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INTRODUCTION

In this work we propose to study the problem of measuwrement of long
range interactions which may exist due to the geometrical properties of spaces
with curvature. All such type of fields are possible to be detected by 1let-
ting a test particle to travel along the geodesic of the space. Usually this
gives out the geametrical structure of the gravitational field, translated by
the presence of the Christoffel symbols, in such way that the principle of
equivalence is satisfied. Actually, this is intexpreted as a part of more
general situations, by supposing that the test particle has a charge and is
also able to interact with other fields, as for instance with a scalar field.
These extra interactions are then studied from the geometrical point of view,
similarly to the gravitational interaction with the mass of the test particle.
However, the gravitational interaction is still of peculiar form among these
several fields since it satisfies the principle of equivalence as a direct
consequence of the covariance of the equations of motion under the manifold

* This paper is a contribution to the first number of the Brazilian Review of
Physics to be published by the Sociedade Brasileira para o Progresso da
Ciencia.
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mapping group.

1. THE AFFINE-GEOLESIC IN FOUR-SPACE

The equation of tﬁe affine geodesic is obtained by the imposition that
the tangent vector to the curve is alwaSrs displaced parallely to itself. This
imposition, which is the natural generalization of the concept of a straight
line in Euclidian space, is mathematically expressed by the 'oovariant set of
equations.

u u,., =20 L

where u* = &”/ds is the tangent to the curve, and all indices run from 1 to 4.
Without modifying the covariant structure of (1), we may multiply the equation
by the inertial mass m; of the test particle, that is, the particle which fol-

lows the geodesic,

m w u¥ =0 | (2)
? .
The equation (1) in explicit form is
ax* o &
+T — e = () (3)
ds? g ds

where the I‘g , are the camponents of the affinity.Since bpth dzxa/ds.zaudrgodxp/ ds.
.de/.ds,' ' are not vectors, the Eq. (3) is covariant only due to the fact that
the non-tensor terms arising from both terms cancel each other. This means that
at most we are free to multiply the left hand si&e by a constant. In Eq. (2)

we have taken this constant as the inertial mass of the particle.

- This peculiar property of the four-acceleration in curved spaces, which
is related in part to the possibility of relative accelerated motions, implies

in the statement of the principle of equivalence. Indeed, if we interpret
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P

I‘au

po
al mass which should act as the coupling parameter in front of I‘go WPl is equal

W as the gravitaiional, interactisn on the test particle, the gravitation

to the inertial mass, upon imposition of covariance of the equations of motion

under the transformations of the manifold mapping group.

We use now a theorem of tensor calculus which says that any affinity is
determined up to an additive tensor with the same index structure. Exploiting
this result, we introduce a new affinity ?g 5 by the following relation,

~o o o
=T + A L
‘FOU po po ()

The Ago is a tensor field to be determined. Its explicit form is free to our
choice. Before working out the possible relevant choices for this field, it is
interesting to analyse the covariance of (3) for this new choice of the affinity.

We have now,

azx* adxpdxo o P o’
P e e A =g (5)
ds? PO 4 ds M 3 ds

Calling the sum of the first two terms by V*, we know that this quantity is a
vector. The third term on the left hand side Vof (5) is also a vector. let us
denote it by J*. In this form, we separate the three factors on the left hand
side of (5) into two terms which transform as vectors, and which are in principle

not connected one to the cother.

Va0 (B)
so,
v® = @2x%ds? + ¢ WP W (7
| po
J% = Ago P L

Since J% transforms by itself covariant independent of V*, we are free to intro
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duce the following sum as a new possible expression for the J%,

J% = 3 by J*) R by Agéj) (9)
3 3

where the bj are scalars and each term JG(J) is a vector. The affinity (&)

is written as,

O,

T = + 1/m; I b, 223
3

PO po J PO
giving rise to the covariant equations of motion,

mi(dzxa/dsz + rgcu‘»’ W) o+ z bjAgéJ)- w L=0 . (10)
' J '

The fact that necessarily a part of .the affinity,. the l‘;,. is of the same geo-
metrical nature of the four-acceleration, is as we remarked previously con-
nected to the equivalence principle which states that locally we cannot
separate the effects of inertia from those of gravitation., We now equal the
I'gc to the Christoffel symbols as a definition, In this form we are taking
into accownt the usual results of general relativity,

o - -0
I‘po— {po} (1)

As it was said in the introducticn, the present work intends to interpret
other fields besides the gravitational as geometrical properties of the
space-time, - Thus, we intend to go beyond the usual results of  general
relativity but nevertheless all results of this theory are taken as valid in
the limit where- those extra fields do not exist, That was the reason  for
taking the relation (11) as valid. |

‘The covariant derivative of & is given by
) A A A A
&wio © Hv,o Tio &v ~ Tvo 8 ~ 40 & ~ 4 B
which according to (11) take the form

_ _AX _ A
guv;o - Auc &w Avc & (12)
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2, THE MOTION FOR CHARGED ‘TEST PARTICLES

In this-section we-stablish a first possible choice for the Agéj), this
geometrical- object will be- ..detemrl‘ned by physical considerations, In each
situation where we need the Agéj), we want to describe a deviation from the
pure geodesic of the gravitational field, To make the situation more clear,
we have to say that the sources of the gravitational field may be a certain
mass distribution which eventually may have an overall electric charge. A test
particle moving into this field is acted on by the gravitational force, repre
sented by the Christoffel symbols. However, such force will contain the
contribution coming from the net charge of the source which contributes to the
g, If the test particle has no charge this will be the net force acting on
it. But if the test particle has a charge, it will interact not only with the

}\ ' %
u

gravitational field given by the {7

} , but  also with the electromagnetic
field generated by the relative motion of the charges of the source, This is
the last situation which is treated here as a deviation from the pure geodesic
of the gravitaticnal field.

This deviation from the geodesic generated by {:" v}may in principle be
due to various types of fields, as is suggested by the sum over fields which
is present in Eq. (10), In this section we consider just the contribution of

cne term in this sum, by writing b, as equal to the electric charge of the

test particle and all remaining bk equal to zero, Then, bl A:;D P L is
equal to the Lorentz force in presence of gravitation,

o(l) p 0__p OO D

Apc~ utu o= Pcpg u

This relation may be solved for the Agél) ,

all) _ _ o A a
a5 = - Fy & g, v+ 8 Fo u (13)
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where s is a constant. In the solution (13) we wrote the terms which contain
the presence of FW’ gw and u’,. That is, the presence of the physical quan-
tities under consideration, In other words, we neglect any other variable on

which we have no information from the physics of the systeml .

The value for the constant s will be cbtained as follows, substitution
of (13) into the Eq. (12) gives,

&uvzo © (Fpy * Fylly = 85 0, + g u)
Since we do not want that the length of vectors be varied under parallel dis-

-z,dueto the

placement, as was the case in the unitary field theory of Weyl
fact that such variation conducts to unphysical consequences as was pointed

out by Einstein, we set the constant s equal to zero. Then,

Eso =V
Similarly to the result of general relativity, Thus, for gravitational plus
electromagnetic fields the affinity has the form, as measured by the test
particle,

Mooy Ba A
Tog = {pd} e/m; Fgo & &gy U (14)

The fact that the affinity varies due to the presence of the electro-
magnefic field, and that such variation is transmited to the charged  test
particle is a violation of the principle of equivalence. But this is not any
new restlt since it is known that charged test particles do not satisfy the

law of free fall.

Therefore, the method treated here has Aup to now only the interest of
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being a general procedure for the geometrization of other fields besides the

gravitational, but no new physical result was cbtained. -

3. THE MOTION FOR A PARTICLE ‘WITH ‘MESONIC 'CHARGE

Following with: the- method outlined previously we give here a second
possible choice- for the- affinity,  We consider in this section that a 1long
range scalar field is- the agent giving rise to a correction in the expression
for the affine cmngctim_. -

The interest towards.the. consideration of long renge scalar fields was

recently raised by Dicke. 8

in connection to a possible realization of = the

Mach's program, - As-is alsc knawn, scalar interactions can also be treated rel
ativistically in the fremework of the five-dimensicnal unitary field theory of
Thirry * and Kaluza: 5. The type of approach treated here do not need the
introduction of.extra. dinensiorxs..into.the manifold, and as we will see con-

ducts naturally to the equations of motion and to the field equations,

Similarly.to thecasefor electromagnetic interactions, we consider
that the next.term in:the sum over fields in the Eq., (10) comes from the
presence of a scalar field ¢(x),

.99
b. P ucAa(Z) ce — gt

2 po ™
axP
which has a solution
¢
a(2) AQ
S—=g uu (15)

po 3,x_l p O

Therefore, the affinity now takes the form
' 3¢ .

No 0y Ba A SY o Ba o v oA
I‘po = {po} e/m, _PBp g & VWt em/mi o 8 8oy By U U (16)

In this expression, the term commg from the electromagnetic field is not sym-
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metrical, it has a symmetric and a skew symmetric parts, The term coming from
the relativistic scalar field is symmetric..

In principle this process of suming over fields may be further extended
in order to consider any other interaction which may be of interest. For our

present purposes we stop in the second term in the sum,

4, THE CURVATURE TENSOR

In this section we campute the Riemann tensor associated to the cor
rected affinity. By convenience we consider only the correction caming from
the electromagnetic field. A lock in.the Eq. (14) shows that besides the
field\Fu v? the four-velocity of the test particle also appears in the expression
for the affinity. The reason for this comes from the fact that the test par-
ticle is the agent which measures the total field, and due to the structure of
the Lorentz force the u*  appears in the affinity as leng as we intend to inter
pret this. interaction as geometry as we did here, . As cmséénence, the test
particle will modify. the curvature of the field, and this modification appears
due to the interaction of the charged test particle with the electromagnetic
field generated by the motion of the source particles., Since this type of
interaction is stronger than the interaction of the mass of the test particle
with the gravitational. field of the source, such type of reaction of the test
particle on the total field, trenslated geometrically, is naturel. In other
terms, we may say that the field F.| cannot be interpreted as geometry unless

M
we have a charged test particle to measure this effect.

Nevertheless, we will see that such type of interpretation conducts -to
mathematical difficulties, and in order to remove these difficulties we hawve
to mtmds.ne a new interpretation on the dynamics of the interaction.
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First we calculate directly the camponents of the curvature tensor by
taking the affinity given by (14), We have, for any given vector kM,

VRN TR TR |
k;\)-k,\)+r\))\k

The affinity given by (14) is decomposed into its syrmeytrical and skew-symmet-

rical parts, the later representing the tensor of torsion,

YU QM it
I‘vx- S ul + T A (17)

Accordingly, the tensor k‘fv decamposes into the sum of the two tensors,
?

1) 2):
KH =(1< L (k u
3V \V \V
where

=M+ s“w\ K (18a)
) ,

<T
1

A

2
H H
k v T VA k (18b)

The value for the affinity s™ vy &d for the tensor T+ Y being,

u
Sv)\

TR M M
{vl} e/2mi(F v % +F A uv) (19a)

H
Tv)\

" _ M
e/2mi(F Y F ) (13b)

v !
In the case where k" is equal to the fourvelocity of the test particle, we see
6

that the tensor of torsion T VA will not contribute to the equation of motion

The Riemannian curvature- is generated by the affinity Suv according to the

A
usual forrm.tlal,7 .
@) 1)
u uo_ M A
k -k = R k (20)
LH psa Aap

(2)
A similar expression may be formed for the tensor k vu'
.. (2)
oM M A, v A
Kasp =~ Xpsa = Bapa X * L apa Xy (21)

The expressions for ’ﬁpkap’ Bu)\ ” and wapa are,



LLU

TR _ oM JRPSTRENE u T -
R Aop S A0,P S AP0 S TO S AP +S TP S A0, (22.
RN _ oM .
B e = ™ aie - ™ sosa (23;
AL L M L ¢ (2u:

Ap0 T Ap o - e 0

After a straightforward calculation, we find the following values for these

tensors.,
Ya oo 2 2 ) A _
Rpcu Rpou+e/‘+mi .‘.LFU‘)\ Fv(chp u11 611 up uo) +
o LA v AoV AV ,)’,oc
B 6+FuF>‘o, IR A N VR L ) Nugu + o/ F
+ P2 u) -(Fu+F u) l'+e/2m'<F {a}u-—{u}u'+
wp,0 po sH inAc o au o
a _A o _ st ]
o2 [ - ¢ }u]m (515 = 6363 Ju, + 1% [e3 000 - 810 s,
(25
H H ' U T T i T H
B A T AQ,p APy *S pT T Ao S ApT 10 paT AT
_ ok T T 1) T 11 it T _mt H
Sorr Ap+s)\a 'tp+s TAT+TpTTxa TApTTu
T oM T T " T u )
TpaTAT Ton‘ Ap+T7\a Tp+TapTM' (26
T Jv M - li _ T TR
L oo™ e/2mi36a E?‘p u, A p.I 34 [Pa F)\ 1 (27

4

Of special importance is the formula (25) giving the correction to th

curvature tensor Rap ou of the pure gravitational field. We next compute th

~,
Ricei tensor associated to R® oou’® and the corresponding scalar of curvatur

the R, We find,
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Ry, = Ry +e2/l+m JF"A Fag Yo 4, + F "Fxpuxu}
£ o .. 2 m . [+ }
+ e/2m, [(r“ w + Fru) - FRug e e/zmiEr*p u + PAuup){m}
A A A LA
-+ FLO DG Y B O us PRy () ) (28)

M- 2 2 a vk -
R=R+e /umi . an + e/2m:.L [2 P)‘p {Aa} W+ Pa)‘ gp {ou} u,

)‘ {a}u + e/2m, FaI-‘)‘uu)‘ ]+e/2m g [Fu uu+1=’u up),a

<F°‘p u) o (29)
]

The present method is essentially a classical theory of measurement, By let-
ting a test particle to travel along the region under consideration we obtaih
the several interactions with the fields present, The structure of the geodesic
gives the information of the existence of those fields. The gravitational field
plays the fundamental role, since the remaining interactions are trenslated as
part of the correction to the Christoffel symbols, and to the corresponding
tensor of curvature, that means, they are taken as new fields in the framework

of the geometry of the space,

At the same time, the motion of the test particle also furnishes us
with the structure of the interacting fields in this region, Indeed, from (29)
a interaction term is present, and is proportional to the charge of the test

particle, The four velocity of the pérticle is also present.

The Lagrangian density for the whole system may be taken as the product
of V=g by R. Its value being,
— A -
L=/gR+e /im Vg F'F, +e/2m /g I

the interaction term being,
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- %y P AL _ a4y P R \ T _
I=2F {*}u +I=‘°')\g':> t‘m} u, ZFAG"{Ap}’u + e/2m; F“uF u, u

p A Ao
(/g g ~gg®)
- —— (P°‘p u + Faﬁub) + —H P“b u, (30)
V-g /-g

where we have dropped a surface term, since Fu\) ‘vanishes at infinity. Thé inter

action Lagrangian density (30) contains the fourvelocity u' of the test par-

ticle. Thus, it may épgearthat there is no reasen for takirig R vY-g as the full
Lagrangian, since we have to know the' {gy} and the FaB in the equation of motion
for obtaining the uA, but u is present in the field equations together with {ga}
and F aB*
ly. First we try to write the relation (30) in terms only of the fields. We

What this means is that these equations have to be solved simultaneous-

integrate (lO.),‘for the case of the Lorentz force, along the geodesic of the
particle, 5 '
u*(x(s)) = I (F‘3 gB“ -2 1P O g+ B, (31)
: v 3 po S :

S

, o : ,
By substitution of this integral into (30), in principle we may get the inter-
action teim as®functien ohly of the fields, now not only locally but also depend
ing on the ‘brevious history of the particle. The equation (31) is an integral
equation for the uq, and may be solved by a process of interaction = (see ap-
pendix)., However, two difficulties are ‘presen‘t. First the resulting field
eQuafi&ls 'will be non linear integro differential equations. In particular,
the field equaticns for the F'W becomé non linear, since qua;lratic (and higher
powers) terms .in F v appear as sources of the field. Consequeritly, this method is
too much complicated for any practical application, Second, the integral written

in the Eq. (31) has no geometric meaning in curved spaces. The W written at

the left hand side of (31) does not represent a geometracal object, As conse-
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quence, the substitution of the solutieons of (31) into (30) will generate
field equations which are not covariant under the group of general coordinate
transformations of general relativity. This last difficulty may be overcomed
by introducing a coordinate condition, In some sense we have substituted the
overall curvature of the space by a sum over histories, represented by the
several terms of the Neumann-liouville series giving the solu'tion‘ of the

integral equation (31),

5. CONCLUSION

In this work we have treated the problem of introducing other long
range interacticns besides the gravitational as a part of the whole affinity of
the space. As it was shown, this may be done in a simple form. The further
interpretation of this new affinity as the generator of the curvature tensor
conducts to certain difficulties. The résulting field equations  become too
much complicated, and the original geametrical idea has to be substituted by
a different interpretation of the interaction, The four-dimensicnal space is
not interpreted as possessing an overall curvature, but instead is flat and the
interaction between the fields at a given point will depend on the history of
the fields alcng a time-like "geodesic" arriving at this point at the instant
of measurement, Nevertheless, the Riemann tensor coming from the gravitation-
al field is still there, but it is not interpreted as a curvature. It can be
at most interpreted as a local curvature since at the region where the field
becomes infinity no coordinate condition can be consistently used. From the
mathematical point of view we can say that the u® of (31) is a pseudo-vector

and therefore it possess an interpretation only by means of linear transforma-

tion groups,
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The reason for cbtaining a non-covariant formulation in the present
treatment may also be seen from the following argmxent:vl We intend to measure
the interactions by means of a test pafticle, but this particle presently is
identical 8 to.all the remaining particles. forming up the sources. Indeed,
it generates an action back on the other elements of the source similarly to
all the other particles of the source, If the process of measurement was in-
stantaneous we could still hope in obtaining a covariant formulation. But if
the process calls for a finite extension in time (and space) as is the case in
Eq. (31), we loose the covariance, since then we are taking a particular frame
reference, where the test particle is at rest (or is moving with constant
velocity, as is the case for the first approximation of the series expansion

of (31)).

APPENDIX
We give here the solution of the integral equation (31).This solution
will be presented only to the first order of approximation of the Neumann-
Liouville series., Writing,
& o=F gBu a - %y
A B A > VA VA
we obtain S

S
Ws) = +:8>‘_ J dz cba)\(z) + 8>‘ dz ng(z) +
S S

o ' o)

S

iz J a & (2) ¢>‘T(z') uT(zt) +
) ,
Q

+
0m¢~——;m

of
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- -
o

2 & J' dz | dz! ng(z)' &
3

S
o) o]

-
&

A\
z') uzt) u(z') +

-+

T

S S S S
tf e [ e & @ien e de 2 @ [endie ¢ e’
SO SO SO SO

w

azr ¥ (2) @ (2 WPz &Tcz'» uTzm +

p(

OU)L—-)(/)

S

+fdz dz!
S
o}

& i, @ ¢ @) P Y@ d@m Fem s

<+
OUJC———3C0

&
Ooac———jcn

S
OU) L—ﬁm

S S S

+ J dzJ‘ dz! j dz" wg)\(Z) w\’po(z') WPt L) w}tB(z") uk(z") uB(z").
S S S
o o
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