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ABSTRACT: - The analybtic properties in the complex k-plane of the S-matrix
for scattering by a screened Coulomb potential are studied. Particular at-
tention is given to the limit as the scoreering radius tends to infinity,
80 as to show in an explicit example the effect of the tail of the potential

" on the properties of the anslytically extended S-mabrix. It is shown that
the pole configuration obtained in this way is different from that obtained
in the usual description of the analybis properties of the Coulomb S-matrix.
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1. INTRODUCTION | _f

It is well known thag«tﬁé analytie behaviour of the nop=
relativistic S-matrir for infinite range potentials depends Fundg
mentally on the way the potentials behave at large distances. In
particular, this analytigabahaviour is strongly affected by the
existence of an infinite.téii, however thin i1t may be.

It seems to us, however, that this dependence has never
been shown explicity in a cOnveﬁient way in a meaningful
example. A rectangular barrier 6r well vhose range tends +o
Infinity 1, thus establfkhing a constant potential/in all space,
does not provide us with gn iInteresting situwation. A goluble
and convenient probiem for wthis purpose is that: of a sereened Cog'
lomb potential. By varyiné the radius of the sereening layer; we
tend continuously to the Coulomb potential case. However, as we
shall see, the propertiés'éf‘the S-matrix in the complex momentus
plane; as obtalned by this limiting process, are not the same as
those obtained by the usual‘énalytic extension of the Coﬁlomb
S-matrix to the complex momentum plane Zo We belleve that the
procedure of analytie exteﬁéion we ﬁse here 1s a more natural one,
and that at any rate we ean'léarn from this example something

about the treatment of this sort of iInfinite range potentials.

We take a potential of the form
V(r) = uC/r, r<b |
= r>b (1)
where C is a positive quantity and A= +1 for repulsive and p =
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= -1 for attractive potentials. We shall choose as unity  *+h»
quantity'mC/h2==l/aO,£where a, is the first Bohr-radius for ap
attractive potential 6f strength Cy and m is the mase of ‘tis
particle. Thus we measure lengths (the range b for example. in
units: of a, and the momentum k in units of i/a. The
dimensionless product kb is independent of the potential strergih
and is & convenient variable for many purposes. We introduce sl.o
the quanti;cy A= ia/k, where i=/=1. We call Re{k)=x, Im(ki=

= yy s0 that k =x + 1y,

The S-function for the l=th partial wave can be writter
down directly. It is
Sg(ksb) = = T§2) (kb )2 2y (2)
where

2§ 0e,) = @ar/2) { 1P hereds 2aens-2000) (B3] ev - 1m(T Cep)]s

—— ) (5) )
+ P (e dizb e -2ai0) (B o) + am{Th )] ] 5

-1 Py (L1425 2042 3-2180) | Hl 4 () - 17, (P )] +

+ (2041);F; (L+A320+13-21kb) Hyl) (kD)

with J = 1, 2. The last expression iz obtained from the second
one by well known relations among the econfluent hypergeometric

functions.

From the fact that ;F; (a3 c¢j x) is a real function of its
arguments, that the complex conjugate to HéZ) (z) is H;l) (z*),
that Hiﬂ (=z) = exp[im (L+8)] H%l (z) and the use of the Kum~
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mer transformation of th@qugfluent hypergeometrie functiona;‘&@
ses immediately that (2) satisfies the well known 5*“aymmat?y
properties of the S)-function such as 8y(ky b) Sﬂ(mk; b ;-1,
S;(k, b) = SE(-k: b, and si(k,'b) Sz(k*, b) = 1. These rela-
tions impidy that the zeros and poles of S£(ﬁ’ b) ia the complex
k plane are symmetric with respect to the imaginary axls, and
that if k is a zero of St(k’ b)y k*is a pole of the same furnc-
tion. Thus we need only studyinp the half=-plane defined by

Re k. >\'Oo

We are mow congidering fihite values ef b. If Im(k) - + o,
we have that S,(k, b) behaves like exp[2b Im(k)] thus presenting
the well-known essential singularities for Im(k) - 00. For
In(k) = - 00, Sl(k’ b) tends to zero exponentially. For k —= 0,
b finite, and also for b —>~0, k finite, we have Sg(k, b) e 1,
as wlll be shown later. There cax he no poles of S)(k, b) in
the upper half plane; except on the imaginary axis. All these

are well known gensral properties of finite range potentials 3.

In section 2 of this paper we discuss the asymptotic
behaviour of the wave-functions when b ~—>o00. In sections 3%-6
we shell discuss the distribution and diaﬁi&cemants in the complax
k-plane of the poles Sz(k,b) as & function ¢f the range b. Since
Y%J)(k, b) are regular functions of k (except at the origin), the
singulafities of Sl(k, b) will be poles‘due to zeros in the de~
nominator Yil)(k, b). Our general equatiéi for the poles will
then be Yil)(k, b) = 0,
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2. ASYMPTOTIC COULOMB WAVE-FUNCTIONS FOR COMPLEX k

For |kb|>>1 the asymptotic (large r) J-wave-function for the
Schroedinger equation with potential (1) is

L[ ireny| eFPC@n) A oD 5 (a1
R (I')rv--—- e . .

Yk [ (2+1-2) [ (4+1+A)

eikb A(Zikb)-ﬁ.-l"'l e"ikb (°Zikb)-2+A (4)

+ ¢~ tk(r=b)
M (141=2) [ (1420

If in (4} we just substitute b=r and keep only the dominat-

ing terms we obtain the asymptotic Coulomb wave=-function

ep 3=d=A - = +A-
RCOUI(r)q,j; [%ikr (2ixr) _ ik (=2ikr) (s
1 kr [ (L+1-1) [ (2+1+2) _
and consequently the Coulomb Sg =function
[ (2+1+2) -
si?Oul(k) R - T
" (2+1=2)

However this substitution is quite arbitrary, since for |kb|>1

(4) is valid for all r>b and the definition of SJZ is independent of
r. Putting r = b in (4) implies in that we have made v and b tend
together to infinity, with r -~ b = 0, This is not the case in our
problem, where we have the solution for a finite range potential
whose range b we let then increase. We might as well for instance
keep r -=b finite, non-gero, The two ways of taking the limit may
lead to different properties of the resulting Sltu-functi.on,

Soy let us keep r =b finite while rs b =>omw-.

If k 1s real the exponentials appearing is (4) are just
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ossillating functlons and the limit b —+oo will give, selecting

the dominating terns
e B;(r)*‘* f’“ [maciﬂzbj = ~ g ikr La) ’-*1]' real k (8)
IR ARG - (1+1=2) [7 (4 +1%2)

which is agaln the agymptotic Coulemb wave=fumetien (put b=r |

inside the brackets), and gives the ususl Ceulemb 8p=functien, 89,

nothing is different in ease k is peal,

Let ys now assume that Im(k) £ 0 in (4), New there will be
repl exponentials, and atl least for valuas ef k whieh ape not in
the peighbourhood of poles of [T (1+1+3) er [(4+1=1) ye  have
that when taking the limits r, b —=e0 the deminating terms will
be these gontaining positive exponents. Thus we will have

s'm’[ r 1(—21kb)"-£"1’“f‘- o “E1KD oicp (ZBLEB)” ’4*’1‘] :

kr

- . Ee—
[ (1+1+1) Fe+1+2)
for Im(k)Y>0 and

1] (21kb)~ A=A A(2ikp)~A~1=A,2ikb~
Bi(r)'v-— l}“‘r -ikr - ; w:‘
: kr

Rign)w

et

+ @ ” N E——— aramares
[ (L+1=2) [ (L+1-2)
for Im(k) <O with the possible exception of isolated peints fop
which |7 (2+1+1) and [ (f+1-1) increase without limit,

(7)

None of these two formulas (6) and (7) for Im(k) # O repreduces
the Coulomb wave-function. One of them () contains the Osulemb in-
coming wave, combined with a different outgoing part, the other (7)
contains the Coulomb outgoing wave combined with a different ineom-
ing part. These wave-functiong (6) and (7) or the corresponding § I
functions show the behaviour we obtain if we selve the problem fop
finite range b, then taking larger and larger values of b, Perhaps
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this would corregpond more appropriately to a physical situation,

where & trully infinite Coulomb potentlal cannot really exist.

We can easily see that the expressions (6) and (7) for the
agymptotic wave~functions do not allow for poles in the correspend
ing 3,~function. Thus, as b —-o00 poles can only be located in

points where these expressions are not valid.

Let us return to (4). The position of the poles of 82 will he

determined by equating to zero the coefficient of exptikr), that is

by
21D 3 (o513 2A L [ (ga1an) = (-1)™VF [T(g41-2) ¢ (8)

Using this relatlon to evaluate the coefficient of exp(+ikr) in (4),
we then obtain that near a pole of $£ the asymptotic wave-function

in the 1limit b -3 o0 behaves like
o1 [ L (eixpy A4

REOle(r)fV~m o TKT +
kp [ (L+1-2)

e FZikb A1) "Y1 (o) £+:]'
+ e
M (41-2 [ (g+1+2)

If Im(k)> O equation (8) has solutions only for points in the
k-plane which tend to the poles of r_(£+l+A) as b 00 . For Im(k)<0O
the poles of Sy tend to the poles of [ (4+1-4). Thus the structure
of the pole distribution for the Sz-function obtained this way is
different from that obtained with formula (5). We now have that for
an attractive potential, there will be poles in both the positive
and negative imaginary axis, for Im(k) = # (£+l+n)"l, where n=
=0, 1y 2,.. . For a repulsive potential the poles can only move %o
the origin in the k~plane, where the above formulas are not valid in
general, as we shall see later. We remind here that in the usual
discussion of the Coulomb potential problem S there appear polesg
in the positive Imaginary axis for the attractive potential and in
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the negative imaginary axis {or the repulsive potential. We must re-
mark that there is no different behaviour concerning the bound state
poles (those on the positive imaginary axis).

%, THE LIMIT b =-0.

From (2) it 1s easy to see that when the range b tends to zero
with k¥ non-infinite, Sl(k,b) tends to one. This follows immediatel
from the fact that lFl(a'”l;c;ax) =1 as x =0 and that Hél)(z)/H;E (z)
goes to 1 when z =0, Thus, when the range of the potential tends to
zero, there can be poles of the Sg-function only for |k|==o0o.

We can now ask what happens in the variable kb. To keep kit finite
when b =0 we mugt have |k|= o, but taking this 1limit |[k|=+om in (3)
is equivalent to make A~-0, or in other words, to reduce to zero the
strength of the potential. We expect that Sl goes to zerc in this
limit. In the Appendix we show that thls is in fact true.

Thus we have that there can be no poles in the finite kb plahe
when b =+ 0, the poles being pushed to the infinity when this 1limit
is taken. To find how the poles dlsplace themselves, we can use well
known asymptotic expressions, valid for large kb, for the Hankel and
hypergeometric functions ocurring in Yglj(k,b). The asymptotie formula
for the confluent hypergeometrlic functlion is

F to) [ (o)

P \ > - =8 -
Fafesese) T o ()8 [1ogta7)] =

02,870 E__,__Q( zwlﬂr,
(10)

(a)

We obtaln after a lengthybut straightforward calculation
- | wf, = wile] s .
¥4 12 (k, b V77D o ~1KD -(-Zi-ll—; L1t e sy el (-)1-2k2b-pezikﬂ .

The equation for ﬁhe poles 1s then (11)
pexp(2ikb) = (-1)% 2x%p (12)

which has solutions
xb = [2n + 4+ (p+1)/2]m/2 (13)
yb =« 00, with exp(-2yb) =2 yzb (1313

where n ls a positive or negative integer, or zero.

This result is similar to the one obtalned bu Nussenzveig(l)in
the case of a rectangular well or barrler and by Humblet (4) in
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a more general case. It sayg that in the limit of very  short
range or very weak screened Coulomb potertial the poles tend %o
yb -=> = co approaching the asymptotic lines xb = % W{r/2) where
N is odd for { odd (even) and N is even for L even {odg) in tho
cuze of attractiﬁe (repulsive) poterntials. Thus the odd l-wave
poles in the attractive and the even {-wave poles irn the
repulsive potentials both tend to the lines xb = * w/2,

+ 3m/2y oo.y while in other cases the poles tend to Oy + my ...
This is in fact a particulaf example of a quite gereral proparty
of weak potentilals S, This behaviour is shown In the curves

at sections 5 and 6, where trajectories deseribed by the

poles when b varies are drawn.

The asymptotic behaviour of the numerator'YEZ)(k,b) when
b —>0 is given by

¥{2)( ;b I~ (2/7kb Y emp( ~1kb ) [(24+1)1/01]4" %7 (-2akp) 712
{( ==1)£ Zkzbwpexp(w&lkb)] ' (1a)
and then | ‘ .
8y (yb)w =1/ [ 20Kk, )] (15)

in the neighbourhood of a pole k,. Then in the plane kb the
residues of the poles tend to %‘1729 and in the k plane' they
increase as = 1/2b when b — 0. It is interesting to note
that thesé resulfs for the residues do not depénd on {. Also
Equation (137 which determines how fast the poles are pushed
to the infinity, does not depend on the particular pole (thét
isy on N} neither on £. This meahs that the centrifugal bar-
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rier at the origin has no effect in the strength of the péles
for a limiting short range potentizl nor in the speed with which
they are gent away to infinity. Sirce the centrifugal barriers
are Just equivalent to a potential behaviour like ,C_/rZ at the
origin,y we can predlct that the potentials of this sort and
whose range is made approach zero, the Sj-funttion will have the
same pole structure as given by (1%), (I%i), (15), except that
the asymptotic lines will be given by (13) with £ modified so
as to Include the effect of the potential,; that is RL({+1) is
substituted by L(L+1) + C. We must notiece that in thls case of
potentials behaving like C/r° at the origin we obtain different
behaviour of the poles in the two cases where we reduce the

strength and where we reduce the range to zero.

4, TIHE LIMIT b =00

When taking the limit b -~ o0 we have seversal cases 1o
consider. We may have k finite (nom=zero) ard thus |kb| ~=+co ,
or we may have k —+0, In this last case we may have kb finite
or kb inoreasing to infinity. Let uas gorslder each of thase pog
aibilitles separately, This ls ssaential, as the asymptotio
behaviour of the functions involved are different under  thess
different conditions.

a) We keep k finite, non~gero, and let b inareare without
limit. 8ince |kb| == 0o and all other parameters are limited,
we may use well known asymptotid expresaions for the Hankel and
hypergeometric funoctions, We now show that the srraﬁatisn temds
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to limits which are in genaral different from the usual Ceulomb
gy =function. The results hers indicated are in agreement with
thoss of Section 2. ]

writing Y{3) (k,b) in the form

Yﬁ-’j(k,bﬁ {c-ikb[ﬂgig(kb% mgﬁgkb)]+ (2+A)H§vj. (kb)}_—.;#y
1F1(1+1+A;2£+2;-2ikb) + () +J.---nk§.1g(kb)lFl(HA;Zl*Z3"211!13) (18

we obtaln, for |kb|>»1,
("-’(k,b)»v(a/‘rrh:h)1lr xp(-ikb)i“’-{l Fy(L+1#A521425-21kb) +

+ (ﬂ+1-1)11"1(£+1;2£+2;-4-21kb)} | (17
and
§(a')(k,b)~(2/1rkb)%exp( -mb)i“ﬂ"l{uﬂu) r (l-A;zm;amb) -
- A ?1u+1-zizn+a j21kb)} . (18)

We can prove that the asymptotjin forms of the lrlag whiph occur in
both expressions (17) and (18) are such that the . fifst. one- -
predominates over the second when Im(k)> 0 and the second ;Fy
dominates when Im(k) <0. This dominance is not true for the isolat
ed points where the dominating lFl happens to be zero (this will
happen in the poles and in the zeros of SQ). In these cases wve
have to keep the second dominating terms in the expressions for
¥{1) and YEZ), The expression for the Sy-function which is valid

in a8ll cases is

[(21cpy 4 (£+1m/\)] [A(-220)"L"1*A exp(-21x0)/ 100

S, (k) 7 =

A

[( 21kb)" MY/ (14240 - [x(zmb)“i‘l“"exp(zikb)/r (L+1-A)]
, (19)

For Tm(k)>0 we have that, for |kb{» 1, S (kg‘b) behaves like

Spfkgb) _~ w?t(waikb)_llexp(-zj.kb}, Tm(x)> 0. (191)
b — 00
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in all polnts not in the neighbourhood of the zeros of the de= -
nominator in (19). Thus, Si(k,b) explodes exponentlially as b =

- in the whole upper k-plane. On the other hand, for Im(k <0, except
in the neighbourhood of zeros of the dominator in (19), 8y(k,b)
bahaves like 7

8y (lyb) | = o, A™H(21kD) exp(-21kb) , Im(k) <0 . (19")

Thus, when b = 0,3; tends to zero for every finite k in the lower
k-plane, with the possible exception of 1solated points.

Let us discuss the behaviour of the poles of Sg(ltyb) as b
increases to infinity. For Im(k)>0 the exponential in the = de~
nominator of (19) wlll tend to zero as b gets large, and the poles
will then move to the points where r(£+1+h) also gets large, that
13, to the points such that f+1+A = -n,with n= 0y 1y... For Im(k)<0
the exponential in the denominator in (19) increases with b, and :
the poles must tend to the points for which [ (4+1-1) 1s also large.‘
Thus the poles in the lower k-plane will move to the points given
by i+l=A=-n, Since A= 1u/k, p being the sign of the potential,
we see that in the attraetive case (= =1) there will be poles in.
both positive and negative imaginary axis, while for a repulsive
(4= 1) potential in the 1imit b =+ o there will be no poles with
finlte non-zero k. This is in agreement with what- ‘hag been sald in
Section 2. We should remark that (19) st11l obeys the symmetry pro-
perties Sy(k,b} = 8y 1(<x,b) and Sg(k,b) = 8y(=k ,b).

The residues of the bound-state poles are given by

iyZ(th 12y~

(5"Leg-1)! (y~Lapyl
and they increase as b increases. The residues of the poles in the
negative imaginary aexis for large b values are given by

-1y (Zyb)‘2 -2y-1 exp(4yb}

(=y~ -2-1)!(-y'1+1)!

and thus they tend to zero as b increases.
b) Now let us consider the case in which k goes to zero
while b =~ , with kb being kept finite. In these conditions

’ y = Im(k)> 0

y ¥ =Im(k)<O
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the first parameter in 1F1(a; c} z) is large, while the second
parameter and the variable are limited. We must then use the
asymptotic expressions valid under these conditions 6. We obtain
for |k|« 1, |kb| finite,

¥{ (k02 (204131 7~ 2exp(-1ib) (26)7"V 2exp[-1(4+1/4)(34p)n/ 2]
{kb [Hi3+?§(kb)+ 1H(£_?%(kb):| [exp(ai v'=2ub)+ exp( i3m/2=21 ﬁ‘z'rb‘] +

;(kb)exp [1(1+p)r/4] V2B [exp(21 V/~2yb)+ exp(in/2-21 v/ ~ixb )]l

(20
It is now easy to see that in both cases of M=+ 1, the

gsgcond part In the above expression dominates over the first.
This mesns that in the conditlons here studied we may simplify
T e,b) o

!ﬁ”(k,b)x(zul)exp(-aikbalFl(t-?«, 20+1; 2ikb) H(%‘,(kb), k|« 1.
(21)

The SL-function will then be
Sy(ksb) % - H) (kb )/HGE, (kb) (22)

The result is that when b —> @ thsere will be poles in the
plane kb at the point given by the roots HL-!-} (kb) = 0. The
residues of these poles are not zero, since the roots of
H(i; and of H(a*?} (kb) never coincide (they are symmetric with
respect to the origing i}% (¥bY ‘has roots only for Tm(kbF<'0
and’ H(‘Qz_‘,_).}(kb) only for Im (kb) >0). For 4 =0 thére will be no
such poles. TPor V= 1.we have a pole at kb = -%,; for L=2 there
are pdles at kb = ¥ 3/2 = 1 +3/2, and so on. THerewfll be X
poles of: this. kind for a given {-wave, For edd le~valuas one
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pole will be on the imaginary axis and the (L- 1) remaining ones
will be distributed symmetrically with respeect to this exis. For
even 1-values there will be no poles on the Iimaginary axis,
since H{}l(kb) doeg not admit double roots. In the k-plane all
thoge poles tend to the origin.

This pole structure does not depend on whether the potential
is attractive or repulsive. These conclusions are confi-med by
the numerical calculations and are shown clearly in figures of the
next sections. These poles are responsible for the essential
singularities of 8 in the Coulomb case.

¢) Only one possibility remains to be discussed in this

limit b —>c0,y that in which k —= 0 and |kb| ~~o0, We now have
that both the first parameter a and the variable z in the functions
lFl(a; ¢; %) increase without 1limit. The asymptotic expressions
for the attractive and repylsive cases are different, and also
different expressions have to be used for different regions of
the complex plane 7. We shall then go directly to the points we
wish to demonstrate, avoiding more general caleculations which are

net absolutely necessary.

As we ghall see in the next Section, the behaviour of the
poles in the attractive potential i3 already completely deseribed
in terms of the cases previously analysed., We then specialize to
the repulsive case. We shall show that there exlsts an infinite
number of poles such that |k“b] 1s kept finite while k —»Gw

We want to study ‘the behaviour of the Gz;function in the
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right hand side of the lower half~plane of the variable k, that
is4 we have

= /2 <arg(x)<0 , 0 <arg (21kb)<7r/21,.
In the denominator of the gﬂwfunction two hypergeometfic funetions
enter,
Fy=qF (1+1=25 20425 21kb) and F, = ,F,(L-23 20+1; 21kb).
By using the appropriate asymptotic expressions 77" we can prova,
after a rather long but straightforward caleculatior that ka1 ard
Fz‘are of the same order of magnitude in the limits considered,
a3 long as k* b 1 a finite quantity, that is we have Q(kal/Fa3=
= (kzb)*a Since F) and F, appear in Yﬁl)(k,b) in the combinatien

¥{1)(x yb)=exp( 21k ){m [H?‘,,),.}( kb) + 1H{ (kb )]Fl + (2441 (e )FZ}

(23}
and since

#) L (kb Y/ [Hi},; (¥b) + 1 Hilg.}(kb)] % Lkb/L

when |[kb|] =00, we have that the term containing Fa will domirnate

gver that containing Fl’

A similar evaluation can be performed with the terms contri=-

‘buting to Yézj(k,b)s We now take the form
?REz)(;: b= exp( mZikb){mikb.[Hﬁ?}(kb) = 1H§£(kbi|3‘l +
+ (2#1) BEL (o) 7y ] (24)

where Fy = ,F,(4+l=Aj 2{*+1} 21 kb)
and prove that g(kalst) = (kab)%a

Now sines Hii{ (kb) is larger than B{5(kb)= 1n{P)(kb)
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when [kb| ==>e , the term containing F3 dominates over the oth'e:--,
and the szsfunction becomes

8, (k) HPL (kb ) Fy (DA 2041 =24kbY/

b =00
%2y fintte

[exp( -216b) BGLIKDY 4Py (R edy 24414 zikbﬁ] (26)

This satisflies the symmetry properties known for the S-matrix,
mentioned in Ssotion 1.

With this result our problem reduces to the search for
the existence of zeros of (Fs(L=Aj 2)+1; 21kb) in the aonditions
considered, that 1sy with k =0, b =, t = 21kb/ [4(A.+l/2)]
finite, O arg (1/k+1/2){ /2. We can then use the appropriate
asymptotie formula for J.Fi’ and equate it to zero.

We have 7
B2 %, exp(21b)( 200 )4 F [ (20413 [1( 2081 )/ 18] "V 4A£(k,b)
, (26)
'¥%b finite
where

Al(k,b) = (A+l/2)'A' éxp(E+A+1/2)/F(£-A) +
4d : (27)
+ (A+1/2)" Fexp(-E=A1/2) exp[ir(L -]/ (4+1+A)

and

B = (2)41) {t.k(t -1)’2’ + logE:%- (t-l)ﬁ]} . (28)

Using the asymptotic limit
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f_(z}fwizv)% zzm% e 2 (large lz!7
for the | functions and noticing that A is large (so that
G 1720 a2 By L obtatn that

Akyb) = (Z‘rr?m% A=2(m1}3 exp(=imA=E)[1+ exp(2B - ir/27]. {r9)

Thus the necessary condition for the existence of poles in  the

ngfunctiOﬁ is then that

Re (E} = 0

im (B)

i

3w/4 +mry, m integer.

We first notice that these equations determining the poles are
irdependent of L. We now look for solutions of these equations
such that y/x —* 0 while xy; y =— 0. In these conditions we

have that the syqtem of equations is

(1/2+ y/x?)gbxz/aﬁ (‘bx2/2=13% + log|(bx /2‘% (bx2/2==l)%|jj =

- (14 ay/x2 W oxPr2 Y (/2 13F = 0 (30)
(Z/X)[bea/a)%ibx /23 %7%1@g[(bx2/23%=1(bxafzml)%[j +
¥ (12N U2+ y/xB31s ay/x2 Y652/ 20 (0x?/ 21V = 3m/ad om (31)

As x —> 0 the first term in (31) increases without limit, unless

b XZ/Z tends fast to one. In this case (31) becomes simply

(bx2/2m17/x = Zr/4+ mr (32)
which gives an explicit solution
xb = (Zb)% + 3w/4 4+ mw (33)

for one of the coordinates of the iooleso Taking (%33) into (30)
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we obtain that

yb == 1/2 , (34)
Thus the result is that for repulsive poterntlals,; we have an
infinite number of poles whichj; as b iﬁcreases, tend to irfinity
in the kb-plane, approaching asymptotieally the line yb = = 1/2.
The existence and position of these pcles are independent of the
value of the angular momentum. All this can be seen in the

curves of Seetion 6.

5. THE POLES OF THE SEbEQQQTIQQ FOR _ATTRACTIVE POTENTIALS

We have seen that (13 ) and (139 show that for increasing b
the poles approach lines parallel to the imaginary axis iIn the
b plane. For curves with even I-values the poles approach the
lines xb = N(n/2), with ¥ = 0, *+ 25 + 4, and so on. For  the
odd waves the asymptotas are given by the same formula, but with
N=+1,%+ 3%, + 5, and 50 on. We shall label a pole by the
number N that defines the asymptote of its trajectory whenb-»0.

From (139 it can be shown that as b —>C we Iave
alybYd(log b) = 1/2. This means that dividing b by a given factor
implies that all the poles go down the same vertical distance in
the plane kb. This can be easily observed in figures 1, % and 5,
which show the trajectories of the poles for the attractive s, p
and d=-waves respectively. Since equation (I31) is alsc valid for
repulsive potentials, this behaviour can alsc be observed in the

corresponding curves for the repulsive case (Fig. 7).
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As b increases the poles move upwards in the kb plane, ard
in the attractive case they turn so as to run towards the

imaginary axis.

a) The g-wave poles

We first describe in detail the behaviour of the s-wave
poles. There is a pole (N=0) which moves along the imaginary
axis, from kb = « 1 00 to k¥Xb = + 1 . The pair of poles (N= »2)
coming from the asymptotes xb = # m reach the imaginary axis in
the point yb = = 1.5774 for b = 3.4115. All pairs of symmetric
pcles meet at the imaginary axisj; as b is further irncreased one
pole goes up along the axis towards yb = o4 while the other
moves downwards to yb = = 00, The poles N = + 4 reach the
imaginary axis in the point yb = 1.5227 for b = 8.9781. For N=+6
this happens for yb = = 105101 and b = 17.001.,

The most distant (large |N}) poles reach the imaginary axis
for larger and larger values of b, We now prove that |N| = oo,
the poles reach the axis in points closer and closer to yb= -1.5.
The denominator of the Sy-function for L= 0 is Ygl)(kgb) =
1F1(4/ks 15 2 ikb). Poles in the imaginary axis are determined
by 1F1(1/y5 13 = 2 yb) = Oo‘ This gives ¥ as a function of b.

For the points in which the poles leave the imaginary axis we
must have g—% = - (3F/3y)/(dF/3b) = 0, and thus these points are

determined by the simultaneous gsolution of these two equations.
We want to study the distant poles,; i.e., these which enter the
axis for large b. We can try a solution with y — 0, yb finite.
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In these conditions the hypergeometric funations can be expanded

in terms of a series of Bessel functions,

AF1(1/75 1§ <2yb) mexp(=yb){7o(2 /T2y TB) +

+ ot /6y 2 3,02 BT - (36)
Thus for asmall y the "distj.a.nt" poles must satisfy
J'O(Z v Zz-yﬁ'ﬁ) =0, (36)

From (36) we obtain
9,F, /0y = exp(-yb)(n/2) (14 2by/3) I, (2 /T2=yB) (37)

Since J, and J, cannot be simultaneously zero, we must then have
by = = 3/2 as the only possibility to satisfy simultaneously the
two equations. This 1s what we want to proof. All the poles
(except the pole N=0) enter the imaginary axis for values of

yb'between = 1.5774 and = 1.5. From (36) we then obtain that the
values of b for which the distant poles enter the imaginary axlis
are approximately given by the larger roots of J (2 #/2b¥ 3/2)=0,
The poles N=0 can be said to enter the imaginary axis for yb =

= = 0D .

When a pole crosses the origin and enters the positive
imaginary axis a new bound state 1s formed. The values of b for
which this happens can be determined in the following way. For
y —> 0, b finite we have

(V335 15 -2yp)x I (2 /38) + y (w2 5,2 /38 (38)

Thus, new bound states arise whenever 2 +2b reaches a root of

the Bessel funcetion of order zero. b is measured ir units of the
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TVt . el
Bohr = radius By = R he™,

The displacement of the polesg along the lusgirary axis oo
be better observed in Fig. 2, whers Im{x) is plotted agairgi™.

Orly the purely imaginary poies are represerisd,

For values of b corregponding to the vertices Ay 3, Cy D
new poles reach the imaginary axis. Every timo ora of thene
vaiues is reached, two new pursly Imaginary pole: arise. Tho.
always happens for a value of Im{k) such that -2/(#i<Im(x)< O
One of these poles moves downwards along the imapgirary axis anrd
tends asymptotically to the point Imik) = « 2/(N{ os & -z, The
"twin' pole moveg upwards, and as b ~—>o0o it approaches asymptotical
ly the point Im(k) = + 2/{[N{+2), Thus in the atfrastive Coulomb
potential limit the pole configuration in the k-plare in the
gs-wave case is the following: there are poles in the points of the
positive imaginary axis, corresponding to the usuval bound states
(Im (k3 = 2/C|0] + 2); {¥| =05 2, 41000) and in  points of the
negative imaginary axis (given by Im{k) = -2/{0l, |N|=0,2,4400.)-
We again remark that this is not the same on the wsual nole
description of the S,~funetion for Coulomb potentlal, where the

poles in the pegative Imaginary axis are not present.

It is iInteresting to note how the bound state poles tend to
the points determined by the Rydborg formula as the range b
increases. According to {38) new boupd states (with zero binrding

energy) appear for b = 0,74 8,9 374 2, 9.33 a_; 17.35 a_s that

o
isy for values of the range close to the values cof the Bohr
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radius nzao. As b inereages from this value, the binding energy
tends to the maximum values, given by Rydberg formula. In the
first level (the ground state, ¥ = 0) the maximum is reached
rapidly: for b equal to 2 a, the binding energy 1s less that 0.5
per cont different from the limit value. Thus this binding
energyfis not much affected by the existence of a tail in  the
potential. The same is true of the other bound states: if  the
range of the potential is twice as large as the range necessary
to create the bourd state, the binding energy and the'position

of the two "twin'" poles are almost the same as if the taill were

complete.

From (38), which is valid for finite b and small y, we can
see that (aFﬁay)y=0 # 0. This means that the s-wave poles for
attractive potential do not enter the imaginary axis in  the
origin x=0. In other words, the vertices A+, B, Ct, D' of the
curves in Fig. 2 4o not coincide with the points Ay, By Cy D where
bound states are formed. Comparing the equation Jo(Z:/§53737§)=
= 0 which determines the vertices for distant poles and the
equation J (2 v¥Zb) = 0 which determines the values of b for which
the poles cross the origin, we see that the two values of b tend

to differ by 0.75 for the very distant poles.

b} The p-wave poleg

Aecording to (13), for small values of b the poles are
eclose to the lines Re(kb)=Nn/2 (N =+ 1, + 3, + 85 ...). As D

increases the poles move towards the origin. Thils is shown in
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Fig. 3, where the trajectories in the kb-plane are drawn. For

certain values of b two symmetric poles reach the imaginary axis
at the origin. |

With increasing b one pole moves upwards along the positive
imaginary axis to yb = + o, which other moves dowrwards to yb =
= - 0.+ That the entry point of all the poles is at the origin
can be proved in the rolloﬁing way. For small y we h. = -that
the equation Yél)(k,b) = 0 defining pole becomes 1f QR %£ C,

T59(2 VZB) + 3% pL3b) Tpp,1(2 VZE) = 0 (39)
where
P(Lyb) = (1+1)(482-1 + ab)(2b)P/[12(20-17]. (40)

Thus the values of b for which the poles pass the origin are given
by the roots of )

Tpq(2 V/BB) = 0. (a1)
Due to the square dependence on y, we have that in that points
also (az)gl’(h:,ba/as'r)yza= 0. This means that the origin is also
the point In which the trajectory enter the imaginary axis.
Clearly these results are valid for all L# O.

' Gall b a solution of Jaz(a v2b) = 0. Since p(isb) 1is a
positive definite quantity and since

¥ o
T2 VB~ = [20/(25, )] (b-b,) a2 VBB
n »

we can conclude that the curves y = y(b) defined by (39) have for
small y, concavities directed towards the large values of b,
Clearly these results are valld for all ##-0. Al1'"this tan-be better
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seen in Fig. 4, where Im(k) is plotted against b, and the purely
imaginary poles are indicated. Near the points where the curves
y = y{b) cross the b axis, they are symmetric with respect to ¥
(due to the square dependence mentioned above). Thus the vertices_

coincide with the axis.

The lower parts of the curves in Fig. 4 present plateaux
which all occur in the neighbourhocod of kb = ~1i. This point
has the character of a "sink", attracting the poles: la: o varia
tion in the value of b is necessary to remove a pole from the
neighbourhood of this point of the kb-plane. All the poles are
"attracted" by this point. For b large enough, we can sﬁy ﬁhat
almost alwayé there willl be a pole around kb = - 1. This is the
1

pole corresponding to the solution of'Héf

; (kb) = 0, as found in
i

Secs 4.bs

The bound state poles agaln tend rapidly to the Rydberg
values Im(k) = 2/(|N| + 3) as b increases. Unlike the s-wave
case, the "twin" poles tendo to symmetric points Im(k) =-2/(H +3).

¢) The d-wave poles

We have here a few complications as compared to the

previous cases.

According to (13), for small b the poles are close to lines
xb = Nr/2, with N =0, + 2, + 4, etc. For increasing b the
complex polies (N#0) move in the complex plane (see Fig. 5) and

reach the origin in pairs, for values of b given by {41).
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While one of the two poles !N] = 2 moveg along the positirve
imaginary axis to yb = w, the other moves downwards along the
negative imaginary axis. 1In the meantime the pole N=01is climp
ing up the negative imaginary axis. For b = 7.54 the two poles
meet edch other in the point yb = - 1.08. As b isg further in~
creased fhey leave the imaginary axis and pass to the compliex
nlane, one for each side, symmetricaliyo The symmetry  of the
Sp~function 1is thus not destroyed. The two poles descriﬁe two
"semiw-circles", and join again in the imaginary axis in  the
point yb = 2.35 for b = 13.6. Now, one of them chooses to go
down the imaginary axis, running to yb = - 00, y = = 1/3, ag b
inecreases. The other one (we cannot tell which one}_goes up the
imaginary axis, travelling towards the origino'In the meantime,
the palr of poles with |N| = 4 has arrived at the origin, and
decided that one of them would go to yb = + oo(y”=?1/4) and the
other would travel down the Imaginary axis. When b = 15.6 this
pole reachs the point yb = = 1004, and there it meets the pole
which was Just going up the imaginary axis after having describead
the semi-circles already deseribed. Since these two poles meet
there for the some value of b, they can pass symmetrically to
the complex plane without destroying the right-left symmetry of
the ngfunctiono They do it, describing '"semicireles™ in the

complex plane. The process is thus repeated continuously.

In can be remarked that the poles,; when describing the
"semicircles", ére very much glowed down when near the points

kb =¥ 3/2 = 1 3/2. This effect is more and more Important as
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IN| becomes larger. This is analogous to what happened with the
point kb = - 1 in the p-wave c2se¢ and we can say that as b—=o0,
there will always be found a pole 'n those points. This is in
agreement with the results obtained in Sec. 4-b.

In Fig. 6 +this rather complicated situation can be
observed in a different way. We fhere plot Im(k) against b. The
poles on the Imaginary axis are represented by full lines, the
complex poles by dottedflinesa We have an infinite number of
vé.lid labelling of certain lines, since after two poles join each
other we cannot tell which is which. Two of the simplest desecrip
tions are attempted in Fig. 6. In one of them the poles N = 0
never goes to infinlty: it 1s always describing semicircles,
taking charge of meetiiiy other poles to keep symmetry of the
Sa-funtion, As b —> 00 it tends to be retained by one of the
two points which are the roots of Héig(kb) = 0. In the other
interpretation each pole N # O describes semicircles twice: one
time symmetrically to a pole of smaller |N|, another time to the
next larger one. In thin case the N = O deseribes only one "semi

cirecle™.

6., THE POLES FOR REPULSIVE POTENTIALS

For repulsive potentials the behaviour of the'poles is
rather simple. In Fig. 7 are drawn the trajectories of the s, p
and d-wave poles in the kb plane.

For small values of b the trajectories are close to the



287

vertical lines xb = Nw/2, in agreement with (I%). As b fnerscsss
an inf;pite number of poles turn towards large values of Re{kb},
approachiﬁg asymptotically the line yb = « 0.5. In 81 of +thom
}czh —> 2 ag b ~»o0. They form groups,rconsisting of one

trajectory for each.liwvalue whiech go to;ether to infinity. Eeach
group tending to keep a distance #&(in the kb plane) from the
next oneo*UAli.this is in agreement“with.tha results of 1tem

ih Seag. 4.

For each value of { there Qre 1 traje§tories (counﬁ}ng
tiose in both left and right hand side plames) with an 5pec£;l
behaviour: the} remain in the finite kb-plame as b —-00, tending
« asymptotically to the polnts ﬁhich are the roots of Hiig(kb} =0,
These solutions have been mentioned in Set. 4-by and are clearly
shown in Fig. 7. Only in theése trajectories do the several waves

differ from each other when b is large.

In the k=-plane all the poles go asymptotically to the origin
as b ~—»00. Those which correspond to the trajectories which go
to infinity in the k-plane, approach the origin taking the =x
axis as a tangent, since for thgm y/x —~ 0. The ! trajectories
which end in points with finite |kb| are the only ones which do

not take the x-axis as a tangent direction.
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APPENDIX I = Proof that Sg(k,b) —~1 when b >0 with kb finite.

Taking the funectlonal re.at..n among confluent hypergeomatic
functions
1Fi(a+l; 2a+l; z)+1F1(a§ 2a+l; z)=2 1F1(a; 2aj z)
multiplying by
(z/Z)lFl(a+1§ 2a+23z) = (a+1/2)[1F1(' a+l; 2a+l; z)-lFi(a; 2a+l; z)]
and rearranging terms we obtain

lFl( a+ljla+l;z) (z/z)lFl( a+l;2a+23z) + (Pa+l )1F1( 832a3z)

1F1(a; 2a+l; z) (z/Z)lFl(a+1;2a+2;z)— (2a+1)1F1(a;2a;z)

The convenience of this is that we obtained a relation between the
two Fts that appear in Si(k, by A =0) (put a=}, z==2 ikb) and
funetions of the type iFj_{pg, 273 z) which can be expressed in
terms of Bessel functions. We ocbtain

1Fl(a+1-, 2a+l; z) J’a*%(iz/a)'*i J’a_’%(_iz/Z)

- = (A-1)
1F1(a3 2a+1; 2) J 43 (12/2) = 1 I, 3(12/2)

which can also be written

1F1(a+l 2a+l; z) [H(;F),}(i.v/a)ﬂ}lgz%(iz/ai’+|E{fé(iz/2)+iﬁéf£(iz/2)]

o8 201 2 {0205y Ga2)) + [yt -1 2) ]

which is enough to proof that Sz(ksb) — 1 when A—>0. Since

this corresponds to |k| —=o0, it also implies in that b =0,
since |kb| is supposed to be kept finite.

* k %K
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CAPTICONS FOR THE FIGUAES

Tt
FIUo 1 -

FIGo 2 -

FIGo 3 e

FIG. 4 -

FIGo 5 -

Poles for the S-matrix fo: s-w.ve scaliering by a screened at-
tractive Coulomb potential of ~:ge b, The values of b are

‘shown on the curves. The tfajectory N=0is always on the

imaginary axis. Each trajectory has a symetric one for négaﬁive
values of Re(kb). After two symmetric poles reach the imaginary
axis as b increases, one moves upwards and the other moves down-

wards along the imaginary axis.

Purely imaginary poles for s-wave scattering by an attractive
screened Coulomb potentisl. The points A&, B, G, D show the
values for which the poles reach the imaginsry axis. &', B', GV,
D' correspond to bound states ~f zero binding energy. The
asymptotes Im(k) = 2/(|N] +2) give the binding energies of the
Rydberg formula. The poles that tend to Im(k) = - 2/|N| are not

present in the usual anal;tic extensiun of the Coulomb s-matrix.

Trajectou’z- .0 w0 o e cuavhbering by atiractive
potentials. The values of the range b esre indicated on the
curves. All trajectories enter the imaginary axis at the origin,
and then run upwards and downwards along the imaginary axis.

Purely imaginary poles For p-wave scattering by attractive
potentials. The points A, B, C ¢’ he values of b for which
the poles reach the origin and nevw w.. gtates are formed. 4s
b == 00 the bound state pole d t. the values of Im(k) cor
responding to the binding ener y~ven by Rydberg formula. In
the Coulomb 1imit there are 5, ..ric poles in the negative
imaginary exis.

d~wave polee for attractive potential. As b increases the

compiex poles move towards the origin, and then follow the
imaginary axis. Those which mun along the negative imaginary axis
pass again to the complex plane, describing "semicircles!, and '
turning back to the imaginary sxis and at the points #V3/2-1 3/2,
See text for detailed description.
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F1G. 6 = Polee of the S-matrix for d-wave soattering by an attrastive
potential. In full lines are represented the poles on the
imaginary axis, in dotted lines the imaginary part of the complex
poles.,

¥1G 7 - 8, p and d-wave poles for repulsive soreened Coulomb potentials.
"~ All poles vhich move to infinity tend asymptotically to the lins
In(kb) = - 0.5, with k°b ==> 2 and Re(kb) = (20)1/2 4 3w/ +
+nv(m =1, 2, +oo). There are poles whioh a8 b = o0 tend ta
ithe points defined by Hﬁi/z (kb) = 0.
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