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Abstract

The Leaver solutions in series of Coulomb wave functions for the confluent Heun equa-
tion are given by two-sided infinite series, that is, by series where the summation
index n runs from minus to plus infinity [E. W. Leaver, J. Math. Phys. 27, 1238
(1986)]. First we show that, in contrast to the D’Alembert test, under certain condi-
tions the Raabe test assures that the domains of convergence of these solutions include
an additional singular point. We also consider solutions for a limit of the confluent
Heun equation. For both equations, new solutions are generated by transformations
of variables. Finally we discuss the time dependence of the Klein-Gordon equation in
two cosmological models and the spatial dependence of the Schrödinger equation to
a family of quasi-exactly solvable potentials. For a subfamily of these potentials we
obtain infinite-series solutions which converge and are bounded for all values of the
independent variable, in opposition to a common belief.

1 Introduction

In 1986 Leaver [1] found two types of solutions in series of confluent hypergeometric
functions for the confluent Heun equation (CHE) and presented a limit procedure to generate
solutions for the double-confluent Heun equation (DCHE) out of solutions for the CHE. Later
on we have found that there are two other physically relevant equations whose solutions can
also be derived from the Leaver solutions for the CHE and DCHE by means of a procedure
called Whittaker-Ince limit [2, 3, 4]. Further, from solutions of the CHE and/or DCHE, we
can find solutions for the Mathieu, Whittaker-Hill and spheroidal equations [1, 5].

In view of the above connections, from the inception we establish the convergence prop-
erties of Leaver’s solutions. We consider only the expansions in series of Coulomb wave
functions which are given by a set of three solutions, one in series of regular confluent hy-
pergeometric functions and two in series of irregular functions. By redefining the Coulomb
functions, we avoid difficulties arising from the Leaver definitions and find that the conver-
gence of the solutions for the CHE and its Whittaker-Ince limit follows from the Raabe test.
Furthermore, we investigate the transformations of these solutions.

First we write the aforementioned equations, present the connections among them and
call attention for the fact that there are three types of series expansions whose convergence
require different treatments. After that we introduce the D’Alembert and Raabe tests for
convergence and outline the structure of the article.

The Leaver form for the CHE is [1]

z(z − z0)
d2U

dz2
+ (B1 +B2z)

dU

dz
+
[
B3 − 2ηω(z − z0) + ω2z(z − z0)

]
U = 0, (1)

where Bi, η and ω are constants. The points z = 0 and z = z0 (if z0 6= 0) are regular
singular points, whereas z = ∞ is an irregular point. Since z0 is free, by taking z0 = 0

1Electronic address: leajj@cbpf.br
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CBPF-NF-015/12 2

Leaver obtained the DCHE

z2d
2U

dz2
+ (B1 +B2z)

dU

dz
+
(
B3 − 2ηωz + ω2z2

)
U = 0, [B1 6= 0, ω 6= 0] (2)

in which case z = 0 and z =∞ are both irregular singularities.
In addition, the CHE and the DCHE admit a (Whittaker-Ince) limit which changes the

nature of the singularity at z = ∞, keeping unaltered the other singular points. This limit
is given by [2, 3]

ω → 0, η →∞, such that 2ηω = −q, (Whittaker-Ince limit) (3)

where q is a nonvanishing constant. The Whittaker-Ince limit of the CHE is

z(z − z0)
d2U

dz2
+ (B1 +B2z)

dU

dz
+ [B3 + q(z − z0)]U = 0, (q 6= 0) (4)

(if q = 0 this equation can be transformed into a hypergeometric equation), while the limit
of the DCHE is

z2d
2U

dz2
+ (B1 +B2z)

dU

dz
+ (B3 + qz)U = 0, (q 6= 0, B1 6= 0) (5)

(if q = 0 and/or B1 = 0 the equation degenerates into a confluent hypergeometric equation
or simpler equations). This last equation also follows from Eq. (4) when z0 = 0 (Leaver’s
limit).

The Mathieu, Whittaker-Hill and spheroidal equations have been studied by themselves,
but they are particular cases of the above equations. The Mathieu equation reads [6]

d2w

du2
+ σ2[a− 2k2 cos(2σu)]w = 0, (Mathieu equation) (6)

where a and k are constants, while σ = 1 or σ = i for the Mathieu or modified Mathieu
equation, respectively. This equation is transformed into particular instances of Eqs. (1),
(2) and (4) by the substitutions of variables [3, 5]. The Whittaker-Hill equation (WHE) can
be written in the form [7, 8]

d2W

du2
+ ς2

[
ϑ− 1

8
ξ2 − (p+ 1)ξ cos(2ςu) +

1

8
ξ2 cos(4ςu)

]
W = 0, (WHE). (7)

where ϑ, ξ and p are parameters; if u is a real variable, this represents the WHE when ς = 1
and the modified WHE when ς = i. The WHE reduces to the CHE (1) and DCHE (2) by
the substitutions [3, 5]. Finally, the spheroidal equation reads [9]

d

dy

[(
1− y2

) dS(y)

dy

]
+

[
λ+ γ2(1− y2)− µ2

1− y2

]
S(y) = 0, (8)

where γ, λ and µ are constants. The substitutions (58a) transform this into a special case
of the CHE (1).

On the other side, in general there are solutions given by three different types of se-
ries, called two-sided infinite series, one-sided infinite series and finite series. These take,
respectively, the forms

∑
n

an f
ν
n(z) :=

∞∑
n=−∞

an f
ν
n(z),

∞∑
n=0

bn gn(z),
N∑
n=0

bn gn(z), (9)
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where f νn(z) and gn(z) are functions of the independent variable z, N is a non-negative
integer and ν is a parameter which does not appear in the differential equations. In the
present case, the series coefficients an and bn satisfy three-term recurrence relations. No
finite-series solutions are known for the Mathieu equation (6) nor for the Whittaker-Ince
limit (5) of the DCHE.

Two-sided infinite series, the only considered by Leaver, are necessary to assure the
convergence of solutions of equations in which there is no free parameter, as in scattering
problems [2] or in some wave equations in curved spacetimes [10]. In such cases the parameter
ν must be determined as solutions of a transcendental (characteristic) equation. However,
when truncated on the left (n ≥ 0), the two-sided infinite series give one-sided infinite series
which are useful for equations having a free parameter; in turn, these lead to solutions given
by finite series if the parameters of the equation satisfy certain constraints.

Finite-series solutions are suitable for quasi-exactly solvable (QES) problems, that is,
for quantum-mechanical problems where one part of energy spectrum and the respective
eigenfunctions can be computed explicitly [11, 12]. For QES problems obeying equations of
the Heun family [3], that part of the spectrum may be derived from finite-series solutions if
these are known. Indeed, a problem is also said to be QES if it admits solutions given by finite
series whose coefficients necessarily satisfy three-term or higher order recurrence relations
[13], and is said to be exactly solvable if its solutions can be expressed by hypergeometric
functions.

The convergence of two-sided infinity series is obtained from the limits

L1(z) = lim
n→∞

∣∣∣∣aνn+1f
ν
n+1(z)

aνnf
ν
n(z)

∣∣∣∣ , L2(z) = lim
n→−∞

∣∣∣∣aνn−1f
ν
n−1(z)

aνnf
ν
n(z)

∣∣∣∣ . (10)

By the D’Alembert test the series converges in the intersection of the regions for which
L1 < 1 and L2 < 1, and diverges otherwise (if L1 = L2 = 1, the test is inconclusive).
Leaver’s definitions for the Coulomb wave functions lead to ratios between terms presenting
square roots (except if η = 0) which make difficult to deal with the convergence tests. To
avoid this problem, we use alternative definitions that, in addition, permit to apply the
Raabe test for the solutions of the CHEs. By the Raabe test [14, 15], if

L1(z) = 1 + (A/n), L2(z) = 1 + (B/|n|), (11)

where A and B are constants, then the series converges in the region where A < −1 and
B < −1, and diverges otherwise (if A = B = −1, the test is inconclusive). For one-sided
series the convergence may be enhanced since we use only the limit L1, while for finite series
the convergence must be decided from the behaviour of each term of the series.

Furthermore, by using transformations of variables we find four sets of two-sided solutions
instead of one set as in Leaver. By the Raabe test, under certain conditions these solutions
converge absolutely for |z| ≥ |z0| or |z− z0| ≥ |z0| rather than for |z| > |z0| or |z− z0| > |z0|;
the one-sided solutions given by series of regular confluent hypergeometric functions converge
for |z| ≥ 0. Nevertheless, the behaviour of each solution for z → ∞ must be analysed
carefully because, in computing L1(z) and L2(z), we assume that z is bounded. We have
also to examine the behaviour of the solutions at the finite singular points because the series
appear multiplied by factors which may become unbounded at such points.

For brevity, here we do not consider all the above points. Indeed, we deal only with the
two-sided solutions for the CHE and its Whittaker-Ince limit. However, for later reference,
elsewhere [16] we provide the one-sided solutions as well as the solutions for the DCHE (2)
and its limit (5).

In Section 2.1 we discuss the two-sided infinite expansions for CHE (1), and in Sec. 2.2
we consider the corresponding Whittaker-Hill limit. For the spheroidal equation, we get the
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Meixner solutions in series of Bessel functions [9] instead of the Chu and Stratton solutions
[17] mentioned by Leaver. For the Mathieu equation we recover known solutions, but now
the convergence is improved by the Raabe test.

In section 3, we consider examples which illustrate the consequences of Raabe test. In
particular, we show that the Schrödinger equation for some quasi-exactly solvable poten-
tials admits infinite-series solutions which are convergent and bounded for all values of the
independent variable. Thus, in addition to the energy levels resulting from finite series, in
principle it is possible to get additional energy levels as solutions of characteristic equations
corresponding to the infinite series.

In section 4 there are some final considerations. Appendix A gives the normalization
used for the Coulomb functions and takes the case η = 0 as a criterion to decide in favour of
one of two possibilities for the ratio between successive Coulomb functions. The derivation
of the recurrence relations for the series coefficients is given in Appendix B.

2 The two-sided Series Expansions

In this section we examine separately the two-sided expansions for the CHE and for its
Whittaker-Ince limit. In this limit, the expansions in series of Coulomb functions give solu-
tions in series of Bessel functions. The solutions of the CHE with η = 0 are also expressible
by series of Bessel functions. In all cases, given an initial set of solutions, new sets are gen-
erated by transformations of variables which preserve the form of the differential equations.
Notice that the linear independence of the functions used as basis for the series expansions
will impose restrictions on the characteristic parameter ν and/or on some parameters of the
differential equations.

In Eqs. (60-62) we recover the Meixner solutions for the spheroidal equation as particular
cases of the solutions for the CHE, while in Eqs. (81a-81c) we recover the usual solutions
in series of Bessel functions for the Mathieu equation as particular cases of the solutions for
the Whittaker-Ince limit of the CHE.

2.1 Solutions for the CHE

The initial set of solutions, U1(z), is reconstructed in Appendix B. It reads

U1(z) = z−
B2
2

∑
n

b1
nUn+ν (η, ωz) , Un+ν (η, ωz) =

(
φn+ν , ψ

+
n+ν , ψ

−
n+ν

)
(η, ωz) , (12)

where
∑

n denotes two-sided series, φn+ν and ψ±n+ν represent the Coulomb wave functions
defined in Eqs. (A.12) and (A.13), and the coefficients b1

n satisfy three-term recurrence rela-
tions. So, we have a set of three expansions, one in series of regular confluent hypergeometric
functions and two in series of irregular functions. This set corresponds to Leaver’s solutions
who have used the definitions (A.14) and (A.15) for the Coulomb functions. In addition, if
U(z) = U(B1, B2, B3; z0, ω, η; z) denotes an arbitrary solution of the CHE, we can find other
solutions by means of the transformations T1, T2, T3 and T4 which operate as [3, 5]

T1U(z) = z1+B1/z0U(C1, C2, C3; z0, ω, η; z),

T2U(z) = (z − z0)1−B2−B1/z0U(B1, D2, D3; z0, ω, η; z),

T3U(z) = U(B1, B2, B3; z0,−ω,−η; z),

T4U(z) = U(−B1 −B2z0, B2, B3 + 2ηωz0; z0,−ω, η; z0 − z),

(13)
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where

C1 = −B1 − 2z0, C2 = 2 +B2 + 2B1

z0
, C3 = B3 +

(
1 + B1

z0

)(
B2 + B1

z0

)
,

D2 = 2−B2 − 2B1

z0
, D3 = B3 + B1

z0

(
B1

z0
+B2 − 1

)
.

(14)

These transformations allow constructing a group with 4 sets of two-sided series Ui (i =
1, · · · , 4) where coefficients bin satisfy recurrence relations having the form

αinb
i
n+1 + βinb

i
n + γinb

i
n−1 = 0, [−∞ < n <∞] (15)

where αin, βin and γin depend on the parameters of the differential equation as well as on ν and
n. These relations lead to transcendental (characteristic) equations given as a sum of two
infinite continued fractions. By omitting the superscripts of αin, βin and γin, the characteristic
equations read

β0 =
α−1γ0

β−1−
α−2γ−1

β−2−
α−3γ−2

β−3−
· · ·+ α0γ1

β1−
α1γ2

β2−
α2γ3

β3−
· · · (16)

which are equivalent to the vanishing of the determinants of infinite tridiagonal matrices, as
in Eq. (32). If the CHE has no free parameter, Eq. (16) may be used to find the possible
values of ν (characteristic parameter); if the CHE has an arbitrary parameter, Eq. (16)
permits to find the values of that parameter corresponding to suitable values of ν.

To analyse the properties of the solutions we write explicitly each of the three solutions,
instead of using the abbreviated form (12). Thus, we denote by U1 =

(
U1, U

+
1 , U

−
1

)
the

solutions associated respectively with the functions
(
φn+ν , ψ

+
n+ν , ψ

−
n+ν

)
. This gives the

solutions (19) which, by the transformations (13), generate the three sets of solutions that
have not been considered by Leaver. The four sets of two-sided solutions are denoted by

Ui(z) =
[
Ui(z), U+

i (z), U−i (z)
]
, i = 1, · · · , 4, (17)

if η 6= 0; if η = 0 the notation is given in Eq. (47). These solutions correspond to eight sets
of one-sided solutions [16] which are denoted by

Ůi(z) =
[
Ůi(z), Ů+

i (z), Ů−i (z)
]
, i = 1, · · · , 8, (18)

and do not depend on ν. In fact they are generated by expressing the parameter ν of each Ui

as two different functions of the parameters of the CHE. The convergence of the solutions Ůi

is obtained by considering only the limits n → ∞ in the computations given in the present
article.

2.1.1 The four sets of the solutions

Explicitly the first set U1, given in Eq. (12), reads

U1(z) = eiωz
∑
n

b1
n [2iωz]n+ν+1−B2

2

Γ[2n+ 2ν + 2]
Φ [n+ ν + 1 + iη, 2n+ 2ν + 2;−2iωz]

U±1 (z) = e±iωz
∑
n

b1
n [−2iωz]n+ν+1−B2

2

Γ[n+ ν + 1∓ iη]
Ψ [n+ ν + 1± iη, 2n+ 2ν + 2;∓2iωz] ,

(19)
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where, in the recurrence relations (15) for b1
n,

α1
n =

2iωz0[n+ν+2−B2
2 ]

[
n+ν+1−B2

2
−B1
z0

]
(2n+2ν+2)(2n+2ν+3)

,

β1
n = −B3 − ηωz0 −

(
n+ ν + 1− B2

2

) (
n+ ν + B2

2

)
−

ηωz0[B2−2]
[
B2+

2B1
z0

]
(2n+2ν)(2n+2ν+2)

,

γ1
n = −

2iωz0[n+ν+
B2
2
−1]

[
n+ν+

B2
2

+
B1
z0

]
(n+ν+iη)(n+ν−iη)

(2n+2ν−1)(2n+2ν)
.

(20)

By applying the transformation T3 on U1, we find the equivalence

T3

[
U1(z), U+

1 (z), U−1 (z)
]
⇔

[
U1(z), U−1 (z), U+

1 (z)
]
. (21)

Precisely, we find T3

[
U1, U

+
1 , U

−
1

]
=
[
Ū1, Ū

−
1 , Ū

+
1

]
with

Ū1(z) = eiωz
∑
n

b̄1
n [−2iωz]n+ν+1−B2/2

Γ[2n+ 2ν + 2]
Φ (n+ ν + 1 + iη, 2n+ 2ν + 2;−2iωz) ,

Ū±1 (z) = e±iωz
∑
n

b̄1
n [2iωz]n+ν+1−B2/2

Γ[n+ ν + 1∓ iη]
Ψ (n+ ν + 1± iη, 2n+ 2ν + 2;∓2iωz) ,

where the recurrence relations for b̄1
n are

−α1
n b̄

1
n+1 + β1

n b̄
1
n − γ1

n b̄
1
n−1 = 0.

Up to a multiplicative constant independent of n, we can set b̄1
n = (−1)nb1

n in order to
establish relation (21). Thus, the transformation T3 is ineffective in the present case. The
remaining transformations allow to form a group constituted by four sets of solutions, namely,

U1(z), U2(z) = T2U1(z); U3(z) = T4U1(z), U4(z) = T4U2(z) = T1U3(z). (22)

In fact, from the explicit forms of these sets, one verifies that T1 does not generate new
solutions when applied on U1 and U2; similarly, T2 has no effect on U3 and U4.

The three sets of solutions generated by the preceding transformations are written below.

U2(z) = f2(z)eiωz
∑
n

b2
n[iωz]n

Γ[+2ν + 2]
Φ [n+ ν + 1 + iη, 2n+ 2ν + 2;−2iωz]

U±2 (z) = f2(z)e±iωz
∑
n

b2
n[−2iωz]n

Γ[n+ ν + 1∓ iη]
Ψ [+ν + 1± iη, 2n+ 2ν + 2;∓2iωz]

(23)

where f2 = f2(z) = zν+(B1/z0)+(B2/2) (z − z0)1−B2−(B1/z0). The coefficients for the recurrence
relations are given by

α2
n =

2iωz0[n+ν+
B2
2 ]

[
n+ν+1+

B2
2

+
B1
z0

]
(2n+2ν+2)(2n+2ν+3)

, β2
n = β1

n,

γ2
n = −

2iωz0[n+ν+1−B2
2 ]

[
n+ν−B2

2
−B1
z0

]
(n+ν+iη)(n+ν−iη)

(2n+2ν−1)(2n+2ν)
.

(24)

The transformation T4 acting on U1 gives the set U3 = U3(z), namely,

U3 = f3e
iω[z−z0]

∑
n

b3
n [2iω(z − z0)]n

Γ[2n+ 2ν + 2]
Φ [n+ ν + 1 + iη, 2n+ 2ν + 2;−2iω(z − z0)] ,

U±3 = f3e
±iω[z−z0]

∑
n

b3
n [2iω(z0 − z)]n

Γ[n+ ν + 1∓ iη]
×

Ψ [n+ ν + 1± iη, 2n+ 2ν + 2;∓2iω(z − z0)] ,

(25)
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where f3 = f3(z) = (z − z0)ν+1−(B2/2) and, in the recurrence relations,

α3
n = −

2iωz0[n+ν+2−B2
2 ]

[
n+ν+1+

B2
2

+
B1
z0

]
(2n+2ν+2)(2n+2ν+3)

, β3
n = β1

n,

γ3
n =

2iωz0[n+ν−1+
B2
2 ]

[
n+ν−B2

2
−B1
z0

]
(n+ν+iη)(n+ν−iη)

(2n+2ν−1)(2n+2ν)
.

(26)

The fourth set, obtained by applying T1 on U3, reads

U4 = f4e
iω[z−z0]

∑
n

b4
n [2iω(z − z0)]n

Γ[2n+ 2ν + 2]
Φ [n+ ν + 1 + iη, 2n+ 2ν + 2;−2iω(z − z0)] ,

U±4 = f4e
±iω[z−z0]

∑
n

b4
n [2iω(z0 − z)]n

Γ[n+ ν + 1∓ iη]
×

Ψ [n+ ν + 1± iη, 2n+ 2ν + 2;∓2iω(z − z0)] ,

(27)

where f4 = f4(z) = z1+(B1/z0) (z − z0)ν−(B2/2)−(B1/z0) and, in recurrence relations for b4
n,

α4
n = −

2iωz0[n+ν+
B2
2 ]

[
n+ν+1−B2

2
−B1
z0

]
(2n+2ν+2)(2n+2ν+3)

, β4
n = β1

n,

γ4
n =

2iωz0[n+ν+1−B2
2 ]

[
n+ν+

B2
2

+
B1
z0

]
(n+ν+iη)(n+ν−iη)

(2n+2ν−1)(2n+2ν)
.

(28)

If there is no free parameter in the CHE, ν must be determined as solutions of a charac-
teristic equation. However, by considering the form of the solutions and respective recurrence
relations for the series coefficients, we find that

2ν and ν ∓ iη cannot be integers (29)

for two-sided series. The restriction ν ∓ iη 6=integer assures that factors 1/Γ(n+ ν + 1± iη)
which appear in U±i (z) are not zero for any value of n; assures as well that the factors
(n+ ν + iη)(n+ ν − iη) in γin do not vanish for any n. In fact, such restriction is necessary
to have two-sided infinite series for the three solutions in each of the four sets Ui.

The condition 2ν 6=integer is necessary in order to avoid two terms linearly dependent
in the series of U±i (z). Indeed, suppose that 2ν =integer in the solutions U±1 (z). These are
series expansions in terms of

B±n (z) = [−2iωz]n+ν+1Ψ[n+ ν + 1± iη, 2n+ 2ν + 2;∓2iωz].

By setting n = n1 and using (A.3), we find

B±n1
(z) = ±(−1)ν∓ν [−2iωz]−n1−νΨ[−n1 − ν ± iη,−2n1 − 2ν;∓2iωz].

Hence, B±n1
and B±n2

are proportional to each other for some n = n2 such that n1 + n2 + 1 =
−2ν. Similar results are found for the other solutions U±i (z). On the other side, by supposing
that 2ν 6=integer, the functions Φ(a, c; y) which appear in Ui(z) are well defined because the
parameter c = 2n+ 2ν + 2 cannot be a negative integer. Nevertheless, see in the paragraph
containing Eqs. (55) and (56) some remarks concerning the case η = 0.

According to Eqs. (A.4), if the conditions (29) are true, the three hypergeometric func-
tions are linearly independent and each one can be written as a combination of the others
by means of (A.5). In this case, in a common region of validity, we can write one solution
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of a given set as a superposition of the others. However, the three series are really doubly
infinite (−∞ < n <∞) if, in addition to (29), ν satisfies the restrictions

ν ± B2

2
and ν ±

(
B1

z0
+ B2

2

)
are not integers. (30)

These conditions assure that αin and γin do not vanish for any value of n. In effect, if αin = 0
for some n = N1, the series should begin at n = N1 + 1 in order to assure the validity of the
theory of the three-term recurrence relations; by the same reason, if γin = 0 for some n = N2,
the series should terminate at n = N2 − 1.

Notice that, for two-side solutions,

βin = β1
n, αinγ

i
n+1 = α1

nγ
1
n+1, [i = 2, 3, 4]. (31)

Thence, Eq. (16) implies that all the solutions Ui satisfy the same characteristic equation
and, consequently, the parameter ν takes the same values in all solutions. In addition, as
noticed by Leaver, the characteristic equations are periodic in ν with period 1. In effect,
in order to indicate that the coefficients depend on ν we rewrite the recurrence relations as
ανnb

ν
n+1 + βνnb

ν
n + γνnb

ν
n−1 = 0 or as the following tridiagonal matrix equation:

. . .

γνn βνn ανn
γνn+1 βνn+1 ανn+1

γνn+2 βνn+2 ανn+2

. . .




.

bνn−1

bνn
bνn+1

.

 = 0 [−∞ < n <∞] (32)

where 0 denotes the null column vector. Thence, the values for ν may be determined by
requiring that the determinant of the above matrix vanishes. However, as

γν+1
n = γνn+1, βν+1

n = βνn+1, αν+1
n = ανn+1, · · ·

and −∞ < n < ∞, the matrix and its determinant are not modified by the replacement
ν → ν + 1 (or ν → ν +N , where N is any integer).

Further, if (29) and (30) are fulfilled, all coefficients can be written in terms of b1
n. Up to

multiplicative constants independent of n, we have

b2
n =

Γ[n+ν+2−B2
2 ] Γ

[
n+ν+1−B1

z0
−B2

2

]
Γ[n+ν+

B2
2 ] Γ

[
n+ν+1+

B1
z0

+
B2
2

] b1
n, b3

n =
(−1)n Γ

[
n+ν+1−B1

z0
−B2

2

]
Γ
[
n+ν+1+

B1
z0

+
B2
2

] b1
n,

b4
n =

(−1)n Γ[n+ν+2−B2
2 ]

Γ[n+ν+
B2
2 ]

b1
n. (33)

As an example, we consider the solutions W (u) for the WHE (7). These may be obtained
from the solutions U(z) of the CHE (1) by taking

W (u) = U(z), z = cos2(ςu), [ς = 1, i] ⇒ z0 = 1,

B1 = −1
2
, B2 = 1, B3 = (p+1)ξ−ϑ

4
, iω = ξ

2
, iη = p+1

2

}
WHE as

a CHE.
(34)

Thus, the solutions Ui =
(
Ui, U

+
i , U

−
i

)
lead to four sets of solutions

Wi(u) =
[
Wi(u) = Ui(z), W+

i (u) = U+
i (z), W−

i (u) = U−i (z)
]
. (35a)

In this case, the coefficients of the recurrence relations for b1
n simplify to

α1
n = iω

2
, β1

n = −B3 − ηω −
[
n+ ν + 1

2

]2
, γ1

n = − iω
2

[n+ ν + iη][n+ ν − iη], (35b)

whereas Eqs. (33) reduce to

b2
n =

(
n+ ν + 1

2

)
b1
n, b3

n = (−1)nb1
n, b4

n = (−1)n
(
n+ ν + 1

2

)
b1
n. (35c)
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2.1.2 Convergence and an asymptotic behaviour

The D’Alembert test implies two subgroups of solutions since U1 and U2 converge for
any finite z such that |z| > |z0|, whereas U3 and U4 converge for |z− z0| > |z0|. However, by
the Raabe test they may converge also at |z| = |z0| and |z− z0| = |z0| under the conditions

|z| ≥ |z0| if


Re
[
B2 + B1

z0

]
< 1 in U1,

Re
[
B2 + B1

z0

]
> 1 in U2;

|z − z0| ≥ |z0| if


Re
[
B1

z0

]
> −1 in U3,

Re
[
B1

z0

]
< −1 in U4,

(36)

where the restrictions on parameters of the equation are necessary only to assure convergence
at |z| = |z0| or |z − z0| = |z0|. In particular, for the solutions of the WHEs we find

| cos(ςu)| ≥ 1 in W1, | cos(ςu)| > 1 in W2,

| sin(ςu)| ≥ 1 in W3, | sin(ςu)| > 1 in W4. (37)

Thence the two-sided solutions are useless for the WHE (that is, for ς = 1 and u=real),
but may be useful for the modified WHE (ς = i, u=real). If Re[B2 + (B1/z0)] = 1 and
Re[B1/z0] = −1 in (36), the Raabe test becomes inconclusive in the sense that the solutions
may converge or diverge at |z| = |z0| or |z − z0| = |z0|.

To obtain the conditions (36) it is sufficient to consider the convergence of the first set of
solutions. The results for the other sets arise from transformations (13) applied in the order
given in (22). Thus, by using the form (12) for the first set, the domains of convergence
follow from the ratios

lim
n→∞

b1
n+1Un+ν+1(η, ωz)

b1
nUn+ν(η, ωz)

and lim
n→−∞

b1
n−1Un+ν−1(η, ωz)

b1
nUn+ν(η, ωz)

The ratios b1
n+1/b

1
n and b1

n−1/b
1
n come from the relations α1

nb
1
n+1 + β1

nb
1
n + γ1

nb
1
n−1 = 0 which,

when n→ ±∞, yield

iωz0

[
1− 1

n

(
B2 + B1

z0
− 1

2

)
+O

(
1
n2

)] b1n+1

b1n
− 2n

[
n+ 2ν + 1 +O

(
1
n

)]
−iωz0n

[
n+ 2ν +B2 + B1

z0
− 1

2
+O

(
1
n

)] b1n−1

b1n
= 0. (38)

Hence, the minimal solution for b1
n+1/b

1
n when n→∞ is

b1n+1

b1n
∼ ωz0

2i

[
1 + 1

n

(
B2 + B1

z0
− 3

2

)]
⇒ b1n−1

b1n
∼ 2i

ωz0

[
1− 1

n

(
B2 + B1

z0
− 3

2

)]
, (39a)

and the minimal solution for b1
n−1/b

1
n when n→ −∞ is

b1n−1

b1n
∼ iωz0

2n2

[
1− 1

n

(
2ν +B2 + B1

z0
− 3

2

)]
⇒ b1n+1

b1n
∼ 2n2

iωz0

[
1 + 1

n

(
2ν +B2 + 1

2
+ B1

z0

)]
.

(39b)
On the other hand, from relations (A.19) and (A.20) we find that, for finite values of z,

n→∞ : φn+ν+1

φn+ν
∼ iωz

2n2

[
1− 1

n

(
2ν + 5

2

)]
,

ψ±n+ν+1

ψ±n+ν

∼ 2i
ωz

[
1− 1

2n

]
,

n→ −∞ : Un+ν−1

Un+ν
∼ 2n2

iωz

[
1 + 1

n

(
2ν + 1

2

)]
, Un+ν =

(
φn+ν , ψ

(±)
n+ν

)
.

(40)

Thence, by means of (39a), we find

n→∞ :


b1n+1φn+ν+1

b1n φn+ν
∼ ω2z0z

4n2

[
1 + 1

n

(
B2 + B1

z0
− 2ν − 4

)]
,

b1n+1ψ
±
n+ν+1

b1nψ
±
n+ν

∼ z0
z

[
1 + 1

n

(
B2 − 2 + B1

z0

)]
,

(41a)
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and, by means of (39b),

n→ −∞ :
b1n−1Un+ν−1

b1nUn+ν
∼ z0

z

[
1− 1

n

(
B2 − 2 + B1

z0

)]
, Un+ν =

(
φn+ν , ψ

±
n+ν

)
. (41b)

¿From these limits we get

lim
n→∞

b1
n+1φn+ν+1

b1
nφn+ν

=
ω2z0z

4n2
, lim

n→−∞

b1
n−1φn+ν−1

b1
nφn+ν

=
|z0|
|z|

[
1 +

1

|n|
Re

(
B2 − 2 +

B1

z0

)]
(42)

and

lim
n→∞

b1
n+1ψ

±
n+ν+1

b1
nψ
±
n+ν

= lim
n→−∞

b1
n−1ψ

±
n+ν−1

b1
nψ
±
n+ν

=
|z0|
|z|

[
1 +

1

|n|
Re

(
B2 − 2 +

B1

z0

)]
. (43)

So, by the D’Alembert test the series converge absolutely for |z| > |z0| because the right-
hand sides of (42) and (43) are < 1. However, if |z| = |z0|, by the expressions (11) for the
Raabe test, the series converge even for |z| = |z0| provided that the numerators of |n| in (42)
and (43) are < −1, that is,

if Re [B2 + (B1/z0)] < 1, the series in U1(z) converge for |z| ≥ |z0|.

If Re [B2 + (B1/z0)] > 1, the series diverge and, if Re [B2 + (B1/z0)] = 1, the test is in-
conclusive. The convergence regions (36) for the other sets of solutions are obtained by
transforming the parameters and the variable z of U1 in accordance with Eqs. (22). Only
the limit n→∞ is relevant for one-sided series (n ≥ 0) and, then, the solutions Ůi converge
for any finite value z in virtue of the first limit given in (42). The convergence of Ů±i is
similar to that of U±i .

Since the previous regions of convergence were derived by supposing that z is finite, now
we consider the behaviour of the solutions at z = ∞. By using (A.7) we find that, when
z →∞,

U1(z) ∼ eiωz[iωz]−iη−
B2
2

∑ b1n
Γ[n+ν+1−iη]

+ e−iωz[−2iωz]iη−
B2
2

∑ (−1)n−ν−1+iηb1n
Γ[n+ν+1+iη]

. (44)

Thus, U1 may be unbounded by virtue of the exponential factors. This is consistent with
the fact that, if conditions (29) and (30) are satisfied, then U1(z) can be written as a linear
combination of U+

1 (z) and U−1 (z). In fact, when z →∞, Eq. (A.6) gives

U+
1 (z) ∼ eiωz[−2iωz]−iη−

B2
2

∑ b1n
Γ[n+ν+1−iη]

, −3π
2
< arg(−2iωz) < 3π

2
;

U−1 (z) ∼ e−iωz[−2iωz]iη−
B2
2

∑ (−1)n−ν−1+iη b1n
Γ[n+ν+1+iη]

, −3π
2
< arg(2iωz) < 3π

2
.

(45)

Thus, the series in U±1 converge at z = ∞ but one of them may be unbounded depending
on the exponential factors. For instance, if Re(iωz)→∞, U+

1 →∞ but U−1 is bounded.

2.1.3 The case η = 0, the spheroidal and Mathieu equations

Taking η = 0 and keeping fixed the other parameters, the previous solutions are rewritten
in series of Bessel functions of the first kind, Jκ(y), and in series of the first and the second

Hankel functions, H
(1)
κ (y) and H

(2)
κ (y). We also include the Bessel functions Yκ(y) of the

second kind. These four functions are denoted by Z
(j)
κ (y) – or by C (j)

κ (y) – according as
[7, 18]

Z(1)
κ (y) = Jκ(y), Z(2)

κ (y) = Yκ(y), Z(3)
κ (y) = H(1)

κ (y), Z(4)
κ (y) = H(2)

κ (y). (46)
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There are connections among these functions. For example, the relation Yκ = [H
(1)
κ −

H
(2)
κ ]/(2i) permits to obtain the expansion in series of Yκ as a linear combination of the

expansions in series of Hankel functions. Thus, we get four sets of solutions, each containing
four solutions. These sets are written as

U
(j)
i (z) =

[
U

(1)
i (z), U

(2)
i (z), U

(3)
i (z), U

(4)
i (z)

]
, i = 1, 2, 3, 4, (47)

where the right-hand side corresponds to the Bessel functions (46). For one-sided series there

are eight sets Ů
(j)
i . The solutions U1 lead to U

(j)
1 which, in turn, give the other sets by means

of the transformations (22), that is,

U
(j)
2 (z) = T2U

(j)
1 (z); U

(j)
3 (z) = T4U

(j)
1 (z), U

(j)
4 (z) = T1U

(j)
3 (z). (48)

Thus, we put η = 0 in U1 given in (19), use the relations (A.22) together with [18]

Γ(2z) = 22z−1Γ(z)Γ [z + (1/2)] /
√
π,

and redefine the coefficients as a1
n = inb1

n/Γ(n+ ν + 1). So, we find

U
(j)
1 (z) = z

1
2
−B2

2

∑
n

a1
nZ

(j)

n+ν+ 1
2

(ωz), [2ν 6= 0,±1,±2, · · · ] (49a)

In the recurrence relations (15) for a1
n, we have

α1
n =

ωz0[n+ν+2−B2
2 ]

[
n+ν+1−B1

z0
−B2

2

]
(2n+2ν+3)

,

β1
n = −

(
n+ ν + 1− B2

2

) (
n+ ν + B2

2

)
−B3,

γ1
n =

ωz0[n+ν+
B2
2
−1]

[
n+ν+

B2
2

+
B1
z0

]
(2n+2ν−1)

.

(49b)

The other sets are given by (βin = β1
n, 2ν 6= 0,±1,±2, · · · ):

U
(j)
2 (z) = z

B1
z0

+
B2
2
− 1

2 [z − z0]
1−B2−B1

z0

∑
n

a2
nZ

(j)

n+ν+ 1
2

(ωz),

α2
n =

ωz0[n+ν+
B2
2 ]

[
n+ν+1+

B1
z0

+
B2
2

]
(2n+2ν+3)

, γ2
n =

ωz0[n+ν+1−B2
2 ]

[
n+ν−B1

z0
−B2

2

]
(2n+2ν−1)

;

(50)

U
(j)
3 (z) = [z − z0]

1
2
−B2

2

∑
n

a3
nZ

(j)

n+ν+ 1
2

[ω(z − z0)],

α3
n = −

ωz0[n+ν+2−B2
2 ]

[
n+ν+1+

B1
z0

+
B2
2

]
(2n+2ν+3)

, γ3
n = −

ωz0[n+ν−1+
B2
2 ]

[
n+ν−B1

z0
−B2

2

]
(2n+2ν−1)

;

(51)

U
(j)
4 (z) = z

1+
B1
z0 [z − z0]

− 1
2
−B1
z0
−B2

2

∑
n

a4
nZ

(j)

n+ν+ 1
2

[ω(z − z0)],

α4
n = −

ωz0[n+ν+
B2
2 ]

[
n+ν+1−B1

z0
−B2

2

]
(2n+2ν+3)

, γ4
n = −

ωz0[n+ν+1−B2
2 ]

[
n+ν+

B1
z0

+
B2
2

]
(2n+2ν−1)

.

(52)

By using the relations [18]

Jκ (yeiπ) = eiπκJκ(y), Yκ (yeiπ) = e−iπκYκ(y) + 2i cos(πκ)Jκ(y),

H
(1)
κ (yeiπ) = −e−iπκH(2)

κ (y), H
(2)
κ (yeiπ) = eiπκH

(1)
κ (y) + 2 cos(πκ)H

(2)
κ (y)

(53)
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with κ = n+ ν + (1/2), we find that the change ω → −ω does not lead to new independent
solutions. In this sense, once more the transformation T3 is ineffective.

Also in the present case (η = 0) conditions (30), that is,

ν ± B2

2
and ν ±

(
B1

z0
+ B2

2

)
are not integers, [ see relations (30)] (54a)

are necessary in order to have two-sided infinite series, and relations (33) hold for the
coefficients a1

n. On the other side, the restrictions (29) are replaced by conditions 2ν 6=
0,±1,±2 · · · which assure the independence of the Bessel function:

2ν 6= 0,±1,±2, · · · , [independence of Bessel functions]. (54b)

In fact, it is necessary that ν 6= ±1/2,±3/2, · · · in order to avoid two linearly dependent

functions of integer order, like Z
(j)
` (y) and Z

(j)
−` (y) [Z` = (−1)`Z−`], where ` is zero or positive

integer. In addition, ν 6= 0,±1,±2, · · · assures the independence of the Hankel functions in
the same series: on the contrary, we would have functions like H`+(1/2) and H−`−(1/2) which
are proportional to each other since [19]

H
(1)
−`−(1/2)(y) = i(−1)`H

(1)
`+(1/2)(y), H

(2)
−`−(1/2)(y) = −i(−1)`H

(2)
`+(1/2)(y). (55)

However, for series of Bessel functions of the first and second kind, we have

J−`−(1/2)(y) = (−1)`+1Y`+(1/2)(y), Y
(2)
−`−(1/2)(y) = (−1)`J

(2)
`+(1/2)(y), (56)

that is, for ν = 0,±1,±2, · · · the functions J`+(1/2) and J−`−(1/2) (or, Y`+(1/2) and Y−`−(1/2))
are linearly independent. In spite of this, by assuming that ν 6= 0,±1,±2, · · · also for J
and Y we guarantee that all of the solutions (60) and (61) for the spheroidal equation are
two-sided since α1

n and γ1
n do not vanish for −∞ < n <∞.

On the other side, for two-sided series the domains of convergence are again given by
(36) with U

(j)
i substituted for Ui. For the one-sided series the solutions Ů

(1)
i , in series of

Bessel functions of the first kind, converge for any finite z. The behaviour of the solutions
at z =∞ can be found from the fact that, for κ fixed and |y| → ∞ [18],

Jκ(y) ∼
√

2
πy

cos
[
y − κπ

2
− π

4

]
, Yκ(y) ∼

√
2
πy

sin
[
y − κπ

2
− π

4

]
: | arg y| < π;

H
(1)
κ (y) ∼

√
2
πy
ei[y−

κπ
2
−π

4 ] : −π < arg y < 2π;

H
(2)
κ (y) ∼

√
2
πy
e−i[y−

κπ
2
−π

4 ] : −2π < arg y < π.

(57)

Now we consider the Meixner solutions. The substitutions

y = 1− 2z, S(y) = z
µ
2 [z − 1]

µ
2 U(z) ⇔ S(y) ∝ [y2 − 1]

µ
2 U

(
z = 1−y

2

)
(58a)

transform the spheroidal wave equation (8) into

z(z − 1)
d2U

dz2
+ [− (µ+ 1) + (2µ+ 2) z]

dU

dz
+
[
µ (µ+ 1)− λ+ 4γ2z(z − 1)

]
U = 0,

which is the CHE (1) with parameters

z0 = 1, B1 = −µ− 1, B2 = 2µ+ 2, B3 = µ(µ+ 1)− λ, ω = ±2γ, η = 0. (58b)
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Instead of Z
(j)
κ (v), Meixner used the functions ψ

(j)
κ (v) which are given by [9]

ψ(j)
κ (v) =

√
π/(2v) Z

(j)
κ+(1/2)(v), (59)

in analogy with the definitions of the spherical Bessel functions jκ, yκ, h
(1)
κ and h

(2)
κ [19]. So,

by taking ω = −2γ and using this notation, we get

S
(j)
1 (µ, y) =

[
y + 1

y − 1

]µ
2 ∑

n

a1
nψ

(j)
n+ν [γ(y − 1)], S

(j)
2 (µ, y) = S

(j)
1 (−µ, y),

α1
n = 2γ(n+ν+1−µ)(n+ν+1)

(2n+2ν+3)
, β1

n = (n+ ν)(n+ ν + 1)− λ, γ1
n = 2γ(n+ν+µ)(n+ν)

(2n+2ν−1)
;

(60)

and

S
(j)
3 (µ, y) =

[
y − 1

y + 1

]µ
2 ∑

n

(−1)na1
nψ

(j)
n+ν [γ(y + 1)], S

(j)
4 (µ, y) = S

(j)
3 (−µ, y). (61)

For these solutions, conditions (54a) and (54b) reduces to

2ν 6= 0,±1,±2, · · · , ν ± (µ+ 1) 6= integer.

The Meixner solutions are given by S
(j)
2 (µ, y) and S

(j)
4 (µ, y). By the D’Alembert test S

(j)
i

converge for |y − 1| > 2 (if i = 1, 2) or for |y + 1| > 2 (if i = 3, 4), as stated in [9, 20].
However, by the Raabe test they may converge at |y−1| = 2 or |y+ 1| = 2 because relations
(36) and (58b) yield

|y − 1| ≥ 2, if

Re (µ) < 0 in S
(j)
1 ,

Re (µ) > 0 in S
(j)
2 ;

|y + 1| ≥ 2 if

Re (µ) < 0 in S
(j)
3 ,

Re (µ) > 0 in S
(j)
4

(62)

(if Re (µ) = 0, the test is inconclusive).
On the other side, the solutions w(u) for the Mathieu equation (6), considered as a

particular case of the CHE, may be obtained by setting

w(u) = U(z), z = cos2(σu
2

), [σ = 1, i] ⇒ z0 = 1,

B1 = −1/2, B2 = 1, B3 = 2k2 − a, ω = 4k, η = 0

}
Mathieu eq.

as a CHE,
(63)

where U(z) are the solutions for CHE with η = 0. Thus, from the previous solutions U
(j)
i (z)

we get four sets of two-sided solutions w
(j)
i (u)

w
(j)
1 (u) =

∑
n

an Z
(j)

n+ν+ 1
2

[
4k cos2 σu

2

]
,

∣∣ cos σu
2

∣∣ ≥ 1,

w
(j)
2 (u) = tan σu

2

∑
n

(
n+ ν + 1

2

)
anZ

(j)

n+ν+ 1
2

[
4k cos2 σu

2

]
,

∣∣ cos σu
2

∣∣ > 1,
(64a)

w
(j)
3 (u) =

∑
n

(−1)nan Z
(j)

n+ν+ 1
2

[
−4k sin2 σu

2

]
,

∣∣ sin σu
2

∣∣ ≥ 1,

w
(j)
4 (u) = cot σu

2

∑
n

(−1)n
(
n+ ν + 1

2

)
anZ

(j)

n+ν+ 1
2

[
−4k sin2 σu

2

]
,

∣∣ sin σu
2

∣∣ > 1,
(64b)

where the coefficients an satisfy the relations

2k(n+ ν + 1)an+1+
[
a− 2k2 −

(
n+ ν + 1

2

)2
]
an + 2k(n+ ν)an−1 = 0. (64c)

For any solutions the behaviour when z = cos2(σu/2) → ∞ must be determined by using
(57). If σ = 1 and u =real (Mathieu equation) the previous solutions are useless. Notice,

however, that the one-sided solutions ẘ
(j)
i in series of Bessel functions of the first kind are

convergent for all finite values of z.
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2.2 Solutions for the Whittaker-Ince limit of the CHE

To obtain solutions to the Whittaker-Ince limit of the CHE (4), we apply [21]

lim
a→∞

Φ
(
a, c;−y

a

)
= Γ(c) y(1−c)/2Jc−1

(
2
√
y
)
,

lim
a→∞

[
Γ(a+ 1− c) Ψ

(
a, c;−y

a

)]
=

−iπe
iπcy(1−c)/2H

(1)
c−1

(
2
√
y
)
, Im y > 0,

iπe−iπcy(1−c)/2H
(2)
c−1

(
2
√
y
)
, Im y < 0,

(65)

on the hypergeometric functions used as basis for the expansions of the solutions for the
CHE. For this it is necessary to rewrite the latter solutions in a suitable form and keep n
fixed. Expansions in series of Yc−1 are obtained as a linear combination of the expansions
in series of Hankel functions. In this manner, from the first set (19), we get a set of four

solutions for Eq. (4). These are again denoted by U
(j)
1 (j = 1, . . . , 4). In fact, we will

compute only the limit of U1(z): the other solutions follow from the fact that the four Bessel
functions satisfy the same differential and difference equations.

On the other side, if U(z) = U(B1, B2, B3; z0, q; z) represents an arbitrary solution for
Eq. (4), then other solutions are generated by the transformations T1, T2 and T3 given by
[3]

T1U(z) = z1+B1/z0U(C1, C2, C3; z0, q; z),

T2U(z) = (z − z0)1−B2−B1/z0U(B1, D2, D3; z0, q; z),

T3U(z) = U(−B1 −B2z0, B2, B3 − qz0; z0,−q; z0 − z),

(66)

where Ci and Di are defined in Eqs. (14 ). Thus, it is sufficient to take the limit of the

first set of solutions (19) and of the coefficients (20). The other sets are obtained from U
(j)
1

through

U
(j)
2 = T2U

(j)
1 , U

(j)
3 = T3U

(j)
2 , U

(j)
4 = T1U

(j)
3 . (67)

First we find the four sets of solutions and use the Raabe test to study their convergence.
In the second place, we write the solution for the Mathieu equation.

2.2.1 The four sets of solutions

To find the limit of U1(z) given in (19), we rewrite that solution as

U1(z) = eiωz
∑
n

(−1)ncn[qz]n+ν+1−(B2/2)

Γ[2n+ 2ν + 2]
Φ

[
n+ ν + 1 + iη, 2n+ 2ν + 2;−qz

iη

]
, (68a)

where cn = b1
n[−iη]−n and q = −2ηω. ¿From α1

nb
1
n+1 + β1

nb
1
n+1 + γ1

nb
1
n−1 = 0, we get

−iη α1
ncn+1 + β1

ncn + (−iη)−1γ1
ncn−1 = 0, (68b)

where α1
n, β1

n and γ1
n are given in (20). By supposing that n is fixed and using (65), we obtain

the solution U
(1)
1 in series of Bessel functions of first kind. In fact, we may verify directly

that the four solutions U
(j)
1 given below satisfy Eq. (5).

Then, the first set is given by

U
(j)
1 (z) = z(1−B2)/2

∑
n

(−1)nc1
nZ

(j)
2n+2ν+1 (2

√
qz) , (69a)
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where, in the recurrence relations α1
nc

1
n+1 + β1

nc
1
n+1 + γ1

nc
1
n−1 = 0, we have

α1
n =

qz0[n+ν+2−B2
2 ]

[
n+ν+1−B1

z0
−B2

2

]
(2n+2ν+2)(2n+2ν+3)

,

β1
n = B3− qz0

2
+
(
n+ ν + 1− B2

2

) (
n+ ν + B2

2

)
−
qz0[B2−2]

[
B2+

2B1
z0

]
2(2n+2ν)(2n+2ν+2)

,

γ1
n =

qz0[n+ν−1+
B2
2 ]

[
n+ν+

B1
z0

+
B2
2

]
(2n+2ν−1)(2n+2ν)

.

(69b)

The transformations (66), applied on U
(j)
1 according to (67), generate the other sets, that is,

(βin = β1
n)

U
(j)
2 (z) = (z − z0)

1−B2−B1
z0 z

B1
z0

+
B2
2
− 1

2

∑
n

(−1)nc2
nZ

(j)
2n+2ν+1 (2

√
qz) ,

α2
n =

qz0[n+ν+
B2
2 ]

[
n+ν+1+

B2
2

+
B1
z0

]
(2n+2ν+2)(2n+2ν+3)

, γ2
n =

qz0[n+ν+1−B2
2 ]

[
n+ν−B2

2
−B1
z0

]
(2n+2ν−1)(2n+2ν)

;

(70)

U
(j)
3 (z) = (z − z0)(1−B2)/2

∑
n

(−1)nc3
nZ

(j)
2n+2ν+1

[
2
√
q(z − z0)

]
,

α3
n = −

qz0[n+ν+2−B2
2 ]

[
n+ν+1+

B2
2

+
B1
z0

]
(2n+2ν+2)(2n+2ν+3)

, γ3
n = −

qz0[n+ν−1+
B2
2 ]

[
n+ν−B2

2
−B1
z0

]
(2n+2ν−1)(2n+2ν)

;

(71)

U
(j)
4 (z) = z

1+
B1
z0 (z − z0)

− 1
2
−B1
z0
−B2

2

∑
n

(−1)nc4
nZ

(j)
2n+2ν+1

[
2
√
q(z − z0)

]
,

α4
n = −

qz0[n+ν+
B2
2 ]

[
n+ν+1−B2

2
−B1
z0

]
(2n+2ν+2)(2n+2ν+3)

, γ4
n = −

qz0[n+ν+1−B2
2 ]

[
n+ν+

B2
2

+
B1
z0

]
(2n+2ν−1)(2n+2ν)

.

(72)

For the these four sets of solutions, the conditions (29) and (30) are replaced by

2ν, ν ± B2

2
and ν ±

(
B1

z0
+ B2

2

)
are not integers, (73)

while the relations (33) remain valid for the coefficients cin.

The previous list completes the list given in Ref. [2] where the expansions U
(1,2)
i in series of

Jκ and Yκ have not been taken into account, whereas the expansions U
(3,4)
i have been written

in terms of the modified Bessel functions K2n+2ν+1[±2i
√
qz] and K2n+2ν+1[±2i

√
q(z − z0].

Moreover, now the regions of convergence are modified by the use of the Raabe test.

2.2.2 Convergence of the solutions

As in the case of the CHE, by the D’Alembert test the two-sided expansions U
(j)
1 and U

(j)
2

converge absolutely for |z| > |z0| while U
(j)
3 and U

(j)
4 converge for |z − z0| > |z0|. However,

by the Raabe test the solutions also converge at |z| = |z0| and |z − z0| = |z0| under the
conditions similar (36), that is,

|z| ≥ |z0| if


Re
[
B2 + B1

z0

]
< 1 in U

(j)
1 ,

Re
[
B2 + B1

z0

]
> 1 in U

(j)
2 ,

|z − z0| ≥ |z0| if


Re
[
B1

z0

]
> −1 in U

(j)
3 ,

Re
[
B1

z0

]
< −1 in U

(j)
4 .

(74)

The test does not assure convergence at z = ∞ and, so, the behaviour at z = ∞ again
deserves special attention. We will find that one-sided infinite series Ů

(1)
i in series of Bessel

functions of first kind converge for any finite value of z.



CBPF-NF-015/12 16

Relations (74) correspond to (36) with the replacements U
(j)
i ↔ Ui. In fact, a few

modifications in the previous demonstration lead to (74). Thus, if n→ ±∞, we find

qz0

[
1− 1

n

(
B2 + B1

z0
− 1

2

)]
c1n+1

c1n
+
[
4n(n+ 2ν + 1)

]
+

qz0

[
1 + 1

n

(
B2 + B1

z0
− 1

2

)]
c1n−1

c1n
= 0.

When n→∞ the minimal solution for cn+1/cn is

n→∞ :
c1n+1

c1n
∼ − qz0

4n2

[
1− 1

n

(
2ν −B2 − B1

z0
+ 7

2

)]
⇒ (75)

c1n−1

c1n
∼ −4n2

qz0

[
1 + 1

n

(
2ν −B2 − B1

z0
+ 3

2

)]
,

while the minimal solution for cn−1/cn, when n→ −∞, is

n→ −∞ :
c1n−1

c1n
∼ − qz0

4n2

[
1− 1

n

(
2ν +B2 + B1

z0
− 3

2

)]
⇒ (76)

c1n+1

c1n
∼ −4n2

qz0

[
1 + 1

n

(
2ν +B2 + B1

z0
+ 1

2

)]
.

On the other side, the behaviours (A.24) and (A.25) for the Bessel functions lead to

lim
n→∞

J2n+2ν+3

J2n+2ν+1

=
qz

4n2

[
1− 1

n

(
2ν +

5

2

)]
,

lim
n→∞

Z
(2,3,4)
2n+2ν+3

Z
(2,3,4)
2n+2ν+1

=
4n2

qz

[
1 +

1

n

(
2ν +

3

2

)]
;

lim
n→−∞

Z
(j)
2n+2ν−1

Z
(j)
2n+2ν+1

=
4n2

qz

[
1 +

1

n

(
2ν +

1

2

)]
, [j = 1, 2, 3, 4].

(77)

Thus, when n tends to +∞

lim
n→∞

[
c1
n+1J2n+2ν+3

c1
nJ2n+2ν+1

]
= −q

2z0z

16n4

[
1− 1

n

(
4ν + 6−B2 −

B1

z0

)]
,

lim
n→∞

[
c1
n+1Z

(j)
2n+2ν+3

c1
nZ

(j)
2n+2ν+1

]
= −z0

z

[
1− 1

n

(
2−B2 −

B1

z0

)]
, [j = 2, 3, 4]

(78)

and, when n→ −∞,

lim
n→−∞

[
c1
n−1Z

(j)
2n+2ν−1

c1
nZ

(j)
2n+2ν+1

]
= −z0

z

[
1 +

1

n

(
2−B2 −

B1

z0

)]
, [j = 1, 2, 3, 4]. (79)

Hence, by the Raabe test the expansions U
(j)
1 are convergent for |z| ≥ |z0| as indicated in (74).

For the other sets of solutions the domains of convergence follow from the transformations
(66) applied on U

(j)
1 according to (67). Moreover, from the first limit given in (78) we see

that the one-sided infinite series Ů
(1)
i converge for all z excepting probably the point z =∞.

The behaviour any solution when z →∞ must be determined by using (57).
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2.2.3 Heine’s solutions for the Mathieu equation

¿From the previous solutions we recover the usual solutions in series of Bessel functions
for Mathieu’s equation (called Heine’s solutions [22]) by means of the substitutions

w(u) = U(z), z = cos2(σu) ⇒ z0 = 1,

B1 = −1
2
, B2 = 1, B3 = k2

2
− a

4
, q = k2

}
Mathieu eq. as Whittaker-
Ince limit of the CHE.

(80)

However, the regions of convergence for some solutions turn out to be improved by the Raabe
test. This fact is useful for some applications, as we will see in Sec. IV.

Relations (33), with bin replaced by cin, yield

c2
n =

(
n+ ν + 1

2

)
c1
n, c3

n = (−1)nc1
n, c4

n = (−1)n
(
n+ ν + 1

2

)
c1
n.

Then, by writing cn = c1
n, w

(j)
i (u) = U

(j)
i (z) and setting

√
k2 = k we find

w
(j)
1 (u) =

∑
n

(−1)ncnZ
(j)
2n+2ν+1 [2k cos(σu)] , | cos(σu)| ≥ 1,

w
(j)
2 (u) = tan[σu]

∑
n

(−1)n
(
n+ ν + 1

2

)
cnZ

(j)
2n+2ν+1 [2k cos(σu)] , | cos(σu)| > 1,

(81a)

w
(j)
3 (u) =

∑
n

cnZ
(j)
2n+2ν+1 [2ki sin(σu)] , | sin(σu)| ≥ 1

w
(j)
4 (u) = cot(σu)

∑
n

(
n+ ν + 1

2

)
cnZ

(j)
2n+2ν+1 [2ki sin(σu)] , | sin(σu)| > 1,

(81b)

where the coefficients cn satisfy the relations

k2cn+1+
[
(2n+ 2ν + 1)2 − a

]
cn + k2cn−1 = 0. (81c)

As in the case of the two-sided solutions (64a) and (64b), obtained from the CHE, the above
solutions are useless for σ = 1 and u =real (Mathieu equation).

The conditions (73) reduce to 2ν /∈ Z and assure the linear independence of the terms in a
given series. In addition, the above notation for solutions of the Mathieu equation is similar
to the one used by Erdélyi [22]. However, in Ref. [18, 19] the coefficients (cn+1, cn, cn−1)
are replaced by (c2n+2, c2n, c2n−2) and the Bessel functions Z2n+2ν+1 written as Z2n+ν̄ : this
is equivalent to put 2ν + 1 = ν̄ with ν̄ /∈ Z. The above domains of convergence may be
compared with the ones of solutions 28.23.2-28.23.5 of [19].

By the Raabe test, the the two-sided solutions w
(j)
1 (u) and w

(j)
3 (u) are absolutely con-

vergent also at | cos(σu)| = 1 and | sin(σu)| = 1, respectively. In Refs. [7, 18, 20, 23] these
points are not included in the domains of convergence due to the use of the D’Alembert
test. The one-sided solutions ẘ

(1)
i converge for any finite u; in Ref. [19] it is stated that this

property holds also for two-sided solutions (a misprint, for certain).

3 Possible Applications

In this section we consider two examples which use solutions for the CHE. In the first
example we discuss solutions for the Klein-Gordon equation for a scalar test field Φ in
the gravitational background of a singular and a non-singular spacetimes. As the time
dependence of Φ obeys Mathieu equations without any arbitrary constant, we have to use
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two-side series solutions. The parameter ν must be determined from the characteristic
equation. Then, the Raabe test assures that in both cases the solutions of the Mathieu
equations are bounded and convergent for all values of the time variable. However, the full
wavefunction is bounded everywhere only for the nonsingular spacetime.

The second example deals with the one-dimensional Schrödinger equation for a family of
quasi-exactly solvable potentials. In addition to the expected solutions given by finite series,
for a subfamily of the potentials we find infinite-series solutions which, due to the Raabe
test, are bounded and convergent for all values of the independent variable.

3.1 Klein-Gordon equation in curved spacetimes

In its conformally static form, the line element ds2 = gµνdx
µdxν for nonflat Friedmann-

Robertson-Walker spacetimes is written as [24]

ds2 = [A(τ)]2
[
dτ 2 − dχ2 − sin2(

√
εχ)

ε

(
dθ2 + sin2 θdϕ2

)]
, xµ = (τ, χ, θ, ϕ) (82)

where ε = ±1 is the spatial curvature, τ is the time variable, whereas χ, θ and ϕ are the
spatial coordinates. The Klein-Gordon equation for a field Φ with mass M (~ = c = 1) is

∂µ
(√
−ggµν∂νΦ

)
+
√
−g
(
M2 + %R

)
Φ = 0, ∂µ = ∂/∂xµ,

where g is the determinant associated with gµν , R is the Ricci scalar, % = 1/6 for conformal
coupling, and % = 0 for minimal coupling. By performing the separation of variables

Φ(χ, θ, ϕ, τ) = [A(τ)]−1 T (τ) X(χ) Θ(θ) eimϕ, m = 0,±1,±2, · · · , (83)

one finds that X and Θ are given by the same special functions for any scale factor A(τ)
[24], while T obeys the equation

d2T

dτ 2
+

[
κ2 +M2A2 + (6%− 1)

(
1

A

d2A

dτ 2
+ ε

)]
T = 0, (84)

The constant of separation κ, determined from the spatial dependence of Φ, is given by

κ = 1, 2, 3, · · · if ε = 1, and 0 < κ <∞ if ε = −1.

For a nonsingular model of universe and for (singular) radiation-dominated models, Eq. (84)
reduces to Mathieu equations.

3.1.1 Nonsingular metric

For the nonsingular case, the scale factor A(τ) is given by [25]

A(τ) = a0 cosh τ, ε = −1, −∞ < τ <∞,

where a0 is a positive constant, leads to the modified Mathieu equation

d2T

dτ 2
+

[
κ2 +

1

2
M2a2

0 +
1

2
M2a2

0 cosh(2τ)

]
T = 0.

So, in Eq. (6) we have

σ = i, a = −κ2 −
(
M2a2

0/2
)
, k = Ma0/2, u = τ.
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Solutions for this problem have already been given in Ref. [26] where the convergence at
τ = 0 is not discussed. Here this question is solved by using the Raabe test.

¿From the Heine-type solutions, only w
(j)
1 given in equation (81a) afford convergent and

bounded wave functions for all τ ∈ (−∞,∞). We find the solutions

T (j)(τ) =
∞∑

n=−∞

(−1)ncnZ
(j)
2n+2ν+1 (Ma0 cosh τ) , [2ν /∈ Z] (85a)

where the recurrence relations for cn are

M2a2
0 cn+1+

[
(4n+ 4ν + 2)2 + 4κ2 + 2M2a2

0

]
cn +M2a2

0 cn−1 = 0. (85b)

The relations among the Bessel functions [19] imply that only two of the four solutions (85a)
are linearly independent. Similar results are found by treating the Mathieu equation as a
CHE. In effect, by using w

(j)
1 given in (64a) we obtain

T(j)(τ) =
∞∑

n=−∞

anZ
(j)
n+ν+(1/2)

[
2Ma0 cosh2 (τ/2)

]
, [2ν /∈ Z] (86a)

where the recurrence relations for an are

Ma0[n+ ν + 1]an+1 −
[(
n+ ν + 1

2

)2
+ κ2 +M2a2

0

]
an +Ma0[n+ ν]an−1 = 0. (86b)

Thus, the Raabe test assures that T (j) and T(j), as well as the corresponding wavefunctions
(83), are bounded and convergent for all τ ∈ (−∞,∞).

3.1.2 Singular metric

For radiation-dominated spacetimes, A(τ) = a0 sin (ετ)/
√
ε (τ ≥ 0) and, so,

d2T

dτ 2
+
[
κ2 +

ε

2
M2a2

0 −
ε

2
M2a2

0 cos
(
2
√
ετ
)]
T = 0. (87)

We consider only the case ε = −1. We take σ = i, a = (M2a2
0/2) − κ2, k = Ma0/2 and

u = τ . Then the Heine solutions w
(j)
1 (u) given in equation (81a) lead

T (j)(τ) =
∞∑

n=−∞

(−1)ncnZ
(j)
2n+2ν+1 (Ma0 cosh τ) , [2ν /∈ Z] (88a)

where the recurrence relations are

M2a2
0 cn+1+

[
(4n+ 4ν + 2)2 + 4κ2 − 2M2a2

0

]
cn +M2a2

0 cn−1 = 0. (88b)

On the other side, from the solutions w
(j)
1 (u) given in (64a) (CHE) we find

T(j)(τ) =
∞∑

n=−∞

anZ
(j)
n+ν+(1/2)

[
2Ma0 cosh2 (τ/2)

]
, [2ν /∈ Z] (89a)

where the relations for an are

Ma0[n+ ν + 1]an+1 −
[(
n+ ν + 1

2

)2
+ κ2

]
an +Ma0[n+ ν]an−1 = 0. (89b)

Once more, T (j) and T(j) are convergent and bounded for all τ ≥ 0 but now the wavefunctions
(83) become unbounded at τ = 0 due to the factor 1/A(τ) = 1/(a0 sinh τ).

Therefore, if ε = −1 the solutions for the modified Mathieu obtained from the CHE
and its Whittaker-Hill limit are suitable for the singular and nonsingular metrics. For the
singular metric, the unboundedness of the solutions (83) at τ = 0 is expected since at this
point there is a physical singularity in the sense that the pressure and density energy diverge.
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3.2 Schrödinger equation for quasi-exactly solvable potentials

Now we consider problems involving solutions given by finite and infinite series for the
CHE. For this end, we write the one-dimensional stationary Schrödinger equation for a
particle with mass M and energy E as

d2ψ

du2
+
[
E− V(u)

]
ψ = 0, u = ax, E =

2M

~2a2
E, V(u) =

2M

~2a2
V(x), (90)

where a is a constant with inverse-length dimension, ~ is the Plank constant divided by 2π,
x is the spatial coordinate and V (x) is the potential. For V(u) we choose the Ushveridze
quasi-exact solvable potential [12]

V(u) = 4β2sinh4 u+ 4β
[
β − 2(γ + δ)− 2`

]
sinh2 u+ 4

[
δ − 1

4

] [
δ − 3

4

]
1

sinh2 u

− 4
[
γ − 1

4

] [
γ − 3

4

]
1

cosh2 u
, [` = 0, 1, 2, · · · ] (91)

where β, γ and δ are real constants with β > 0 and δ ≥ 1/4.
When δ ≥ 1/4 and ` is zero or a natural number, the above family of potentials is

quasi-exactly solvable because it admits bounded wavefunctions given by finite series which
allow to determine only a finite number of energy levels. However, for 1/4 ≤ δ < 1/2 and
1/2 < δ ≤ 3/4 we also find infinite-series solutions which are convergent and bounded for all
values of the independent variable: this suggests the possibility of determining the remaining
part of the energy spectra as solutions of a characteristic equation. For δ > 3/4 we find no
solutions like these.

Notice that Ushveridze supposed that ` = 0, 1, 2, · · · . However we will see that, for

(γ, δ) =
(

1
4
, 1

4

)
,
(

1
4
, 3

4

)
,
(

3
4
, 1

4

)
,
(

3
4
, 3

4

)
, (92)

the potential is quasisolvable even when ` is a positive half-integer. In addition, Ushveridze
supposed that u ∈ (−∞,∞). However, we get

lim
u→±∞

V(u) =∞, lim
u→0

V(u) =


−4
[
γ − 1

4

] [
γ − 3

4

]
, if δ = 1

4
or δ = 3

4
;

−∞, if δ ∈
(

1
4
, 3

4

)
;

+∞, if δ /∈
[

1
4
, 3

4

]
.

(93)

Hence, for δ /∈ [1/4, 3/4] there is an infinite barrier at u = 0 and, so, we can suppose that
u ≥ 0 or u ≤ 0.

3.2.1 Wavefunctions for the Whittaker-Hill equation

If γ and δ take the values (92), the potential (91) reduces to

V(u) = 4β2sinh4 u+ 4β
[
β − 2(γ + δ)− 2`

]
sinh2 u,

[
` = 0,

1

2
, 1,

3

2
, · · ·

]
(94a)

where u ∈ (−∞,∞). Thence, by using sinh2 u = [cosh(2u)− 1]/2 and sinh4 u = [cosh(4u)−
4 cosh(2u) + 3]/8, Eq. (90) becomes a modified WHE (7) with the parameters

σ = i, ϑ = −E + 4β(`+ γ + δ), p+ 1 = 2(`+ γ + δ), ξ = 2β. (94b)

In fact, the WHE also occurs in the cases of the Razavy potential [27] and the symmetric
double-Morse potential considered by Zaslavskii and Ulyanov [28].
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On the other side, the substitutions

z = cosh2 u, ψ(u) = ψ[u(z)] = U(z), [z ≥ 1] (95)

transform the Schrödinger equation for the preceding potential into the CHE (1) with

z0 = 1, B1 = −1
2
, B2 = 1, B3 = E

4
, iω = ±β, iη = ± (`+ γ + δ) , (96)

where the plus or minus sign must be used throughout. Thus, we can attempt to solve
the problem by using known solutions for the CHE. For example, from the Baber-Hassé
expansions in power series, the Hylleraas solutions or the Jaffé solutions [1, 29, 30, 31] we
obtain even and odd finite-series solutions bounded for z ≥ 1: such solutions allow to find
only a finite number of energy levels. There are also infinite-series solutions which, however,
must be discarded because they are not bounded for any admissible value of z.

On the other side, if we use one-sided series solutions Ůi(z) in terms of Coulomb wave-
functions, we may find [16]

• Even and odd finite-series solutions which are convergent and bounded for all z ≥ 1.

• Even infinite-series solutions which, due to the Raabe test, are convergent and bounded
for all z ≥ 1.

• Odd infinite-series solutions which converge and are bounded only for z > 1, and odd
solutions which converge and are bounded only for finite values of z. To cover the
entire interval z ≥ 1 it is necessary to consider two of such solutions.

Therefore, in this case we could find additional energy levels by solving a transcendental
characteristic equation. This conclusion follows as well from the two-sided infinite series
solutions given in Eqs. (100a) and (101a).

3.2.2 Wavefunctions for the cases 1/4 ≤ δ < 1/2 and 1/2 < δ ≤ 3/4

For the Ushveridze potential (91), the substitutions

z = cosh2 u, ψ(u) = ψ[u(z)] = zγ−
1
4 (z − 1)δ−

1
4U(z), [z ≥ 1] (97)

transform the Schrödinger equation (90) into a confluent Heun equation with

z0 = 1, B1 = −2γ, B2 = 2γ + 2δ, B3 = E
4

+
(
γ + δ − 1

2

)2
,

iω = ±β, iη = ±(`+ δ + γ). (98)

Now we exclude the cases (92) and suppose that ` is a non negative integer. We select

iω = −β, iη = −`− γ − δ.

Then, by using for U(z) the solutions given in Eqs. (29a-b) of Ref. [3], we find

ψbaber
1 [u(z)] = e−βzzγ−

1
4 (z − 1)δ−

1
4

∑̀
n=0

an(z − 1)n, [` = 0, 1, 2, · · · ] (99a)

where the series coefficients satisfy (a−1 = 0)

(n+ 1)(n+ 2δ)an+1 +
[
n(n+ 2γ + 2δ − 1− 2β) + E

4
+
(
γ + δ − 1

2

)2 − 2βδ
]

an+

−2β(n− `− 1)an−1 = 0. (99b)
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According to the theory of three-term recurrence relations [7], the series in (99a) ends at
n = ` because the coefficient of an−1 in (99b) vanishes when n = ` + 1. Since β > 0, the
previous eigenfunctions are bounded for all z ≥ 1 provided that δ ≥ 1/4. In fact, ψbaber

1

represents `+ 1 distinct solutions, each one with a different energy [7].
By the other side, we find cases for which there are infinite-series solutions appropriate

for any z ≥ 1. For this we insert into (97) the two-sided solutions U+
1 and U+

2 given in (19)
and (23), respectively, and use the Raabe test along with the limit (A.6). Thence by scribing
convenient values to the parameter ν, we find the solutions ψ+

1 and ψ+
2 having the following

properties

• The solutions ψ+
1 are convergent and bounded for all z ≥ 1 if 1/4 ≤ δ < 1/2.

• The solutions ψ+
2 are convergent and bounded for all z ≥ 1 if 1/2 < δ ≤ 3/4.

• If δ = 1/2, then ψ+
1 = ψ+

2 . For this case the Raabe test is inconclusive as to the
convergence at z = 1.

In effect, for U(z) = U+
1 (z) solutions (97) yield

ψ+
1 (z) = e−βzzν−δ+

3
4 (z − 1)δ−

1
4

∞∑
n=−∞

b1
n [2βz]n

Γ[n+ ν + 1 + `+ γ + δ]

× Ψ [n+ ν + 1− `− γ − δ, 2n+ 2ν + 2; 2βz] , 1/4 ≤ δ < 1/2 (100a)

where, in the recurrence relations (15) for b1
n we have

α1
n = −2β[n+ν+2−γ−δ][n+ν+1+γ−δ]

(2n+2ν+2)(2n+2ν+3)
,

β1
n = −E

4
+ β(`+ γ + δ)−

[
n+ ν + 1

2

]2 − β[`+γ+δ][γ+δ−1][γ−δ]
[n+ν][n+ν+1]

,

γ1
n = 2β[n+ν−1+γ+δ][n+ν−γ+δ][n+ν+`+γ+δ][n+ν−`−γ−δ]

[2n+2ν−1][2n+2ν]
.

(100b)

By the Raabe test the condition δ < 1/2 assures that the series converge at z = 1, while the
condition δ ≥ 1/4 assures that the factor (z − 1)δ−(1/4) is bounded at z = 1. Similarly, for
U(z) = U+

2 (z) we obtain

ψ+
2 (z) = e−βzzν+δ− 1

4 (z − 1)−δ+
3
4

∞∑
n=−∞

b2
n [2βz]n

Γ[n+ ν + 1 + `+ γ + δ]

× Ψ [n+ ν + 1− `− γ − δ, 2n+ 2ν + 2; 2βz] , 1/2 < δ ≤ 4/3 (101a)

where, in the recurrence relations (15) for b2
n

α2
n = −2β[n+ν+γ+δ][n+ν+1−γ+δ]

(2n+2ν+2)(2n+2ν+3)
, β2

n = β1
n

γ2
n = 2β[n+ν+1−γ−δ][n+ν+γ−δ][n+ν+`+γ+δ][n+ν−`−γ−δ]

[2n+2ν−1][2n+2ν]
,

(101b)

where β2
n = β1

n is a functional identity; in fact, β1
n and β2

n are different of each other because
they hold for distinct intervals of δ.

To assure that all the terms of the series are linearly independent and that the summation
extends from minus to plus infinity, the parameter ν must be chosen such that

2ν, ν ± (γ + δ) and ν ± (γ − δ) are not integers, (102)

where the values for δ are different for solutions (100a) and (101a). The linear independence
is assured by requiring that 2ν is not integer, without any restrictions on the parameters
of the potential. Thus, for fixed values of γ and δ, we can choose for ν any value in the
open interval (0, 1/2) convenient to satisfy the above conditions. The use of one-sided series
would lead to restrictions on γ and δ.



CBPF-NF-015/12 23

4 Conclusion

We have dealt with the convergence of Leaver’s expansions in series of Coulomb wave
functions for solutions of the CHE. By redefining the Coulomb functions, we have completed
the proof of convergence delineated by Leaver and, in addition, have found that the Raabe
test improves the regions of convergence for solutions of the CHE and its Whittaker-Ince
limit (4) if certain conditions are fulfilled. It is worth noticing that in using the convergence
tests we suppose that the independent variable z is finite. So, when z tends to infinite the
behaviour of each solution must be analysed carefully.

We have used transformations of variables which lead to solutions with different domains
of convergence and/or different behaviors at the singular points. By this procedure, we
have recovered all of the Meixner solutions [9] for the spheroidal equation (8) and the Heine
solutions [19] for the Mathieu equation (6). In both cases these expansions are given by
series of Bessel functions whose convergence regions may be improved by the Raabe test.

We have considered only two-sided solutions for the CHE and its Whittaker-Ince limit.
Despite this, due to the validity of the Raabe test, in section 3, we have found that the Klein-
Gordon equation in a non-singular model of universe has solutions bounded and convergent
for all values of the time variable. In section 3 we have also regarded the Schrödinger equation
for a class of quasi-exactly solvable (QES) potentials.

If the real parameter δ satisfies δ ≥ 1/4, a part of the energy spectrum of the Schrödinger
equation can be computed from finite-series solutions, as expected for any QES potential.
However, the remarkable fact is the existence of infinite-series solutions which (by the Raabe
test) converge and are bounded for all values of the independent variable if 1/4 ≤ δ ≤ 3/4.
These are the solutions which, in principle, permit to find new energy levels as solutions of
a transcendental equation. However, here we have not found infinite-series wavefunctions
appropriate for δ > 3/4.

Finally, some comments on the solutions for the DCHE as well as on the one-sided
solutions for the CHE and DCHE – for details see Ref. [16]. First, the Raabe test is useless
for solutions of the DCHE. Second, we find two subgroups of solutions for the DCHE: one
is obtained from solutions of the CHE when z0 → 0; the other follows from that subgroup
by a transformation of the DCHE and cannot be derived as limit of expansions in series of
Coulomb functions. Thus, we may seek solutions for the CHE which yield such subgroup for
the DCHE when z0 → 0.

On the other hand, to obtain one-sided series solutions we restrict the summation of the
two-sided series to n ≥ 0 by writing the parameter ν as function of the parameters of the
differential equations. Thus, each of the four sets Ui(z) for the CHE gives two expressions
for ν and, accordingly, eight sets Ůi(z) of one-sided series solutions. For special values of
the parameters these solutions are given by finite series. It must be noticed that: if η 6= 0,
there are three possible types of recurrence relations for the series coefficients; if η = 0, only
two types. In addition, the form of these relations depends on the normalization used for
the Coulomb functions.

A Confluent-hypergeometric and Coulomb Functions

Here we write some useful formulas concerning the confluent hypergeometric functions
and, in Eqs. (A.12) and (A.13), redefine the Coulomb wave functions. At the end we obtain
the relations (A.21) which are important to apply the convergence tests for infinite-series
solutions of the CHE.

The regular and irregular confluent hypergeometric functions, Φ(a, c;u) and Ψ(a, c;u),
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are solutions of the confluent hypergeometric equation [21]

y d
2ϕ
dy2

+ (c− y)dϕ
dy
− a ϕ = 0. (A.1)

The functions Φ(a, c; y) and Ψ(a, c; y) are also denoted by M(a, c, y) and U(a, c, y), respec-
tively [18]. In fact, the following four solutions for Eq. (A.1)

ϕ(1)(y) = Φ(a, c; y), ϕ(2)(y) = Ψ(a, c; y),

ϕ(3)(y) = eyΨ(c− a, c;−y), ϕ(4)(y) = y1−cΦ(1 + a− c, 2− c; y),
(A.2)

are all of them defined and distinct only if c is not an integer [21]. Different forms for ϕ(i)

follow from the Kummer transformations

Φ(a, c; y) = eyΦ(c− a, c;−y), Ψ(a, c; y) = y1−cΨ(1 + a− c, 2− c; y). (A.3)

In this article, we use only ϕ(1), ϕ(2) and ϕ(3). Their Wronskians are [21]

W
[
ϕ(1), ϕ(2)

]
= W [Φ(a, c; y),Ψ(a, c; y)] = − Γ(c)

Γ(a)
y−c ey,

W
[
ϕ(1), ϕ(3)

]
= W [Φ(a, c; y), eyΨ(c− a, c; e±iπy)] = Γ(c)

Γ(c−a)
e∓iπc y−c ey,

W
[
ϕ(2), ϕ(3)

]
= W [Ψ(a, c; y), eyΨ(c− a, c; e±iπy)] = e±iπ(a−c) y−c ey.

(A.4)

Therefore, if a, c and c−a are not zero or negative integers, the three solutions are well defined
and any two of them form a fundamental system of solutions for confluent hypergeometric
equation [21]. If c is not zero or a negative integer, the solutions are connected by [21],

Φ(a,c;y)
Γ(c)

= e∓iπa

Γ(c−a)
Ψ(a, c; y) + e±iπ(c−a)

Γ(a)
ey Ψ (c− a, c; e±iπy) , (A.5)

When y →∞, the behaviour of of Ψ(a, c; y) is given by [18]

Ψ(a, c; y) ∼ y−a
∞∑
m=0

(a)m(a− c+ 1)m
m!

(−y)−m, −3π

2
< arg y <

3π

2
; (A.6)

while the behaviour of Φ(a, c; y) is given by

Φ(a, c; y)

Γ(c)
∼ eyya−c

Γ(a)

∞∑
m=0

(1− a)m(c− a)m
m!

y−m+

e±iπay−a

Γ(c−a)

∑∞
m=0

(a)m(a−c+1)m
m!

(−y)−m, a 6= 0,−1, · · · , c− a 6= 0,−1, · · · , (A.7)

where the upper sign holds for −π/2 < arg y < 3π/2 and the lower sign, for −3π/2 < arg y ≤
−π/2. In these limits (x)m denotes the Pochhammer symbol whose definition is

(x)0 = 1, (x)1 = x, (x)m = x(x + 1)(x + 2) · · · (x +m− 1) = Γ(x +m)/Γ(x).

Using these definitions, the function Φ(a, c : y) is written as

Φ(a, c; y) =
∞∑
n=0

(a)n
(c)n

yn

n!
= 1 + y +

a

c
y +

a(a+ 1)

c(c+ 1)

y

2!
+ · · · . (A.8)

In addition, we have the integral representations [21]

Φ(a, c; y) =
Γ(c)

Γ(a)Γ(c− a)

∫ 1

0

eyuua−1(1− u)c−a−1du, Re(c) > Re(a) > 0, (A.9)
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and

Ψ(a, c; y) =
1

Γ(a)

∫ ∞
0

e−yuua−1(1 + u)c−a−1du, Re(a) > 0. (A.10)

On the other hand the Coulomb wave functions are solutions of the equation

d2Un+ν

dy2
+
[
1− 2η

y
− (n+ν)(n+ν+1)

y2

]
Un+ν = 0. (A.11)

If η = 0, this can be written in the usual form of the Bessel equation by a substitution of
variable. If η 6= 0 the solutions Un+ν(y) = Un+ν(η, y) are written in terms of one regular
confluent hypergeometric function Φ and two irregular functions Ψ, that is,

Un+ν(η, y) =
[
φn+ν

(
η, y
)
, ψ +

n+ν

(
η, y
)
, ψ −n+ν)

(
η, y
)]

(A.12)

where, by definition, we take

φn+ν(η, y) = eiy

Γ[2n+2ν+2]
[2iy]n+ν+1Φ[n+ ν + 1 + iη, 2n+ 2ν + 2;−2iy],

ψ ±n+ν

(
η, y
)

=
±2ieηπ e±iy

Γ[n+ ν + 1∓ iη]
[−2iy]n+ν+1Ψ[n+ ν + 1± iη, 2n+ 2ν + 2;∓2iy].

(A.13)

In ψ ±n+ν the irrelevant factors ±2i exp(ηπ) are maintained just to connect the above defini-
tions with the ones used by Leaver. In fact, for Un+ν Leaver used the functions Fn+ν(η, y)
and Gn+ν(η, y), defined as

Fn+ν(η, y) = [Γ(n+ν+1+iη)Γ(n+ν+1−iη)]1/2

2eπη/2Γ(2n+2ν+2)
×

eiy(2y)n+ν+1Φ(n+ ν + 1 + iη, 2n+ 2ν + 2;−2iy),
(A.14)

Gn+ν(η, y)± iFn+ν(η, y) = eπη/2e∓iπ(n+ν+1/2)
[

Γ(n+ν+1±iη)
Γ(n+ν+1∓iη)

]1/2

×

e±iy(2y)n+ν+1Ψ [n+ ν + 1± iη, 2n+ 2ν + 2;∓2iy] .
(A.15)

Thus, φn+ν and ψ±n+ν are obtained by dividing the above expressions by Γn, defined as

Γn = (1/2)e−ηπ/2(−i)n+ν+1[Γ(n+ ν + 1 + iη)Γ(n+ ν + 1− iη)]1/2. (A.16)

Inversely, when φn+ν and ψ±n+ν are multiplied by Γn, we recover the Leaver normalization.
¿From the properties of the functions Fn+ν(η, y) and Gn+ν(η, y) given in Eqs. (126) and

(125) of Leaver’s paper, we find that the functions (A.12) satisfy the equations

dUn+ν

dy
=

i(n+ ν)(n+ ν + 1 + iη)(n+ ν + 1− iη)

(n+ ν + 1)(2n+ 2ν + 1)
Un+ν+1

− η

(n+ ν)(n+ ν + 1)
Un+ν +

i(n+ ν + 1)

(n+ ν)(2n+ 2ν + 1)
Un+ν−1 (A.17)

and

(n+ν)(n+ν+1+iη)(n+ν+1−iη)
(2n+2ν+1)

Un+ν+1 −

i
[

(n+ν)(n+ν+1)
y

+ η
]
Un+ν − (n+ν+1)

(2n+2ν+1)
Un+ν−1 = 0. (A.18)
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For ν and η fixed, by dividing all terms of (A.18) by (n2/2)Un+ν and letting n → ±∞ we
find [

1 + 1
n

(
2ν + 3

2

)] Un+ν+1

Un+ν
− 2i

y

[
1 + 1

n
(2ν + 1)

]
− 1

n2

[
1 + 1

2n

]Un+ν−1

Un+ν
= 0,

whose solutions are
Un+ν+1

Un+ν
∼ iy

2n2

[
1− 1

n

(
2ν + 5

2

)]
⇔ Un+ν−1

Un+ν
∼ −2in2

y

[
1 + 1

n

(
2ν + 1

2

)]
(A.19)

and
Un+ν+1

Un+ν
∼ 2i

y

[
1− 1

2n

]
⇔ Un+ν−1

Un+ν
∼ y

2i

[
1 + 1

2n

]
, (A.20)

provided that y/n2 = 0 when n→ ±∞ (this condition is satisfied if y is finite). Thus, there
are two possibilities for the ratios between successive Coulomb functions. By demanding
that these relations are valid also for η = 0, we find only one ratio: (i) the first expressions
in (A.19) and (A.20) hold, respectively, for φn+ν and ψ±n+ν when n → ∞, (ii) the second
expression in (A.19) is valid for the three functions when n→ −∞. In other words,

φn+ν+1

φn+ν
∼ iy

2n2

[
1− 1

n

(
2ν + 5

2

)]
,

ψ±n+ν+1

ψ±n+ν

∼ 2i
y

[
1− 1

2n

]
, [n→∞],

Un+ν−1

Un+ν
∼ −2in2

y

[
1 + 1

n

(
2ν + 1

2

)]
, Un+ν =

(
φn+ν , ψ

±
n+ν

)
, [n→ −∞].

(A.21)

The above conclusions are obtained as follows. In the first place, if η = 0 the functions
φn+ν and ψ±n+ν can be rewritten in terms of Bessel functions since [21]

Φ(n+ ν + 1, 2n+ 2ν + 2;−2iy) = Γ [n+ ν + (3/2)] [y/2]−n−ν−
1
2 e−iyJn+ν+ 1

2
(y),

Ψ(n+ ν + 1, 2n+ 2ν + 2;−2iy) = i
√
π

2
e−iy+iπ(n+ν+ 1

2
)(2y)−n−ν−

1
2H

(1)

n+ν+ 1
2

(y),

Ψ(n+ ν + 1, 2n+ 2ν + 2; +2iy) = − i
√
π

2
eiy−iπ(n+ν+ 1

2
)(2y)−n−ν−

1
2H

(2)

n+ν+ 1
2

(y),

(A.22)

where Jκ is the Bessel function of the first kind, and H
(1)
κ and H

(2)
κ are the first and the

second Hankel functions. Thence

φn+ν(0, y) = in C
Γ[n+ν+1]

√
yJn+ν+ 1

2
(y), ψ±n+ν(0, y) = in C±

Γ[n+ν+1]

√
yH

(1,2)

n+ν+ 1
2

(y) (A.23)

where the constants C and C± do not depend on n. In the second place, if y is bounded and
κ→∞ [7]

Jκ(y) ∼ 1
Γ(κ+1)

(
y
2

)κ
, H

(1)
κ (y) ∼ −H(2)

κ (y) ∼ − i
π
Γ(κ)

(
2
y

)κ
. (A.24)

Combining (A.23) with (A.24), we establish (A.21) for κ = n + ν + (1/2) when n → ∞
(η = 0). On the other side, if κ → −∞, we use the previous relations for H

(1,2)
κ (y) in

conjunction with [19]

H
(1)
−κ(y) = eiπκH

(1)
κ (y), H

(2)
−κ(y) = e−iπκH

(2)
κ (y), (A.25)

Thus, we find (A.21) for Un+ν = ψ±n+ν when κ = n + ν + (1/2) with n→ −∞ (η = 0). For
Un+ν = φn+ν , if y is bounded and κ → −∞, once more we use the relation given in (A.24)
for Jκ(y) since

Jκ(y) =
(y

2

)κ ∞∑
m=0

(−1)m

m ! Γ(κ+m+ 1)

(y
2

)2m

=
(y

2

)κ [ 1

Γ(κ+ 1)
+
∞∑
m=1

(−1)m

m ! Γ(κ+m+ 1)

(y
2

)2m
]
. (A.26)

In this manner, we establish the ratio (A.21) for the three Coulomb functions when n→ −∞.
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B Recurrence Relations for the Series Coefficients

Now we present the derivation of the recurrence relations for the series coefficients of the
two-sided solutions. The relations for the other sets of solutions may be obtained from these
by transformations of variables. Notice that the derivation is formal in the sense that, in
each series, we suppose linear independence of all Coulomb wave functions.

The Leaver substitutions [1]

U(z) = z−B2/2H(y), y = ωz (B.1)

transform the CHE (1) into

y(y − ωz0)
[
d2H
dy2

+
(

1− 2η
y

)
H
]

+ C1ω
dH
dy

+
[
C2 + C3ω

y

]
H = 0 where (B.2)

C1 = B1 +B2z0, C2 = B3 − B2

2

[
B2

2
− 1
]
, C3 = −B2z0

2

[
1 + B2

2
+ B1

z0

]
.

Expanding H(y) as

H(y) =
∞∑

n=−∞

b1
nUn+ν (η, y) ⇔ U1(z) = z−

B2
2

∞∑
n=−∞

b1
nUn+ν (η, y) (B.3)

and using Eqs. (A.11), (A.17) and (A.18) we find

∞∑
n=−∞

b1
n

[
α1
n−1Un+ν−1(η, y) + β1

nUn+ν(η, y) + γ1
n+1Un+ν+1(η, y)

]
= 0, (B.4)

where α
(1)
n , β

(1)
n and γ

(1)
n are defined in Eqs. (20).

If ν is such that the summation runs from minus to plus infinity, the preceding equation
takes the form

∞∑
n=−∞

[
α1
n b

1
n+1 + β1

n b
1
n + γ1

n b
1
n−1

]
Un+ν(η, y) = 0, (B.5)

which is satisfied by the three-term recurrence relations (15) provided that all the functions
Un+ν(η, y) are linearly independent.
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[30] E. A. Hylleraas, “Über die Elektronenterme des Wasserstoffmoleküls”, Z. Phys. 71,
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