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I. INTRODUCTION

In the eighties, an amount of discussion about anomalous gauge models in quantum field

theory was presented. The central role of the discussion was played by consistence of such

theories. Although some theorists considered such models as inconsistent, some authors

produced works to support the idea that they are not so.

In this sense, we must cite the work of Jackiw and Rajaraman [1], in which it was shown

that a gauge anomalous two-dimensional theory could be well defined and able to provide

a mass generation mechanism from chiral anomalies. This work was soon followed by the

one of Faddeev and Shatashvili [2], who noticed that quantum gauge invariance could be

restored by the introduction of new quantum degrees of freedom, that transform second

class constraints into first class ones. In adding these extra fields, the effective anomalous

action is mapped into a gauge invariant one. Then, the works of Harada and Tsutsui [3]

and Babelon, Schaposnik and Viallet [4] showed independently that these new degrees of

freedom could emerge quite naturally by the application of Fadeev-Popov’s method through

the non-factorization of the integration over the gauge group. Recently, it was inferred that

the gauge anomaly has null expectation value if the entire quantum theory is considered1

[5], and by imposing gauge invariance of the bosonic measure.

We can recognize the main strategy to give consistence to these models with the introduc-

tion of the new degrees of freedom, which recover gauge invariance. In this sense, it seems

useful to analyze this mapping and explore its potential. Two questions may be raised: Is

gauge invariant formulation able to produce an anomaly-free model from an anomalous one?

Does this mapping has to be restricted to the particular class of anomalous theories or is it

able to be applied to other theories with no gauge symmetry?

This work is intended to elucidate these questions for the particular case of abelian

gauge anomalies. In this sense, in section II, the origin of abelian gauge anomaly is briefly

reviewed in path integral approach. In section III, the gauge invariant formalism developed

by Harada and Tsutsui is rederived by redefining the vacuum functional multiplying it by

the gauge volume, instead of proceeding with Fadeev-Popov’s method, and it is shown that

the anomaly still survives. Section IV is intended to show that the procedure proposed

1 That obtained by considering the gauge fields as quantum fields.
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by Harada and Tsutsui to reach a gauge invariant effective action may be used to obtain

another abelian gauge invariant formulation, called the enhanced one, which may provide

an anomaly-free model. In section V, it is pointed out that the enhanced formalism may be

used to provide other gauge invariant formulations from non-anomalous theories, but which

does not exhibit gauge invariance. The particular case of abelian Proca model coupled to

fermion fields is analyzed.

Finally, in section VI, a correspondence between the Proca’s gauge invariant mapping and

the Stueckelberg mechanism is pointed out, leading to the interpretation of the enhanced

mapping as a generalization of the Stueckelberg mechanism [6]. The conclusion is, then,

presented in section VII.

II. THE ORIGIN OF ABELIAN GAUGE ANOMALY IN PATH INTEGRAL

APROACH

Consider an abelian gauge theory described by the action

I[ψ, ψ,Aµ] ≡ IM [ψ, ψ,Aµ] + IG[Aµ], (1)

where IM [ψ, ψ,Aµ] is the matter action minimally coupled to the gauge abelian field Aµ,

and IG[Aµ] is the free bosonic action. If the action is said to be invariant under local gauge

transformations

ψ → ψθ = exp (iθ(x))ψ (2)

ψ → ψ
θ

= exp (−iθ(x))ψ (3)

Aµ → Aθµ = Aµ +
1

e
∂µθ(x), (4)

one can say that, classically, the theory exhibits a conserved current given by

Jµ = −1

e

δIM
δAµ

(5)

Now, if we proceed the quantization of the fermionic fields, then, after integrating them

out, we will arrive at an effective action given by

exp (iW [A]) =

∫
dψdψ exp

(
iI
[
ψ, ψ,A

])
. (6)
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To find the quantum version of the current conservation law, first we make a change of

variables in the fermion fields

exp (iW [A]) =

∫
dψdψ exp

(
iI
[
ψ, ψ,A

])
=

∫
dψθdψ

θ
exp

(
iI
[
ψθ, ψ

θ
, A
])
, (7)

and then, just as in the classical case, we make use of the invariance of the action by noticing

that I
[
ψθ, ψ

θ
, A
]

= I
[
ψ, ψ,A−θ

]
exp (iW [A]) =

∫
dψθdψ

θ
exp

(
iI
[
ψ, ψ,A−θ

])
(8)

Now, a subtle difference between the classical and the quantum gauge theory arises: if

the quantum measure is locally gauge invariant, i. e., if

dψθdψ
θ

= dψdψ, (9)

then, by considering θ(x) as an infinitesimal parameter, we will have

exp (iW [A]) =

∫
dψθdψ

θ
exp

(
iI
[
ψ, ψ,A−θ

])
=

∫
dψdψ exp

(
iI

[
ψ, ψ,Aµ −

1

e
∂µθ(x)

])
= exp (iW [A])−

∫
dxiθ(x)

∫
dψdψ∂µ

(
−1

e

δI

δAµ

)
exp

(
iI
[
ψ, ψ,Aµ

])
(10)

⇒
∫
dψdψ∂µ

(
−1

e

δI

δAµ

)
exp

(
iI
[
ψ, ψ,Aµ

])
= 0. (11)

But gauge invariance of the free bosonic action implies that ∂µ

(
δIG
δAµ

)
≡ 0, therefore,∫

dψdψ∂µ

(
−1

e

δIM
δAµ

)
exp

(
iI
[
ψ, ψ,Aµ

])
= 0. (12)

Equation (12) is the quantum version of current conservation. However, it was necessary

to impose invariance of the fermionic measure (9) to get the above result. If, instead of (9),

we had

dψθdψ
θ

= exp (iα1 [A, θ]) dψdψ (13)
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then, instead of (12), we would arrive at

exp (iW [A]) =

∫
dψθdψ

θ
exp

(
iI
[
ψ, ψ,A−θ

])
=

∫
dψdψ exp

(
iI
[
ψ, ψ,A−θ

]
+ iα1 [A, θ]

)
=

∫
dψdψ exp

{
iI
[
ψ, ψ,Aµ

]
+ i

∫
dx∂µθ(x)

(
−1

e

δI

δAµ

)
+iα1 [A, 0] + i

∫
dx

δα1

δθ

∣∣∣∣
θ=0

θ(x)

}
,

but ∂µ

(
−1
e
δI
δAµ

)
= ∂µ

(
−1
e
δIM
δAµ

)
and α1 [A, 0] = 0, therefore

exp (iW [A]) =

∫
dψdψ exp

{
iI
[
ψ, ψ,Aµ

]
− i
∫
dxθ(x)

[
∂µ

(
−1

e

δIM
δAµ

)
− δα1

δθ

∣∣∣∣
θ=0

]}
=

∫
dψdψ exp

(
iI
[
ψ, ψ,Aµ

]){
1− i

∫
dxθ(x)

[
∂µ

(
−1

e

δIM
δAµ

)
− δα1

δθ

∣∣∣∣
θ=0

]}
= exp (iW [A])− i

∫
dxθ(x)

∫
dψdψ exp

(
iI
[
ψ, ψ,Aµ

]) [
∂µ

(
−1

e

δIM
δAµ

)
− δα1

δθ

∣∣∣∣
θ=0

]

⇒
∫
dψdψ∂µ

(
−1

e

δIM
δAµ

)
exp

(
iI
[
ψ, ψ,Aµ

])
= A exp (iW [A]) , (14)

and we see that, instead of (12), we would have a nonzero right-hand side in equation (14),

where

A ≡ δα1

δθ

∣∣∣∣
θ=0

(15)

is called the anomaly and the theory is said to be anomalous.

It is convenient, to our purposes, to rewritte the anomaly (15) by noticing that

δα1

δθ

∣∣∣∣
θ=0

=
δW

[
Aθ
]

δθ

∣∣∣∣∣
θ=0

=

∫
dnx

δW
[
Aθ
]

δAθµ (y)

∣∣∣∣∣
θ=0

δAθµ (y)

δθ (x)

=

∫
dnx

1

e

δW [A]

δAµ (y)
∂µ [δ (x− y)]

= ∂µ

(
−1

e

δW [A]

δAµ (x)

)
,

and, therefore

A ≡ δα1

δθ

∣∣∣∣
θ=0

= ∂µ

(
−1

e

δW [A]

δAµ (x)

)
. (16)
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III. GAUGE INVARIANT FORMULATION OF ANOMALOUS MODELS

The anomaly arises from de non-invariance of the effective action. To see this, we notice

that

exp
(
iW
[
Aθ
])

=

∫
dψdψ exp

(
iI
[
ψ, ψ,Aθ

])
=

∫
dψθdψ

θ
exp

(
iI
[
ψθ, ψ

θ
, Aθ
])

=

∫
dψdψ exp

(
iI
[
ψ, ψ,A

]
+ iα1 [A, θ]

)
= exp (iW [A] + iα1 [A, θ]) , (17)

that is,

⇒ α1 [A, θ] = W
[
Aθ
]
−W [A] . (18)

Therefore, from (14) it seems that current conservation at quantum level can be obtained

only for theories with gauge invariant effective actions.

A gauge invariant formulation of anomalous theories was developed by Harada and Tsut-

sui in [3]. We will derive the same results in a different way that is more convenient to our

purposes. It is considered the full quantum theory, described by the vacuum functional

Z =

∫
dψdψdAµ exp

(
iI
[
ψ, ψ,A

])
=

∫
dAµ exp (iW [A]) . (19)

The functional can be redefined by multiplying it by the gauge volume and, then, a change

of variables in the gauge field is performed

Z =

∫
dθdAµ exp (iW [A])

=

∫
dθdAθµ exp

(
iW
[
Aθ
])
. (20)

Now we use the fact that the boson measure is gauge invariant, that is dAµ = dAθµ, and we

arrive at a theory containing a scalar field θ, besides the gauge field Aµ

Z =

∫
dθdAµ exp (iW ′ [A, θ])

=

∫
dAµ exp (iWeff [A]) , (21)
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where

W ′ [A, θ] ≡ W
[
Aθ
]

and exp (iWeff [A]) ≡
∫
dθ exp (iW ′ [A, θ]) (22)

It is easy to see that the new effective action Weff [A] is gauge invariant. To do this, we

notice that

exp
(
iWeff

[
Aλ
])

=

∫
dθ exp

(
iW ′ [Aλ, θ])

=

∫
dθ exp (iW ′ [A, θ + λ])

=

∫
d (θ + λ) exp (iW ′ [A, θ + λ])

= exp (iWeff [A]) (23)

One could ask if, after this procedure, the anomaly would survive, and we can say that

it depends on the starting action. Indeed, one may choose an initial action by noticing that

Z =

∫
dθdAµ exp (iW ′ [A, θ])

=

∫
dθdAµ exp

(
iW
[
Aθ
])

=

∫
dθdAµ exp (iW [A] + iα1 [A, θ])

=

∫
dθdψdψdAµ exp

(
iI
[
ψ, ψ,A

]
+ iα1 [A, θ]

)
. (24)

The action in eq. (24), with the addition of the Wess-Zumino term α1 [A, θ] [7], is known

as the standard action [3]

Ist
[
ψ, ψ,A, θ

]
= I

[
ψ, ψ,A

]
+ α1 [A, θ] . (25)

As one could notice, although the final effective action Weff [A] is gauge invariant, the

standard one Ist
[
ψ, ψ,A, θ

]
is not, since α1 [A, θ] breaks gauge invariance. To understand

what it means, we see that, if we search for a kind of conserved current from this theory, we

need to start from the gauge invariance of the effective action, which leads to

∂µ

(
−1

e

δWeff [A]

δAµ(x)

)
= 0. (26)
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Then we have

∂µ

(
−1

e

δWeff [A]

δAµ(x)

)
exp (iWeff [A])

=
i

e
∂µ

{
δ

δAµ(x)
exp (iWeff [A])

}
=
i

e
∂µ

{
δ

δAµ(x)

∫
dθdψdψ exp

(
iIst
[
ψ, ψ,A, θ

])}
=

∫
dθdψdψ∂µ

(
−1

e

δIst
δAµ(x)

)
exp

(
iIst
[
ψ, ψ,A, θ

])
=

∫
dθdψdψ∂µ

(
−1

e

δIM
[
ψ, ψ,A

]
δAµ(x)

−1

e

δα1 [A, θ]

δAµ(x)

)
exp

(
iIst
[
ψ, ψ,A, θ

])
= 0, (27)

and, since α1 [A, θ] is not gauge invariant, one can not say that ∂µ

(
−1
e
δα1[A,θ]
δAµ(x)

)
= 0, which

would lead to the current conservation law. Instead, we have∫
dθdψdψ∂µJ

µ exp
(
iIst
[
ψ, ψ,A, θ

])
=

∫
dθdψdψ∂µ

(
1

e

δα1 [A, θ]

δAµ(x)

)
exp

(
iIst
[
ψ, ψ,A, θ

])
6= 0. (28)

Now, we can perform integration over the θ − field in the right-hand side of (28), using

(18), (6) and the gauge invariance of Weff [A]. It is straightforward to find∫
dθdψdψ∂µJ

µ exp
(
iIst
[
ψ, ψ,A, θ

])
= A exp (iWeff [A]) , (29)

and we see that the standard formulation still preserves the anomaly. This may be explained

by the switching of gauge symmetry breakdown from the effective action to the starting

one, namely, the standard action. On the other hand, it remains to be verified wheather the

anomaly still survives after imposed the equations of motion of this modified theory.

IV. RECOVERING CURRENT CONSERVATION

The standard action is not the only one that can provide the gauge invariant effective

theory given by (22). Indeed, from (21) we have

Z =

∫
dθdAµ exp (iW ′ [A, θ])

=

∫
dθdAµ exp

(
iW
[
Aθ
])

=

∫
dθdψdψdAµ exp

(
iI
[
ψ, ψ,Aθ

])
. (30)
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Thus, we can see that the same procedure that leads to (21) and (22) can be performed by

means of the enhanced action, defined by

Ien
[
ψ, ψ,A, θ

]
≡ I

[
ψ, ψ,Aθ

]
. (31)

The advantage of the enhanced action is that it is really gauge invariant. Moreover, if we

start from the gauge invariance of Weff [A] and proceed the same calculations which lead to

(28), we will arrive at

∂µ

(
−1

e

δWeff [A]

δAµ(x)

)
exp (iWeff [A])

=

∫
dθdψdψ∂µ

(
−1

e

δIen
δAµ(x)

)
exp

(
iIen

[
ψ, ψ,A, θ

])
=

∫
dθdψdψ∂µ

(
−1

e

δI
[
ψ, ψ,Aθ

]
δAµ(x)

)
exp

(
iIen

[
ψ, ψ,A, θ

])
= 0 (32)

In fermionic theories, generally the gauge fields are coupled linearly to the fermions. So,

expanding the matter action to the first order, we will obtain

I
[
ψ, ψ,A

]
= IM

[
ψ, ψ,A

]
+ IG[A]

= IF

[
ψ, ψ

]
+

∫
dnx

δIM [ψ, ψ,A]

δAµ(x)
Aµ(x) + IG[A], (33)

where IF

[
ψ, ψ

]
≡ IM

[
ψ, ψ, 0

]
corresponds to the free fermionic action. However,

δIM [ψ,ψ,A]
δAµ(x)

= −eJµ(x), therefore

I
[
ψ, ψ,A

]
= IF

[
ψ, ψ

]
+ IG[A]− e

∫
dnxJµ(x)Aµ(x) (34)

IM

[
ψ, ψ,A

]
= IF

[
ψ, ψ

]
− e

∫
dnxJµ(x)Aµ(x). (35)

Thus, evidently

−1

e

δIM

[
ψ, ψ,Aθ

]
δAµ(x)

= −1

e

δIM

[
ψ, ψ,Aθ

]
δAθµ(x)

= −1

e

δIM

[
ψ, ψ,A

]
δAµ(x)

= Jµ. (36)

Since IG[A] is gauge invariant, which means that ∂µ

(
−1
e
δIG[A]
δAµ(x)

)
= 0, eq. (32) leads to

∂µ

(
−1

e

δWeff [A]

δAµ(x)

)
= 0⇔

∫
dθdψdψ∂µJ

µ(x) exp
(
iIen

[
ψ, ψ,A, θ

])
= 0 (37)
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Eq. (37) means that the current is conserved in this alternative approach with no quantum

brakdown. Therefore, we see that the gauge invariant formulation constructed by Harada

and Tsutsui, but alternatively built with the enhanced action, instead of the standard one,

provides a theory with no current conservation breakdown and, thus, anomaly-free.

To finish this section, we shall analyze the classical equations of motion obtained from

original abelian anomalous models

δI[ψ, ψ,Aµ]

δψ
=
δIM [ψ, ψ,Aµ]

δψ
= 0 (38)

δI[ψ, ψ,Aµ]

δψ
=
δIM [ψ, ψ,Aµ]

δψ
= 0 (39)

δI

δAµ
=
δIM
δAµ

+
δIG
δAµ

= 0 (40)

and compare them with those from the enhanced theory Ien
[
ψ, ψ,A, θ

]
≡ I

[
ψ, ψ,Aθ

]
δI
[
ψ, ψ,Aθµ

]
δψ(x)

=
δIM

[
ψ, ψ,Aθµ

]
δψ(x)

= 0 (41)

δI
[
ψ, ψ,Aθµ

]
δψ

=
δIM

[
ψ, ψ,Aθµ

]
δψ

= 0 (42)

δI
[
ψ, ψ,Aθµ

]
δAµ

=
δIM

[
ψ, ψ,Aθµ

]
δAµ(x)

+
δIG

[
Aθµ
]

δAµ(x)
=
δIM

[
ψ, ψ,Aµ

]
δAµ(x)

+
δIG [Aµ]

δAµ(x)
= 0 (43)

δI

δθ
= ∂µ

(
−1

e

δIM [ψ, ψ,A]

δAµ(x)

)
= ∂µJ

µ = 0 (44)

As one could see, the equation (44) for θ is redundant, since it is just the current con-

servation law imposed by global gauge invariance. The equation of motion for the gauge

field is the same in both theories, since it is gauge invariant. Finally, the equations for the

fermionic fields are reducible one to the other by a simple redefinition of the gauge field

which is nothing but a generic gauge transformation Aµ → A′µ = Aµ + 1
e
∂µθ that does not

change the other equations. Thus, classically both formulations are completely equivalent

one to the other, and the scalar is not even noted. On the other hand, at quantum level,

the simple original theory is anomalous, while the enhanced one, with the addition of the

θ − field, is not.
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V. GAUGE INVARIANT FORMULATION APPLIED TO NON-ANOMALOUS

THEORIES - THE PROCA MODEL

The Harada-Tsutsui procedure of mapping a theory that does not exhibit quantum gauge

symmetry into a gauge invariant one does not need to be tied to the particular class of

classically symmetric models. Indeed, to proceed this mapping, it was only necessary to

consider the exponential of the effective action exp (iW [A]), gauge transforming it into

exp
(
iW
[
Aθ
])

, and then to perform an integration over the θ − field to obtain, finally, the

exponential of the gauge invariant effective action Weff [A]. But any action that does not

exhibit gauge invariance could, in principle, be attached to this procedure. Consider, for

instance, a Proca field interacting with fermions, whose action is

I
[
ψ, ψ,Aµ

]
= IM

[
ψ, ψ,Aµ

]
− 1

4

∫
d4xF µνFµν +

m2

2

∫
d4xAµAµ. (45)

Clearly, the massive term breaks gauge invariance. If we consider the quantum version

of this model and proceed the gauge invariant mapping, we will get∫
dθ exp

(
iW
[
Aθ
])

=

∫
dθdψdψ exp

(
iI
[
ψ, ψ,Aθ

])
=

∫
dθdψdψ exp

(
IM

[
ψ, ψ,Aθµ

]
− 1

4

∫
d4xF µνFµν +

m2

2

∫
d4xAθµAθµ

)
=

∫
dθdψθdψ

θ
exp

(
IM

[
ψθ, ψ

θ
, Aθµ

]
− 1

4

∫
d4xF µνFµν +

m2

2

∫
d4xAθµAθµ

)
,

(46)

and if the theory is not anomalous, that is, if dψθdψ
θ

= dψdψ , we will arrive at an enhanced

model given by

exp (iWeff [A]) =

∫
dθdψdψ exp

(
iIen

[
ψ, ψ,A, θ

])
, (47)

where2

Ien

[
ψ, ψ,Aµ, θ

]
= IM

[
ψ, ψ,Aµ

]
+

∫
d4x

(
−1

4
F µνFµν +

1

2
m2∂µθ∂µθ +

1

2
m2AµAµ +m2Aµ∂µθ

)
.

(48)

2 For simplicity, only in this section, we shall assume that ψθ = exp (ieθ)ψ and Aθ
µ = Aµ + ∂µθ.
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If we proceed integration over the gauge parameter, we will find∫
dθ exp

{
i

2
m2

∫
dx (2Aµ∂

µθ + ∂µθ∂
µθ)

}
= exp

(
− i

2
m2

∫
dxAµ

∂µ∂ν

�
Aν

)∫
dθ exp

{
− i

2
m2

∫
dx

[(
1

�
∂µAµ + θ

)
�

(
1

�
∂νAν + θ

)]}
.

(49)

Performing the change of variables θ → θ′ = θ + 1
�∂

µAµ; dθ′ = dθ, we will have∫
dθ exp

{
i

2
m2

∫
dx (2Aµ∂

µθ + ∂µθ∂
µθ)

}
∼ exp

(
− i

2
m2

∫
dxAµ

∂µ∂ν

�
Aν

)
. (50)

Using this result into (47), we finally obtain∫
dθdψdψ exp

(
iIen

[
ψ, ψ,Aµ, θ

])
=

∫
dψdψ exp

(
iI ′
[
ψ, ψ,Aµ

])
, (51)

with

I ′
[
ψ, ψ,Aµ

]
≡ IM

[
ψ, ψ,Aµ

]
+

∫
dnx

{
−1

4
F µνFµν +

1

2
m2Aµ

(
ηµν − ∂µ∂ν

�

)
Aν

}
. (52)

It is easy to see that, classically, the gauge invariant formulation of Proca model (52)

may be thought as equivalent to its correlate (45), since one is reducible to the other, with

no loss of physical meaning, by the Lorentz gauge choice ∂µA
µ = 0 in (52). Therefore, this

example clearly shows that the enhanced formalism may be used as a procedure to map a

theory with no gauge symmetry into a gauge invariant one even in some cases where we are

dealing with classical models.

VI. THE ENHANCED FORMALISM AND THE STUECKELBERG MECHA-

NISM

In the enhanced anomalous model’s formalism, we start with a gauge invariant action

Ien

[
ψ, ψ,A, θ

]
, and reach an effective one Weff [A] which is also gauge invariant. However,

there is an intermediate action W ′ [A, θ] = W
[
Aθ
]

with no gauge symmetry. Nevertheless,

it is obviously invariant under generalized gauge transformations

Aµ → Aµ +
1

e
∂µΛ

θ → θ − Λ (53)
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It means that we can set θ = 0 by a simple gauge choice and get back to the original

formalism. In other words, classically, θ is not noted, but must exist and be quantized in

order to provide an anomaly-free model. In section 4, we saw that the classical equations of

motion of the enhanced version of anomalous models are reducible to those of the original

one by a simple redefinition of the gauge boson. By the generalized gauge symmetry point

of view (53) above, thus, it simply means a gauge choice where the scalar is set to zero.

On the other hand, the pure enhanced Proca model, which is also invariant under (53),

is described by

IP [A, θ] =

∫
dnx

(
−1

4
F µνFµν +

1

2

m2

e2
∂µθ∂µθ +

1

2
m2AµAµ +

m2

e
Aµ∂µθ

)
. (54)

If we simply redefine the θ − field by a multiplicative constant

B(x) ≡ m

e
θ(x), (55)

then we will just find the Stueckelberg action [6]

IStueck [A,B] =

∫
dnx

{
−1

4
F µνFµν +

1

2
(mAµ + ∂µB) (mAµ + ∂µB)

}
, (56)

and (53) becomes Stueckelberg’s gauge transformations

Aµ → Aµ + ∂µΛ(x) (57)

B → B −mΛ(x). (58)

Therefore, we see that the enhanced formalism may be viewed as a generalization of

Stueckelberg’s procedure, which can be stated as follows: every gauge boson has to be ac-

companied by a scalar in such a way that its gradient must be added up to the gauge boson

itself.

The biggest advantage of the Stueckelberg massive abelian model, which coincides exactly

with the enhanced formulation of the Proca model, is that it was rigorously proved to be

renormalizable and unitary [8].

We started by the integration over what we called the gauge parameter, but now we can

reinterpret it by saying that it is not the gauge parameter which is actually integrated, but

the Stueckelberg scalar, a compensating quantum field which is hidden in conventional gauge

symmetry, but becomes necessary in order to recover it when the symmetry is broken, and

able to provide an abelian anomaly-free theory as well as a renormalizable massive vector

model.
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VII. CONCLUSION

Revisiting a procedure to transform effective actions of anomalous generic models into

gauge invariant ones, built in the 80’s, it was found that it might be much more proficuous

than it might have seem to be at a first sight. Indeed, the gauge invariant formulation

is not only able to map an anomalous model into a gauge invariant one, but it may also

be able to remove abelian gauge anomalies, which simply disappear when the θ − field is

introduced into the theory by gauge transforming the gauge field. Moreover, it provides a

bridge between the gauge invariant formulation of anomalous models and a generalization

of the Stueckelberg mechanism, where the θ − field, identified as the Stueckelberg scalar,

may be present together with the gauge field in any abelian theory, instead of being present

only in the particular case of the massive vector field.

On the other hand, such discussion may raise a paradox: If one formalism is mapped

into another one by simple manipulations over the functional integral, which would suggest

that both formalisms are equivalent, how, in the anomalous case, one might present current

conservation breakdown while the other has it conserved? Work is in progress in order to

clarify this question.

The relevance of the Stueckelberg mechanism is that it is able to deal with gauge symme-

try breaking and, since it is renormalizable, it provides a mechanism alternative to the Higgs

[10]. Moreover, it can be recovered in a rather singular limit of the Higgs mechanism [11].

In our generalization of the Stueckelberg mechanism, we saw that it is also able to provide a

gauge anomaly-free model. On the other hand, It is well known, for the simplest case of the

anomalous Jackiw-Rajaraman model, that there is an alternative mass-generation mecha-

nism to the gauge boson from quantum corrections of anomalous 2−D chiral fermions [1].

Perhaps it is not mere coincidence that a breaking in the gauge symmetry in both cases is

related to vector boson’s mass generation, and that it may be recovered by an introdution

of a scalar. The generalization of the Jackiw-Rajaraman mass generation mechanism from

chiral anomalies to higher dimensions is under consideration.

Finally, we can point out that, besides the correspondence between gauge invariant map-

ping and the Stueckelberg mechanism, this kind of procedure might be generalized to other

symmetries than gauge one, and it may be a road to a technique that leads to restore other

kind of symmetry breakdowns, like chiral or gravitational anomalies, for example.
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