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ABSTRACT
Suggesting that the hadronic and the current densities of quark-partons
are identical and utilizing duality principles predictions for the average

multiplicities of lepton-hadron Processes in the deep inelastic scaling

region are derived.
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I - INTRODUCTION

Recently the suggestion was made that the parton distribution
functions and the parton. fragmentation functions introduced by Feynman(l) are
closely re]ated(z). The suggestion made in ref. 2 was based on obvious

similarities between both sets of functions.

The actual physical content of such a close (or hopefully nearly

complete) identification of these functions is the following:

It is the basic assumption of the Parton Model (P.M) that the distri-
bution of the final state hadrons has much overlap in phase space with the final
parton state obtained from scattering and decay.Oprartons(a). So by observing
hadrons in final state in hadronic réactions we get information on the phase
space behaviour of the partons. The same ind of information(“) can be got
from inclusive lepton-hadron processes of the type &h » 2'X. What is measured
in these latter reactions in the pertinent kinematical region are the parton
distribution functions, which in the case of the Quark-Parton-Model (0.P.M.) we
Wwrite as d?(x). Here h is a specific hadron, i enumerates the six aquark
states and x 1is the longitudinal momentum fraction of the parton. (To be
exact, in hadronic collissions the parton density in the rapidity intervall
log Pcm <y < log Pcm is measured, and d?(x) represents this density from

y=0 to y-= 1ogP(l)).

On the other hand no information on the current fragmentation region
can be gained in reactions of the type mentioned aboye(a)’(u)’(z). The best

- 3 5
way to learn about this region is the process e+e3 - hX( s ( ).

Now in the framework of the P.M. it is very suggestive, although one
can not definitely prove it, that the current fragmentation region has a
structure very similar to that of the hadronic distribution d?(x). This 1is

because both can be thought of as being produced by the same mechanism of
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interacting and decaying partons.
Now the distribution of current fragments is described by the parton

fragmentation functions(l)‘(z)’(a)’(s) D?(z), where 2z is the fraction of

longi tudinal momentum the outgoing hadron h takes off the fragmenting parton i

So it is very stimulating to assume fn the P.M. that the hadronic
distribution d?(x) and the current distributjon‘ D?(z)_are actually nearly
the same. This means that between the parton and the hole fragmentation region
.there is a p]ateau( ) which in 1ts physical properties is nearly identical wth
the hadroni¢ central p]ateau( ) (neutral and universal) and the heights of the
two plateaus are not very different. It further includes that the hadronic
target fragmentation region corresponds c]osely to the parton fragmentation
region(s). This can be understood from the fact mentioned above, that final
hadron and final state parton distribution have a large phase space overiap.
Further the hole region must be universal, which is not unnatural since the
hole (= antiparton) Eelongs to the diffraction 'sea'. In making this point 1t
is essential that partons are supposed to interact only when they are nearby
in phase space (So only soft events in the sense of ref. 8 are taken :into
account). Within our framework we will also come to feactures of iong -ange

correlations (see p. 11).
The ansatz of ref.2
of(2) = y(2)d(2) o (1)

relates the current distribution and the hadronic distribution via a universal
2

function w(z)( ), If the plateaus of both regions are assumed to have equal

height (this can also be checked by measuring multiplicities) and 1f exactly

the same physics is supposed to go on in the current and in the hadronic




316

region we are led to

or

01(2) di(z) (3)

This includes e.g. that in the process ete” -+ hX one should observe two Jets
with a p1onizat1on regwon 1n between. A]so in the pert1nent k1nemat1ca1 region
of %h + £'h'X there should now be p1on1zat1on. In a global sense eq. 3 menas
that in the current fragmentat1on reg1on no essentiaI new phyS1cs W111 ' be

discovered.

It will be most interesting to investigate this-ansatz in the

framework of lightcone qna]ysis‘andﬁprossing,symmetry(z).

But before doing so one has to dewelop ' es much exper1menta1
suggestions to be tested as poss1b1e( ) because eq. 3 conta1ns severa1 rather
strong assumptions, which are at most plausible from the P.M., but otherwise

unproven.

In this paper we will discuss the consequences of eq. 3 combined
with the duality constraints of ref. 7 for the average mu1t1p11c1t1es of left

moving hadrons in several lepton-hadron semi- 1nc1us1ve processes

In advance we want to make a brief remark concerning the convergence

of certain integrals arising in.the course of our;investigationSn:

If the Regge ana]ysis of deep ine]astic data, wh1ch seens -

substantiated by experiment for smal] x w111 also apply down to wee x( )'
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1

(x +0), then the integrals d?(x)dx must diverge at the lower end of
0

the integration, because as a consequence of ap(O) = 1 the integrand

behaves as -% in this region.

Such integrals will appear in what follows, so it is worthwhile
to clarify that eventually there is no divergence. This comes about because
at x = 0 the parton cascade(l) will be stopped in a characteristic way,
which will imply a drastic change in the -% behaviour, such that the number
of wee partons will be finite. (This by the means that simple Markoffian
chains are no good model for the cascade.) Then Pomeron dominance is only

given at an intermediate range of small x.

If the core should be asymmetric under isospin as argued in ref.15
then the number of partons must be finite because otherwise the Gottfried

integral does not exist (see ref. 9). So in the absence of data one can

perhaps speculate that at very small x an integrable behaviour results.

On the other hand we will rewrite part of our results in a way

that infinities, should they occur, will be cancelled.

IT - BARYONS IN FINAL STATE
We consider the process J(q) + N(p) - hX, where J(q) is the
virtual electromagnetic or weak current, which carries the momentum g, and
p is the momentum of the nucleon target. The detected hadron carries four-
momentum h. The current fragmentation region is defined by:
q2

= — finite
2Mv

q2+-co;M\)=pq+oo; X
(4)

hp 2hq hq
— = — finite; u — finite
Mv q2 , Mv
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The final hadron average multiplicity > s then defined by the relation:

N
d o
J (N~ 2'hX) dudhy =
dg? dvdudh%
(5)
d* o ‘
= <ng> (2N > 27X} 3
dg2dv :

We work in this paper with the distributions N JLn(x,z) defined in
ref. 1, from which <n,> is obtained by z-integration (for details see '

ref.3).

From the work of ref. 9 the following integrals over quark densities

can be calculated (eq. 35 of ref. 9 leaving out the ‘unusual' Pomeron

contributions).
fU(X)dX = % + % / f?p(X)dX;
Ju(x)dx .3 + 3 It fep(x)dx-
I°7 1 ’
Sd(x)dx - 2}4, 31 %P xdx (6)
S d(x)dx = - 23[ + % f f?p(x)dx;
Sis(x) + S(x)}dx = - ,3, + ,32 £F2P (x)dx;

Integration is taken over the whole kinematical region 0 < x <1 and we

have used Feynman's notation(’) dE =u, d %-= u,...etc., f?p(x) =

= JLu(x) + u(x)} + § {d(x) + A)I + 4 {5(x) + S(x)}.
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The relations are valid for an SU(3) singlet Pomeron (see also

ref. 7) from duality principles.

For the special case of a non-SU(3) singlet Pomeron treated in
ref. 9 (introduced to remedy the violation of the Gottfried sum rule) these

equations are changed to

fu(x)dx = z+3 re8P (x)dx

Su(x)dx -1 43 I£EP (x)dx;

| grT I ’

rd(x)dx = 343 %(x)dx;
gt 7 Jf (xdx (7)

£d(x)dx = - 243 1fP(x)dx;

8T ‘N ’

Fis(x) + S(x)}dx = - 3 + 3 2P (x)dx;

T+vy /f 5

If we write in eqs. 6 all integrals e.g. at the 1.h.s., then infinities
due to %- behaviour if they s h o u 1 d occur will exactly cancel each
other. In the case of eqs. 7 one must explicitly assume that the %-behaviour
is changed for x = 0, indepently of but in accord with our considerations

above (see ref. 9).

Eqs. 6 and 7 together with our basic eq. 3 now allow us to calculate

average multiplicities in the current fragmentation region.

We first study the inclusive process ep + epX. With the definition
of ref. 1 we get for x > X0 (where X, 1s chosen such that all but the

contributions from the u(x) and d(x) quarks can be neclegted, see ref. 10

for details):
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PO, (x62) = § u(0Dl(2) + 5 d(Dh(2) s (8)

From this follows by z- integration:
4 1 .
f?p(x)< ngp(x) > =3 u(x) Ju(z)dz +<gd(x) fd(z)dz 3 (9)
where eq. 3 has been used.

Using now eqgs. 6 and expressing u(x) and d(x) by neutrino structure

functions(l) we obtain

<an(X>> — [5 () = ()} UE FP(x) -
36f$p(x) .

- 37001 + 3 (A0 - )+ (10)

+ g 16P(x) - fgp(x)}).ff‘{p(x)dx]

The further results simplify very much if we take x = 1. This

will be done in the rest of the paper, if not stated otherwise. It s

clear how to obtain the results for any x. For x =1 only the u-quark

1 . < .
contributes( ) and we get from (8) and the corresponding definitions of

yn p n : .
Nen’ Nen and Nen the relations:

< ngp >. = < nzn > = -i— {6 + 3 ff?p(x)dx '
(11)
<nep > = < ngn > = %-{1 + 3 ff?p(x)dx }s
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Experimentally the integrat Zf?p(x)dx will be known only with
a lower end of integration ¢ > 0. So there is always an extrapolation of the
data or a prejudice on how much the very small x values contribute. The
following relations are independent of. ff?p(x)dx (and would also be valid
if an ~% divergence were there, leading to e.g. <ngp(x;q2)>' = %.+ %-yolnqz
with vy, determined by deep inelastic data).
n

P - = n - p =1
<nep> | <nep> < ng, > < Mgy > 13 (12)

In the case of a non-SU(3) singlet Pomeron(s) we get from egs. 7 (x = 1).

<P > = <" > = 13.'{%+ f?p(x)dx} H

ep en
(13)
<" > = <P » = 3 '{] + fep(x)dx }os
en - T 7 1 .
ep ‘
and
p - n _ n - p R T
< ngp > <Ngp > T Mgy > - <ng> T (14)

So in both cases we get more p than n from ep, and more n than
p'from en, which means that it is easiest to accelerate the target matter in

the direction of the current!

If the fragmentation process is assumed to be SU(3) symmetric one

obtains additional re]ationé e.g.

<n_> =<nP > 3 <ns > =<nn‘>; (15)
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For neutrino reactions e.g. vp » TpX, vp +upX we obtain from

the definitions

f'\l)p(x) NSP(XQZ) =2 {d(X)DE(Z) + U(X)D%(z)} o s - (16)
%?b(x) NE (x,2) = 2 {u(x)Df(z) + F(x)DB(z) * o asY)
vp
using eqs. 3 and 6
3P (x) -
< P = ]-—____3 g ffep ld'l :
nop(X) > f?p(x) + g P (x')dx
(17)
FP(x)
1 3 3 | ' .
< n%p(x) > =" 4 " zf}l)p(x) + T fpr(x )dX ’

or

fvp FVP
< n\p)p(x) > - < n%p(x)> - _;__‘_ i(x) '3 (x) , (18)
P £P(x)

[\)l_a

These eqs. are supposed to hold in the whole x region, the last one

being independent of the properties of the integral ff?p(x)dx.
For the case of a non-SU(3)-singlet we get correspondingly:

1 7 )
¥~ 3 f_.}l)p(x)

3

< nEP(X) > = 7 ff]ep(X')dX' ;

f;)'p( ) (19)
X .
o 3 P

nP 1
<\)p(x)>=-1_5 -
f]p(x)
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or -
£P(x) £2P ()
< nsp(x)> - <n5b(x)> = -% --% 3 +5 '_3 (20)
| P (x) 1P (x)

At x =1 we have from u-quark dominance fgp/ffp = -1, and thus get

from eqs. 11, 17 and 19.

= P . 21
< ngb > + 1 < Nep > : (21)

valid with an 'SU(3) singlet Pomeron and

7 . P 22
< n%b >+ g <Nep > (22)

valid with the non-SU(3) singlet Pomeron of ref. 9.

It is now easy to obtain more relations of the kind presented here.

IIT - MESON IN FINAL STATE
The case of the mesons is much simpler than that of baryons because
according to ref. 7 all quark densities can be expressed, if duality is imposed,

by one single function a(x)(z) in the following way:

d”u>=d”u>=dfu>—df0) ] ;
u d u (X =dg ()= zax)
| (23)
(o] (o] (o] (0]
dy () =d T (x) = T () = 4T - (%) ;
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A1l quark densities not listed here and not obtainable from the ones

7
listed here by isospin charge conjugation or U-spin invariance vanish(z)’( ).

From the work of ref. 7 one easily derives the integral of a(x) to be:

I

]
joa(x) X Z

Thus by eq. 23 the integrals over all mesonic quark densities are known. We
need not discuss an-% difficulty. So in this case there is no plateau of length
1nq2. Hence in the meson case there are long range correlations, due to the
combination of parton and hole into a meson bound state plus anything. From

these correlations no baryon can be produced.

We start with the process ep - en+X, and first derive an inequality

(10)
for <n“+(x)> for x »x (10 and then give its value at x = 1
ep or x>x *'"/an en give its value at x = 1,
At x >X (10) we have
&p n 4 g 1 i
f (x) Nep(x,z) = -5-u(x)Du (z) + g-d(x)Dd (z) (25)

From eqs. 3 and 23 the last term vanishes identically and we get

f‘;-P(x). <ng;(x)> = g-u(x) fd3+(z)dz (26)

Eqs. 23, 24 give, if we express u(x) again by suitable structure

functions
4 fP(x) 3 (x)
Ngp(X)> =95 ——— (1 - ———) (27)

££P(x) P (x)
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Using the inequa1ity(7)

%Gp(x)
3 —— <3 (28)
1P (x)
1
we derive from this
Py + £2P(x)
o (1= =2 ) < mgp(x)> <qe (1= 2 (29)
£ (x) f1P(x)

At x =1 we have f?p(x) =-§ u(x) and thus get from (26):

_ 1
MNep > =7 (30)
Looking at ep + ew X we get in the same way:
T 1 at
P(x) N (x:2) = g d(x)dT (2) (31)
for x > X, s from which follows
vp Vp
- 1 f(x) a7 (x)
g (x)> = — -2, (32)
28 £2P(x) fP(x)
Using the inequa]ity(7)
pr(x)
‘ (33)

f1P(x)
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we arrive at

- fvp(x)
<n2p(x)> < -2 ) (34)
48 pr(x)
From (31) for x =1 and using-gﬁﬁ) = 0(11), we get:
u(x)
x=1
-
<’ (x)> = 0 (35)
ep x > 1

Furthermore for en-processes one derives in the same way:

+
<ngn(x)> x: S ._]__ (f;)p(x) - f\3)p(x)) .
o 72 £1"(x)
™ (%) 0
<n X})> = s
en e 1 (36)
- . _ _
Ngn(x)> = (FP(x) - £P(x))

X 2 X, 288 f?n(x)

T 1
<n__(x)> = = 3
én X 1 8

So for x ~ 1 there are 7 from ep, no n+ from en and the same number of n+

fromep as w from en.

The important point on these relations is that we are able to calculate
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definite values for multiplicities not only ratios.
We now derive a relation for neutral pions in final state.

The following relation holds for all x:

L]

O
f?p(x) Ng;(x,z) - f?"(x) Ng:(x,z) '{f?p(x) - f?n(x)} dLr (z);

With eqs. 23 and 24 get:

b1
- < (x)>
2][< 16 ep <1
6 Nen (X)>
where
£ (x)
T < <
f?p(x)
was uti1ized(12)
From eq. 38 also follows:
[e]
T 1
<n_ (x) < —
en ~ 16
™ (%)
<n X)> < — 3
ep ~ 16
for all x.
For x = 1 we have
o 0
<" > =< > = — H

(37)

(38)

(39)
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So there are only half as many neutral pions than charged pions
produced.for x = 1 (This is qualitatively clear because one needs the double

number of quarks to produce a 7° rather than a =" ).

Requiring SU(3) symmetry our equations are easily carried over to K

and n mesons, We list some relations for K's:

+
K
<nep(x)>

+ u
—
00—

X
(42)

K
<nen(x)>

"
o
-

X+ 1

So the K+/K' assymetry at x = 1 should be much 1arger than the

w+/n' assymetry. We could easily calculate it in terms of structure functions

for any x.

K* .

Ten(X)> [ <Ten(0>
K+

< > = :

nep(x) e 0 (43)
K

<n_(x)> = 0

So at x ~ 1 only K* in ep will be sighificant]y produced.
For (enI'Ko) we derive:

<n"-(x)> = <nK° > 0 ; (44)
ep = ep(x) > .

x=1
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K
0 - .
<nep(X)> X;xo 0 3
Rﬁ
Nep(X)> X;Xo (N (44)
T _ 0 1 .
<nen(x)> = <nen(x)> xx1 8 °

Integrating the normalized distribution(a)

1

6N _(2) - SN AEIN (45)
ee 1 Qz i
2 3 i

over z and using SU(3) symmetry we furthermore find:

+ -

<n'ﬂ' _> = <nTT+ > = <n > =

ee e e e
+ -
= <n I.: _> = <nK+ _'> = ._5_ M (46)
e e e'e 48
o) Rg 1

<n + _> = <n + _> = -—4- 3

e e ee 2

Finally we list our results for neutrino reactions. The definition

of the quantities NCN(x,z) is completly analogous to NZN(x,z) (See ref. 1
and 3). For the average multiplicities we obtain (We recall that the quantities

T . 10
NvN are x-1ndependent( ).):




for all x:

<= >
vn

m - ™ -
<n\)n> _<n3p> =
7r+ 1
<|"va> = § . (47)
TT- TT+ TT+
Mon” TNy = mop” =05
(o] (o] (6]
m o T _ Ll N
e T My T G =i s
K Kov
Mon(X)> = < (x)> =
Vvp
K : f3 (x)
< (x)> = 7 (- " )
f] (x)
K Ko
Mo (X)> = <";b(x)> =
% ! 47
= <n_(x)> =3 ; (47)

330
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for all x :
K* k* K,
<n3b(x)> = <nvn(x)> = <n5h (x)> =
Eg
= <nvp(x)> = 0 ;
Ko K™ 3
<nvp(x)> = (x> = nop(X)> = (48)
K§
= <n n(x) = 0 ’
K, K~ K~
<nvp(x)> = <n;b(x)> = <nvn(x)> =
K fvp(x)
1 3
= g(x)> = o= (14 ) s

For x > xo we have —Eiél -+ 0 and thus obtain from the last set

d(x)
of relations:
Ko K~ K™
<nvp(x)> = <n3b(x)> = <nvn(x)> =
KO ]
= < nvn(x) > = 03 (48')
Fom eqs. 46, 47 and 48 one obtains:
Kt Kg .t ] 19
<nvp(x)> = <nvp(x)> = <"vp> (= §) : (49)
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° 5
<n“+ > =-§ <> (= 7‘%) : (50)

Comparing with ref. 3 one realizes that egs. 49 and 50 exactly saturate cor-
responding SU(3) bounds. This is a general property of mos of our results,
which originates from eqs. 23 in conjunction with the basic equation 3, as can
also be seen by comparing with the multiplicity ratios listed in ref. 11, which

where calculated on the basis of duality constraints.

IV - CONCLUSION
In writing eq. 3 one must be careful in the wee region. In the
Breit frame(l)’(s) the variable z is wee for =z N (x fixed) and x is wee for
X m-% (P is the proton's Breit frame momentum). Zs the functions D? and d?
are expected to behave characteristically in their respective wee regions(l) eq. 3

simplicitly contains a consistency requirement, which we have tacitly assumed to

be fulfilled, because x and 2z are not wee at the same time.

Form meson multiplicities we have made rather stringent predictions e.g.
fng;(x)> =0 for x = 1. These are due to the fact that the meson case,
contrary to the baryon case, is rather sharply constrained by dua]ity(7). So if
the data will point in a different direction one could think of relaxing these
conditions in the meson case. At present data are only available for
0.2 <z 5_0.7(13)’(1u). So we cannot make a reliable fit in the whole z area
to calculate the 1ntegrals <ngp(x)> . The available data however are
encouraging: <ngp(x = 1)> will presumably below 0.2 (if we tentatively assume
that the region %-changes to an integrable behaviour does contribute negligibly),

because there is a sharp decrease for x - l(lu), and <ngp(x = 1)> must be
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+
considerably amaller than <ngp(x =1)> . For a precise comparision we need data

for all 0 <z <1,

If it should turn out that the data require a correction of a 1 1
databy a common factory Y, s then this simply means that the hadronic
and the current plateau do not have equal height, but are otherwise completly

equivalent, hence y(z) = Y, ineq. 1.

On the other hand one should repeat the analysis when y(z) is

measured according to the suggestion of ref. 2.

We finally mention that we cannot verify within the framework of
this paper Feynman's conjecture that the average quantum numbers in the

fragmentation region are those of the quarks.
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