial instant t0 (which correspnonds

to the initial conditions Bk(t =1, and ak(t0)=o imposed

o)

; | T -
on the functions g _ and o)), so that . <0|A, Kk|0>t =0

to

then at later times we shall have : <O]K£ FkiO> # 0 and so

t

« L, r.
the old vacuum contains particles. This is a consequence of the

metric being non stationary, which means that these new

particles are created due to the expansion (contraction) of
the Universe. Note that if m=0 and the space-time is confor-
mally flat, there is no particle creation due to the expan-

sion of the Universe(6’7).

A simple calculation shows that
the total momentum associated with the created particlesas
given by Pj = d3x/7§ T? vanishes and so, the new particles
are created in pairs.

One of the main difficulties of this theory is
that we cannot always distinguish between positive and ne-

4,7)

gative frequence so]utions( These concepts may not

have a meaning depending on what kind of geometry we are



working with. The only situation in which we can distinguish
between the two kinds of frequency is that with a stationary
geometry or in the case where the Universe is assymptotically
flat.

We mention also that some problems arise when we
calculate the mean value of the energy-momentum tensor Tuv
associated with the ¢-field as we find it expressed in terms
of divergent integrals. We shall not be concerned with this
problem and refer the interested reader to the existent

literature(7’8).

IIT - The Electromagnetic Interaction of Scalar Particles

We shall consider now the interaction between a
quantized complex scalar field and classical electromagnetic
and gravitational fields. It is supposed that the scalar
field is conformally coupled with the gravitational field
and minimally coupled with the electromagnetic field. The

Lagrangian for the ¢-field is now

“+2R) 0" (111-1)

4, + . + .

n= oy ¥ Telo ) (o!™ < qeuMe)-(m
where wu is the electromagnetic potential. The part of the
Lagrangian which describes the interaction between the electro

magnetic and scalar fields may be written as

491 = - J“wu (111-2)

where J¥ is the current defined as

JH = igMY [(q{l"v +ie¢*wv)¢-¢’r(¢lv-iewv)] (I11-3)



-10-

The equation of motion of the scalar field becomes

2

(6%Fv80| ), - 2ied®Pu o, - e®g"Fu ugo (111-4)

1
/-9
+ (m2+lR)¢ =0

We observe that the presence as the electromagnetic
field breaks the conformal invariance of equation (III-4) for

massless ¢-field, the conformal transformation being defined

as % = 27 (x)¢, 9,70, = Qz(x)guv , and WhsTM= 72 (x)ut.

Conformal invariance is mantained if the space-time is con-
formally flat and the potential vector is of the form
W= (0,T(x)) %),

H
The energy-momentum tensor is now given by

TaB(X) = ¢Ta¢i5 - % gae(guv¢7u¢|v - (m2+%R)¢%¢)
+ LR -g 17+ v )T
6' aB “oaB o B
- ie(¢Ta¢ - ¢'¢la)w8 + ezwaw8¢+¢ (III-5)

and the Hamiltonian takes the form
Ho = d3x/75[;°°¢T o1 - g deT s .-1e§ij¢+.w.¢
> "lo¥]o RASN RN
ij UV
- ieg ¢ ¢l1w .-e g W U ¢ ¢+ m + R ) o {] (III-6)
Let us now consider the case where the electromag-
netic field is homogeneous

-

wu = (0,H(t)) (II1I-7)
and the space-time metric is homogeneous and anisotropic

(Kasner's type),

ds? = qtZ-a%(t)ax® - B2(t)dy? - c?(t)dz? (111-8)
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We shall suppose the electromagnetic and gravitational fields

satisfy the following assymptotic conditions

1im (A,B,C) = Const.
trde (I11-9)
Tim W, (t) = Const.
trtoo 1
For the scalar field we write
ik.X
@t(x) ~ e " @t(t) (II1.10)

From equation (III-4) it follows that the amplitudes & (t)

+
satisfy the equation

o+ v b, +0i(t) e, =0 (I11-11)
where
2 2.1 i j
Q(t) = mo4gR - g1J(ki-eN1)(kj-ewj) (111-12)

and the dot means the derivative with respect to t. Intro-

ducing new variables defined by
T = [ m ’ q)i = Ibi (III-]3)
where V = A.B.C , it follows that |

(t)v, =0 (I11-14)

where

>
lov)
N

2 _y2/3,2 , _ A' ¢'\2, ,B' ¢!
Ac(t) = Vi (1) + —g'{kﬂ— 7)) g t—?}
(ITI-15)
and the prime means derivative with respect to .

Due to (III-9), the amplitudes y, (1) satisfy the

assymptotic conditions

lim y, (1) = e (I11-16)

T+t
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where
2l = vim a (1) (111-17)

>+

With these conditions one can prove that the amplitudes y,_ sa

tisfy the following relations(]o):
* . * 1 . (_)
Vb T by, = 204
* , *f _ . (_)
bovo T vv T R (111-18)
ot - wlv_ = -2ial7)
* * 1

12 12
TR L7 e RO L M R R

<=

+
=
]]

We may decompose the fields ¢ and ¢T as follows

3 - s -> > >

! d"k iK. X t -1K.% ]

= A > 4B 5
o) v2(2m)3 { /QE-) L_ke Yok, TKE Vi (-%,1)
(I11-19)

t 1 d>k T TSNS | Je
o) = s | L [bke v (K, +ate w-(k,r)]

VA~
%k

(Ak,A:) and (Bk’BE) are creation and anihilation operators
that satisfy the comutation relations (II-6).
Introducing (III-19) in the Hamiltonian (III-6) and

using (III-18), we obtain

Hit) = 1 ¢’k u(¥,7)(ATA, + BT B )
7 ZETT k" k -k" -k
(I11-20)
+ V(k,t)A BT+ v (T.)B Al
( s T) k°-k (kyt) -k"k
where we defined

U(Ryt) = Jog(Kar) [+a2(x) [, (R,1) |2 (I11-21)

> _ a7 * 2 > * o
V(k,t) = wolkst)u_(k,t) + A (0w, (kat)y_ (K1)
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It is clear that the above Hamiltonian does not

define a self-adjoint operator in a Hilbert space due to the

presence of the non diagonal terms.

However,

it can be dia-

gonalized if we perform the following Bogoliubov transform-

ation on the operators (Ak,AI) and (Bk,BE)

T ] + * >
L /ﬁ-[A(E,T)IZ -?k(T])+X (k’T)b_k(T]{
] [ + ]
A, = + A(k,T)b_ )
B = T A MR
(I11-22)
o 1 (T > ]
- 1 [ 7 ¥
AT oL k)

In the above expressions T is a given initial instant and

X(E,T) is a function which satisfies the condition

1im A(K,t) = 0

T>to

(I11-23)

In the limits t+*~ the operators (AI,BI) and

(Ak’Bk) coincide
with the creation and anihilation operators for the free

field. Substituting (III-22) into (III-20) we obtained

H(T)

[Q(E,T)<1+IA(E,T)IZ)+

It
—
S———
[
K~
1 w
~A X
—
J
>
—
P
- —
~
g

;r] (a3, +b b k)

T)AZ(E,T)+zU(K,T)x(E,T)+V(?,T))azaﬁk

+

(V(E,T)A*Z(K,T)+2U(E,T)A*(E,T)+v*(?,r))akb_k}

(I11-24)
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Then, the above Hamiltonian will be diagonalized if we require

that

\(Fr) = UEa) ¢ /ui[f,r) - v(E,1)]° (111-25)
V (k,1)
where the positive sign of the square root has been chosen so
that condition (III-23) is fulfilled.

Then, at the instant t to which a given value of the
function A(K,r) is associated, and consequently a represent-
ation of the canonical commutation relations is defined, the
Hamiltonian operator is diagonal and has the meaning of a
well defined operator for the energy associated with the
particles, which number is also well defined in this repre-
sentation. We note that this does not mean that the Hamilto-
nian will be diagonal in other instant r, # 7 and so the
number of particles in the new representation is different
from that in the old representation. The function A(?,T) may
be viewed as a parameter which caracterize a continuous set
of representations of the canonical commutation relations.

Now let us introduce the vacuum state which is
anihilated by the operators ay and bk. The mean number of
particles in the mode k, created by both electromagnetic and

gravitational fields is given by

<Nk(r)>T1 ) T1<OlAkAk[O> = <D|BthkIO>T]
_ Dkl U(K,1)-28, (1)al ™) (IT1-26)
- (E) | s (t)al™)

From the above expression we see that the function IX(E,T)IZ

may be interpreted as the relative probability of creation
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of one pair of particles.

The total momentum of the created particle is

i _ - _ _
T <0|P |O>‘T = . <O|.T0.IO>T = 0 (I11-27)
1 1 1 1
where : : indicates normal ordering of the operators (Ak,AI)

and (Bk,BZ). The total momentum is then conserved which means
that particles are created in pairs. This result is true in
any representation and is a consequence of the homogeneity
of the fields responsible by the process of particle creation.

We also have

2 \

<0]:3%]0>_ =0 (I11-29)
T-I T]
<0]:37:10> = - 1 ¢’k (ko+et;) (a8 ) e, (1), (R,1)]
T] ) ' T-I - AZ(T) A(-)A (T) i i k k T w‘*‘ > T
i k k
(IIT-30)

where Ai are the corresponding components of the metric tensor.
One could argue about how the electromagnetic fields
influence the process of particle creation. Some aspects of
this problem have been analyzed in(g). There it is shown
that homogeneous electromagnetic fields always increase the
particle creation rate in directions along the field and de-
crease this rate in directions transverse to the field. As a
consequence if one believes that the process of particle
creation acts as an isotropization mechanism of the Universe,
then the existence of primordial electromagnetic fields Wou]d
have slowed down the isotropization process due to particle

creation.
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