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1 Introduction

The real time formalism allows one to discuss in detail finite temperature field theory out
of equilibrium. The aim of this paper is to present an alternative approach to study finite
temperature field theory in the the real time formalism using the stochastic quantization.

The program of stochastic quantization, first proposed by Parisi and Wu [1], and the
stochastic regularization were carried out for systems described by fields defined in flat,
Euclidean manifolds. A brief introduction to stochastic quantization can be found in Refs.
[2] [3] [4], and a complete review is given in Ref. [5]. Recently Menezes and Svaiter [6]
[7] implemented the stochastic quantization to study systems with complex valued path
integral weights. Since we have a non-positive definite measure, the convergence of the
stochastic process in the asymptotic limit of the Markov parameter is not achieved. To
circumvent this problem, these authors assumed a Langevin equation with memory kernel
and Einstein’s relations with colored noise. In the asymptotic limit of the Markov parameter,
the equilibrium solution of such Langevin equation was analyzed. It was shown that for a
large class of elliptic non-Hermitean operators, which define different models in quantum
field theory, the solution converges to the correct equilibrium state in the asymptotic limit
of the Markov parameter τ →∞.

We would like to remark that such kind of problems of non-convergence of the Langevin
equation in the stochastic quantization framework also appears if someone consider the
stochastic quantization of classical fields defined in a generic curved manifold. For curved
static manifolds, the implementation of the stochastic quantization is straightforward. In
this situation it is possible to perform a Wick rotation, i.e., analytically extend the pseudo-
Riemannian manifold to the Riemannian domain without problem. Recently, the stochastic
quantization for fields defined in a curved spacetime have been studied in the Refs. [8] [9].
Nevertheless, for non-static curved manifolds we have to extend the formalism beyond the
Euclidean signature, i.e., to formulate the stochastic quantization in pseudo-Riemannian
manifold, instead of formulating it in the Riemannian space, as was originally proposed.
See for example the discussion presented by Hüffel and Rumpf [10] and Gozzi [11]. In the
first of these papers the authors proposed a modification of the original Parisi-Wu scheme,
introducing a complex drift term in the Langevin equation, to implement the stochastic
quantization in Minkowski spacetime. Gozzi studied the spectrum of the non-self-adjoint
Fokker-Planck Hamiltonian to justify this program. See also the papers [12] [13]. Of course,
these situations are special cases of ordinary Euclidean formulation for systems with complex
actions.

The main difference between the implementation of the stochastic quantization in Minkowski
spacetime and in Euclidean space is the fact that in the latter case the approach to the
equilibrium state is a stationary solution of the Fokker-Planck equation. In the Minkowski
formulation, the Hamiltonian is non-Hermitian and the eigenvalues of such Hamiltonian
are in general complex. The real part of such eigenvalues are important to the asymptotic
behavior at large Markov time, and the approach to the equilibrium is achieved only if we
can show its semi-positive definiteness. The crucial question is the following: what happens
if the Langevin equation describes diffusion around a complex action? Some authors claim
that it is possible to obtain meaningful results out of Langevin equation describing diffusion
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processes around a complex action. Parisi [14] and Klauder and Peterson [15] investigated
the complex Langevin equation, where some numerical simulations in one-dimensional sys-
tems were presented. See also the papers [16] [17]. We would also like to mention the
approach developed by Okamoto et al. [18] where the role of the kernel in the complex
Langevin equation was studied. More recently, Guralnik and Pehlevan constructed an ef-
fective potential for the complex Langevin equation on a lattice [19]. These authors also
investigated a complex Langevin equation and Dyson-Schwinger equations that appear in
such situations [20].

We would like to remind that there are many examples in the literature where Euclidean
action is complex. We have, for example, QCD with non-vanishing chemical potential at
finite temperature; for SU(N) theories with N > 2, the fermion determinant becomes com-
plex and also the effective action. Complex terms can also appear in the Langevin equation
for fermions, but a suitable kernel can circumvent this problem [21] [22] [23]. Another
important case that deserves attention is the stochastic quantization of topological field
theories. The simplest case though is, of course, the stochastic quantization in Minkowski
spacetime, as we discussed. This situation appears in the case for non-equilibrium problems,
which are not amenable to an Euclidean formulation. Recently, Berges and Stamatescu [24]
used stochastic quantization techniques to present lattice simulations of non-equilibrium
quantum fields in Minkowskian spacetime.

In the perturbation theory in quantum field theory at finite temperature there are three
estabilished methods: the Matsubara method [25] [26], the path ordered method [27] [28]
and the Thermo Field Dynamics (TFD) approach [29] [30]. For non-equilibrium quantum
field systems, the path ordered method or the Thermo Field Dynamics must be used. In the
Thermo Field Dynamics approach one can develop finite temperature field theory in real time
using the operator formalism, while in the path ordered method the path integral formalism
is used. These three methods are related to each other by the analytical continuation of
time variables. The motivation of this paper is to present an alternative approach to study
finite temperature field theory in the the real time formalism using the Markovian and the
non-Markovian stochastic quantization procedures [31]. Basic ideas of the non-Markovian
Langevin equation can be found in the Refs. [32] [33] [34] [35].

The outline of the paper is the following. Introduction is given in section I. In section II
we present a brief review of the real time formalism in quantum field theory. In section III we
use the Markovian stochastic quantization method to study a non-equilibrium thermal field
theory formulated in Minkowski spacetime. The non-Markovian approach of the stochastic
quantization applied to a thermal scalar field theory is developed in section IV. Conclusions
are given in section V. In the appendix, convergence conditions for the stochastic process
are derived. In this paper we use h̄ = c = kB = 1.

2 Real-time formalism in finite temperature quantum

field theory

In this section we give a brief survey of the formulation of field theory at finite temperature
in Minkowski spacetime. Unlike in the imaginary time formalism, in real time formulation,
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sums over Matsubara frequencies are absent and there is no need to analytically extend
the Green functions back to Minkowski spacetime. Moreover, the real time formalism is
the starting point for the development of the non-equilibrium quantum field theory, since
the investigation of dynamical properties of systems is more naturally performed in this
formalism. The real time formalism can describe non-equilibrium processes because the
time variable plays a fundamental role and and cannot be traded in for an equilibrium
temperature.

For simplicity we work with a neutral scalar field. The field operator in the Heisenberg
picture is given by

φ(t,x) = eiHtφ(0,x) e−iHt, (1)

where the time variable t is allowed to be complex. The main quantities to be computed
are the thermal Green functions GC(x1, . . . , xN), defined as

GC(x1, . . . , xN) = 〈TC (φ(x1) . . . φ(xN))〉β, (2)

where the time ordering is taken along a complex time path, yet to be defined. Considering
a parametrization t = z(v) of the path, the following expressions:

θC(t− t′) = θ(v − v′), (3)

δC(t− t′) =

(
∂z

∂v

)−1

δ(v − v′), (4)

define the generalized θ− and δ−functions. The functional differentiation is also extended
in the following way:

δj(x)

δj(x′)
= δC(t− t′)δ3(x− x′), (5)

for functions j(x) defined on the path C. The Green functions defined by Eq. (2) can be
obtained from a generating functional ZC [β; j] through the expression

GC(x1, . . . , xN) =
(−i)N

ZC [β; j]

δNZC [β; j]

δj(x1) · · · δj(xN)

∣∣∣∣
j=0
. (6)

in the above equation, the generating functional is given by

Z[β; j] = Tr
[
e−βH TC exp

(
i
∫
C
d4x j(x)φ(x)

)]
(7)

=
∫
Dφ′ 〈φ′(x); t− iβ|TC exp

(
i
∫
C
d4x j(x)φ(x)

)
|φ′(x); t〉,

where the path C must go through all the arguments of the Green functions. It is also
possible to note from this expression that the path C starts from a time ti = t and ends at
a time tf = t− iβ. We may recast the generating functional into the form

ZC [β; j] = N exp

{
−i
∫
C
d4x V

(
δ

iδ
j(x)

)}
ZF
C [β; j] (8)
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where N is a normalization parameter and the free generating functional is given by

ZF
C [β; j] = exp

{
−1

2

∫
C
d4x

∫
C
d4y j(x)DF

C(x− y)j(y)
}
. (9)

In Eq. (9), the propagator DF
C(x− y) is defined through the formula

DF
C(x− x′) = θC(t− t′)D>

C (x, x′) + θC(t′ − t)D<
C (x, x′), (10)

where D>
C (x, x′) and D<

C (x, x′) are, respectively:

D>
C (x, x′) = 〈φ(x)φ(x′)〉β, (11)

D<
C (x, x′) = 〈φ(x′)φ(x)〉β.

Since the propagator DF
C(x−x′) is properly defined in the interval −β ≤ Im(t− t′) ≤ β,

one may conclude that the path considered must be such that the imaginary part of the
time variable t is non-increasing when the parameter v increases. Furthermore, since we are
interested in Green functions whose arguments are real, the path C must contain the real
axis. One possible choice for the contour C is described in the following [36]:

1. C starts from a real value ti, large and negative.

2. The contour follows the real axis up to the large positive value −ti. This part of C is
denoted by C1.

3. The path from −ti to −ti − iβ2 , along a vertical straight line. This is denoted by C3.

4. The path follows a horizontal line C2 going from −ti − iβ2 to ti − iβ2 .

5. Finally, the path follows a vertical line C4 from ti − iβ2 to ti − iβ.

Taking ti → −∞, the free generating functional can be factorized,

ZF
C [β; j] = ZF

C1∪C2
[β; j]ZF

C3∪C4
[β; j]. (12)

The Green functions with real time arguments can be deduced from ZF
C1∪C2

[β; j] only. The
ZF
C3∪C4

[β; j] generating functional can be considered a multiplicative constant. Choosing
t and t′ real, running from −∞ to ∞ and label the sources j1(x) = j(t,x) and j2(x) =

j(t− iβ/2,x). Also, one has
δja(x)

δjb(x′)
= δabδ

4(x− x′). With this expressions one may rewrite

the free generating functional as

ZF
C [β; j] = N ′ exp

{
−1

2

∫
d4x

∫
d4x′ ja(x)DF

abjb(x
′)
}
, (13)

where, again, N ′ is a normalization parameter. The components of the matricial propagator
DF
ab(x− x′) are given by

DF
11(x− x′) = DF (t− t′,x− x′), (14)

DF
22(x− x′) = D∗F (t− t′,x− x′),

DF
12(x− x′) = D<(t− t′ + iβ/2,x− x′),

DF
21(x− x′) = D>(t− t′ − iβ/2,x− x′).
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The effective generating functional can be written as

ZC [β; j] =
∫
Dφ1Dφ2 exp

{
−1

2

∫
d4x d4x′ φa(x)(D−1

F )ab(x− x′)φb(x′)
}

(15)

× exp
{
−i
∫
d4x (V (φ1)− V (φ2)) + i

∫
d4x ja(x)φa(x)

}
.

The field φ2 may be interpreted as a ghost field on the contour C2. This doubling of the
field degrees of freedom, which does not occur in imaginary time formulation, is unavoidable
in the real time formulation. For more details on this subject, the reader is referred to the
original paper of Niemi and Semenoff [37] or the Landsmann and van Weert review [38].

3 Real-time finite temperature quantum field theory:

the Markovian stochastic quantization approach

The real time formalism is a framework to describe both equilibrium and non-equilibrium
systems. Dynamical questions, as for example a weakly interacting Bose gas having a
temperature gradient can be studied only in the real time formalism, with a matrix structure
of the propagator. Before we study the non-Markovian approach, in this section we will
analyze the usual stochastic quantization of a finite temperature field theory formulated in
Minkowski space. In Minkowski space, it is well known that the Langevin equation should
be written as:

∂

∂τ
φ(x, τ) = i

δS

δφ(x)

∣∣∣∣
φ(x)=φ(x,τ)

+η(x, τ), (16)

where S(φ) is the action for a free scalar field:

S(φ) =
∫
ddx

1

2

{
∂µφ ∂µφ−m2φ2

}
, (17)

and the correlation functions for the noise field are:

〈η(x, τ)〉η = 0, (18)

〈η(x, τ)η(x′, τ ′)〉η = δ(|τ − τ ′|)δd(x− x′). (19)

If we consider a complex free scalar field, with an action S(φ, φ∗) given by

S =
∫
ddx

{
∂µφ∗∂µφ−m2φ∗φ

}
, (20)

we should have two Langevin equations, one for the scalar field and the other to its complex

conjugate. If we write Φ =

(
φ

φ∗

)
, and working in Fourier space, we can write the Langevin

equations as:
∂

∂τ
Φa(k, τ) = i(D−1

0 )abΦb(k, τ) + ηa(k, τ), (21)
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where we also consider a complex noise field, η =

(
η

η∗

)
, a, b = 1, 2 and

(D−1
0 )ab(k) =

(
(k2 −m2 + iε) 0

0 −(k2 −m2 − iε)

)
. (22)

The literature emphasizes [5] that the addition of a negative imaginary mass term−(i/2) εφ∗φ
to the action in Eq. (20) is necessary in order to obtain convergence for the stochastic process
being considered. So, it means that we can only take the limit ε → 0 after all calculations
have been performed. That explains the presence of the term −iε in the expression for the
quantity (D−1

0 )ab, that appears in Eq. (22). It is straightforward to obtain the two-point
correlation functions for this case and to develop the perturbative solution to Eq. (21), with
the following discussion on stochastic diagrams. We do not wish to go into details here. For
the interested reader, we recommend the references [10] and [12].

Now, let us point our attentions to the non-equilibrium case. As we discussed in the
last section, the doubling of the field degrees of freedom is unavoidable in the real time

formulation. So, we can also write the field as an isovector φ =

(
φ1

φ2

)
. The action for this

isovector scalar field, in the free case, is given by:

S = −1

2

∫
d4x d4x′φa(x)(D−1

F )ab(x− x′)φb(x′), (23)

where the components of (DF )ab are given by Eq. (14). In Fourier space:

(DF )ab(k) = (U t)ac(θ)(D0)cd(k)(U)db(θ), (24)

where (D0)ab is the inverse of (D−1
0 )ab, given by Eq. (22), and

(U)ab(θ) =

(
cosh θ sinh θ

sinh θ cosh θ

)
, (25)

where:

cosh2 θ =
eβ|k0|

eβ|k0| − 1
. (26)

So, we can split (DF )ab into two parts, (DF )ab = (D0)ab + (Dβ)ab, where (D0)ab(k) is tem-
perature independent

(D0)ab(k) =

( 1
k2−m2+iε

0

0 −1
k2−m2−iε

)
, (27)

and all temperature dependence appears in (Dβ)ab(k), which is given by

(Dβ)ab(k) =
−iε

(k2 −m2)2 + ε2

(
2 sinh2 θ sinh 2θ

sinh 2θ 2 sinh2 θ

)
. (28)

Notice that, in the limit ε→ 0, we have:

ε

(k2 −m2)2 + ε2
→ πδ(k2 −m2). (29)
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As in the zero temperature case, we have to use the expressions above with finite ε and take
the ε → 0 limit after all the calculations have been done in order to obtain convergence in
the limit τ → ∞. We also know that this is the case for the path integral formalism [37].
The Markovian Langevin equation for the non-equilibrium case is given by

∂

∂τ
φa(k, τ) = i(D−1

F )ab(k)φb(k, τ) + ηa(k, τ), (30)

where the noise correlation functions are given by:

〈ηa(k, τ)〉η = 0, (31)

〈ηa(k, τ)ηb(k
′, τ ′)〉η = (2π)d δab δ

d(k + k′)δ(|τ − τ ′|). (32)

The solution for the Eq. (30) is given by:

φa(k, τ) =
∫ ∞

dτ ′(g(k, τ − τ ′))ab ηb(k, τ ′), (33)

where g(k, τ) = eiD
−1
F (k)τθ(τ) is the Green function for the diffusion problem. In order to

check convergence, i.e, to analyze if g(k, τ)|τ→∞ → 0, we must first diagonalize the matrix
iD−1

F (k). From Eqs. (27) and (28), we have:

D−1
F (k) = I(k, ε)

( −1
k2−m2−iε −

iε
(k2−m2)2+ε2

2 sinh2 θ iε
(k2−m2)2+ε2

sinh 2θ

iε
(k2−m2)2+ε2

sinh 2θ 1
k2−m2+iε

− iε
(k2−m2)2+ε2

2 sinh2 θ

)
,

(34)
where:

I(k, ε) =
−(k2 −m2)2 − ε2(cosh4 θ + sinh4 θ)− ε2

2
sinh2 2θ

((k2 −m2)2 + ε2)
. (35)

Diagonalizing iD−1
F (k), we get the matrix D′(k), given by:

D′(k) = i I(k, ε)

(
λ+ 0

0 λ−

)
, (36)

where:

λ± =
±
√

(k2 −m2)2 − ε2 sinh2 2θ − i ε(1 + 2 sinh2 θ)

(k2 −m2)2 + ε2
. (37)

Since I(k, ε) < 0, we notice from the above equations that, indeed, we get g(k, τ)|τ→∞ → 0.
We also remark that, as in the zero temperature case, the convergence of the stochastic
process was possible because we have maintained in the Eqs. (27) and (28) a finite ε. As
the reader can easily verify from the Eqs. (36) and (37), if we take the ε → 0 limit in
the beginning of the calculations, we should lose the convergence factor e−I(k,ε)ε(1+2 sinh2 θ).
So this limit should be taken after all the calculations have been done in order to obtain
convergence in the limit τ → ∞. We also know that this is the case for the path integral
formalism [37].

Now, we are ready to calculate the two point function 〈φa(k, τ)φb(k
′, τ)〉η. Proceeding

with similar calculations as the zero temperature case, it is possible to show that the two-
point correlation function is given by:

〈φa(k, τ)φb(k
′, τ)〉η = (2π)dδd(k + k′)i (DF )ac(k)(1− e2iD−1

F (k)τ )cb, (38)
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so we see that, in the limit τ → ∞, we recover the usual result. We are interested now to
see the effects of a memory kernel in this non-equilibrium quantum field theory. This is the
subject of the next section.

4 Real-time finite temperature quantum field theory:

the non-Markovian stochastic quantization approach

The aim of this section is to study finite temperature quantum field theory in Minkowski
spacetime, using the non-Markovian stochastic quantization approach. In Minkowski space,
the Langevin equation with memory kernel is written as

∂

∂τ
φ(x, τ) = i

∫ τ

0
ds MΛ(τ − s) δS

δφ(x)

∣∣∣∣
φ(x)=φ(x,s)

+ η(x, τ), (39)

where S is the action for the free scalar field, given by Eq. (23). The noise field distribution
is such that its first and second momenta are given by

〈ηa(x, τ)〉η = 0, (40)

〈ηa(x, τ)ηb(x
′, τ ′)〉η = 2δabMΛ(|τ − τ ′|)δd(x− x′), (41)

that is, the distribution is a colored noise Gaussian distribution. We remind the reader that
Eq. (39) is to be understood as a matrix equation.

Using a Fourier decomposition for the scalar and noise fields, given by

X(x, τ) =
1

(2π)
d
2

∫
ddk eikxX(k, τ), (42)

where the field X represents either the noise field η and the scalar field φ, we obtain that
each Fourier mode φ(k, τ) satisfies a Langevin equation of the form

∂

∂τ
φa(k, τ) = i

∫ τ

0
ds MΛ(τ − s) (D−1

F )ab(k)φb(k, s) + ηa(k, τ), (43)

where D−1
F (k) is the inverse of DF (k), defined by Eq. (24). With this decomposition,

we obtain from Eq. (40) and Eq. (41) the following relations for the noise field Fourier
components,

〈ηa(k, τ)〉η = 0, (44)

〈ηa(k, τ)ηb(k
′, τ ′)〉η = (2π)d δabMΛ(|τ − τ ′|)δd(k + k′). (45)

Defining the Laplace transform of the memory kernel as

M(z) =
∫ ∞

0
dτ MΛ(τ)e−zτ , (46)

we obtain the solution for Eq. (43), subject to the initial condition φa(k, τ = 0) = 0,
a = 1, 2:

φa(k, τ) =
∫ ∞

0
dτ ′ Gab(k, τ − τ ′)ηa(k, τ ′) (47)
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In Eq. (47) Gab(k, τ − τ ′) = Ωab(k, τ − τ ′)θ(τ − τ ′) is the retarded Green function for
the diffusion problem and each component of the Ω-matrix is defined through its Laplace
transform,

Ωab =
[
zδab − iM(z)

(
D−1
F

)
ab

(k)
]−1

. (48)

Thus, the two point correlation function in the Fourier representation is written as

〈φa(k, τ)φb(k
′, τ ′)〉η = Dab(k, τ, τ

′)

= (2π)dδd(k + k′)
∫ τ

0
ds
∫ τ ′

0
ds′ [Ω(k, τ − τ ′)Ω(k, τ − s′)]ab MΛ(|s− s′|). (49)

The two-dimensional Laplace transform of the above equation is given by∫ ∞
0

dτ e−zτ
∫ ∞

0
dτ ′ e−z

′τ ′
∫ τ

0
ds

∫ τ ′

0
ds′ [Ω(k, τ − τ ′)Ω(k, τ − s′)]ab MΛ(|s− s′|)

= [Ω(k, z)Ω(k′, z′)]ab

(
M(z) +M(z′)

z + z′

)
. (50)

Using the Eq. (48) this expression becomes

∫ ∞
0

dτ e−zτ
∫ ∞

0
dτ ′ e−z

′τ ′
∫ τ

0
ds

∫ τ ′

0
ds′ [Ω(k, τ − τ ′)Ω(k, τ − s′)]ab MΛ(|s− s′|)

= i

(
Ω(k, z) + Ω(k, z′)

z + z′
− Ω(k, z)Ω(k, z′)

)
ac

(DF )cb(k). (51)

Applying the inverse transform, we obtain for the two-point function

Dab(k, τ, τ
′) = 2i(2π)d δd(k + k′) (Ω(k, |τ ′ − τ |)− Ω(k, τ)Ω(k, τ ′))ac (DF )cb(k). (52)

In order to investigate the convergence of the above equation, we need to specify an
expression for the memory kernel MΛ. We set

MΛ(τ) =
1

2
Λ2e−Λ2|τ |. (53)

Substituting the Laplace transform of the Eq. (53) in the Eq. (48), we have that the
Ω-matrix is given by

Ω(k, τ) =

(
Ω11(k, τ) Ω12(k, τ)

Ω21(k, τ) Ω22(k, τ)

)
, (54)

where the components Ωab(k, τ) are given in the Appendix. So, we are in a position to
present an expression for the two-point correlation function in the limit τ = τ ′ →∞:

Dab(k, τ, τ
′)|τ=τ ′→∞ = i (2π)dδd(k + k′)(DF )ab(k), (55)

so that, in the limit ε→ 0, we have:

Dab(k, τ, τ
′)|τ=τ ′→∞; ε→0 = i (2π)dδd(k + k′)(DF )ab(k)| ε→0. (56)
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A question still remains opened. What are, if any, the advantages of our non-Markovian
method over the usual Markovian one? In order to answer such question, we shall apply a
Fokker-Planck analysis. As we know, correlation functions are introduced as averages over
η:

〈φ(x1, τ1)φ(x2, τ2) · · ·φ(xn, τn) 〉η =

N
∫

[dη] exp
(
−1

4

∫
ddx

∫
dτ η2(x, τ)

)
φ(x1, τ1)φ(x2, τ2) · · ·φ(xn, τn), (57)

where φ obeys Eq. (16) and N is given by:

N =
∫

[dη] exp
(
−1

4

∫
ddx

∫
dτ η2(x, τ)

)
(58)

An alternative way to write this average is to introduce the probability density P [φ, τ ],
which is defined as [39]:

P [φ, τ ] ≡
∫

[dη] exp
(
−1

4

∫
ddx

∫
dτ η2(x, τ)

) ∏
y

δ(φ(y)− φ(y, τ)). (59)

In terms of P , the correlation functions will read:

〈φ(x1, τ1)φ(x2, τ2) · · ·φ(xn, τn) 〉η = N
∫

[dφ]φ(x1, τ1)φ(x2, τ2) · · ·φ(xn, τn)P [φ, τ ]. (60)

The free probability density P satisfies the following Fokker-Planck equation:

∂

∂τ
P [φ, τ ] =

∫
ddx

δ

δ φ(x)

(
δ

δ φ(x)
− i δ S

δ ϕ(x)

)
P [φ, τ ], (61)

where S is given by Eq. (17) and with the initial condition:

P [φ, 0] =
∏
y

δ(φ(y)). (62)

The stochastic quantization says that we shall have:

w. lim
τ→∞

P [φ, τ ] =
exp(i S[φ])∫

[dφ] exp(i S[φ])
, (63)

where the limit is supposed to be taken ”weakly” in the sense of the reference [39].
In our real time non-Markovian case, if we notice the resemblance between our retarded

Green function Gab(k, τ) and the one found in Ref. [31], we may follow similar steps to
calculate the free probability density. It is given by, in momentum space:

P [φ, τ ] = N−1 exp
(
i

2

∫
dk φa(k)D−1

ab (k, τ, τ)φb(−k)
)

(64)

where N−1 is a normalization factor and D−1
ab (k, τ, τ ′) is the inverse of Dab(k, τ, τ

′), defined
by Eq. (52). It is easy to verify that, in the limit τ → ∞, P [φ, τ ] will satisfy, up to
constants, similar relations as obtained by Ref. [39]. However, for massless scalar theories,
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those estimations in such reference decay as inverse power of τ . In our approach, even in
the massless situation, an exponential behavior is found. Therefore, in the limit τ →∞, it
seems that we get an improved convergence.

In conclusion, we have used the stochastic quantization method to study thermal field
theory formulated in Minkowski spacetime. We have assumed a Langevin equation with a
memory kernel and Einstein’s relations with colored noise. From the above last equation,
we see that the equilibrium solution in the asymptotic Markov time of this non-Markovian
Langevin equation for scalar theories can be obtained. Our approach based in stochastic
quantization using a non-Markovian Langevin equation proved to be well suited to quantize
a classical field out of equilibrium in the real time formalism at finite temperature.

5 Conclusions

In the past several years there have been a lot of interest in quantum field theory at
finite temperature. There are three main formulations of finite temperature field theory. The
imaginary time approach or the Matsubara formalism and the real time formalism, which can
be operatorial or use the path integral approach. In the real time formalism, it is necessary to
double the number of the field degrees of freedom. To quantize a classical thermal field theory
out of equilibrium, using the stochastic quantization, we are forced to work in the Minkowski
spacetime, where naturally a imaginary drift term appears in the Langevin equation. Since
in this case the path integral weight is not positive definite, the stochastic quantization in
this situation is problematic. Parisi and Klauder proposed complex Langevin equations [14]
[15], and some problems of this approach are the following. First of all, complex Langevin
simulations do not converge to a stationary distribution in many situations. Besides, if it
does, it may converge to many different stationary distributions. The complex Langevin
equation also appears when the original method proposed by Parisi and Wu is extended to
include theories with fermions [21] [22] [23]. The first question that appears in this context
is if make sense the Brownian problem with anticommutating numbers. It can be shown
that, for massless fermionic fields, there will not be a convergence factor after integrating
the Markovian Langevin equation. Therefore the equilibrium is not reached. One way
of avoiding this problem is to introduce a kernel in the Langevin equation describing the
evolution of two Grassmannian fields.

In this paper, we have used the method of the stochastic quantization to study ther-
mal field theory formulated in real time. As we discussed, this closed time path method
can be used to describe non-equilibrium thermal field theory. First we use the Markovian
stochastic quantization approach to present the two-point function of the theory. Second,
we assumed a Langevin equation with a memory kernel and Einstein’s relation with colored
noise. The equilibrium solution of such Langevin equation was analyzed. We have shown
that for a large class of elliptic non-Hermitean operators which define different models in
quantum field theory converges in the asymptotic limit of the Markov parameter τ → ∞,
and we have obtained the free Green functions of the theory. Although non-trivial, the
method proposed can be extended to interacting field theory with complex actions, where
a consistent perturbation theory out of equilibrium can be developed.
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Finally, the literature has emphasized that the stochastic quantization is only an alter-
native formalism to quantize a classical field theory, but new results have not been obtained.
Nevertheless the stochastic quantization and the Langevin equation can be extremely use-
ful in numerical simulations of field theory models [40] [41]. The implementation of this
non-Markovian Langevin equation on the lattice is under investigation by the authors.
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A Appendix

In this appendix, we derive the components Ωab(k, τ). We can write the Ω-matrix as an
inverse of the matrix A, whose components are given by

A =

(
z − iM(z) d ′ iM(z) b ′

iM(z) b ′ z − iM(z) a ′

)
. (A.1)

The quantities that appear in the A-matrix are defined by

a ′ =
a

ad− b2
, (A.2)

b ′ =
b

ad− b2
, (A.3)

d ′ =
d

ad− b2
, (A.4)

and

a =
1

k2 −m2 + iε
− iε

(k2 −m2)2 + ε2
2 sinh2 θ, (A.5)

b =
−iε

(k2 −m2)2 + ε2
sinh 2θ, (A.6)

d =
−1

k2 −m2 − iε
− iε

(k2 −m2)2 + ε2
2 sinh2 θ. (A.7)

So, we will have

(Ω)ab(k, z) = (A−1)ab =

(
Ω11(k, z) Ω12(k, z)

Ω21(k, z) Ω22(k, z)

)
, (A.8)
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where:

Ω11(k, z) =
z − iM(z) a ′

(z − iM(z) a ′)(z − iM(z) d ′) +M2(z)b ′2
, (A.9)

Ω12(k, z) = Ω21(z) =
−iM(z) b ′

(z − iM(z) a ′)(z − iM(z) d ′) +M2(z)b ′2
, (A.10)

Ω22(k, z) =
z − iM(z) d ′

(z − iM(z) a ′)(z − iM(z) d ′) +M2(z)b ′2
. (A.11)

The Laplace transform for the memory kernel, Eq. (53), is given by

M(z) =
Λ2

2

1

z + Λ2
. (A.12)

So, inserting this result in Eqs. (A.9), (A.10) and (A.11), we get:

Ω11(k, z) =
P (z, ta)

Q(z)
, (A.13)

Ω12(k, z) = Ω21(z) =
−(tb z + tb Λ2)

Q(z)
, (A.14)

Ω22(k, z) =
P (z, td)

Q(z)
, (A.15)

where tj = i j
′ Λ2

2
, j = a, b, d, and

P (z, tj) = z3 + 2 Λ2 z2 + (Λ4 − tj) z − tj Λ2, (A.16)

Q(z) = z4 + 2 Λ2 z3 + (Λ4 − u)z2 − uΛ2 z + v, (A.17)

with u = i(a ′+ d ′)Λ2

2
and v = ( b ′2− a ′d ′ )Λ4

4
. From Eqs. (A.2), (A.3) and (A.4), we have that:

u =
Λ2 ε(1 + 2 sinh2 θ)((k2 −m2)2 + ε2)

−(k2 −m2)2 − ε2(cosh4 θ + sinh4 θ) + ε2

2
sinh2 2θ

, (A.18)

and

v = −Λ4

4

((k2 −m2)2 + ε2)

−(k2 −m2)2 − ε2(cosh4 θ + sinh4 θ) + ε2

2
sinh2 2θ

, (A.19)

so u < 0 and v > 0. In order to get the inverse Laplace transform of each component of
the Ω-matrix, we must seek for the solutions of the quartic equation Q(z) = 0. As it is well
known, a general quartic equation is a fourth-order polynomial equation of the form

z4 + a3z
3 + a2z

2 + a1z + a0 = 0. (A.20)

Using the familiar algebraic technique [42], it is easy to show that the roots of Eq.(A.20)
are given by:

z1 = −1

4
a3 +

1

2
R +

1

2
D, (A.21)
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z2 = −1

4
a3 +

1

2
R− 1

2
D, (A.22)

z3 = −1

4
a3 −

1

2
R +

1

2
E, (A.23)

z4 = −1

4
a3 −

1

2
R− 1

2
E, (A.24)

where:

R ≡
(

1

4
a2

3 − a2 + y1

)1/2

, (A.25)

D ≡



(
F (R) +G

)1/2

for R 6= 0(
F (0) +H

)1/2

for R = 0,
(A.26)

E ≡



(
F (R)−G

)1/2

for R 6= 0(
F (0)−H

)1/2

for R = 0,
(A.27)

F (R) ≡ 3

4
a2

3 −R2 − 2a2, (A.28)

H ≡ 2
(
y2

1 − 4a0

)1/2

, (A.29)

G ≡ 1

4
(4a3a2 − 8a1 − a3

3)R−1, (A.30)

and y1 is a real root of the following cubic equation:

y3 − a2y
2 + (a1a3 − 4a0)y + (4a2a0 − a2

1 − a2
3a0) = 0. (A.31)

For convenience, let us assume that R, defined by Eq.(A.25), does not vanish. Comparing
Eqs. (A.17) and (A.20), we easily see that a3 = 2 Λ2, a2 = Λ4 − u, a1 = −uΛ2 and a0 = v.
Therefore, the inverse Laplace transform of Ωab is given by:

Ω11(k, τ) =
P (z1, ta)

(z1 − z2)(z1 − z3)(z1 − z4)
ez1τ +

+
P (z2, ta)

(z2 − z1)(z2 − z3)(z2 − z4)
ez2τ +

+
P (z3, ta)

(z3 − z1)(z3 − z2)(z3 − z4)
ez3τ +

+
P (z4, ta)

(z4 − z1)(z4 − z2)(z4 − z3)
ez4τ , (A.32)
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Ω12(k, τ) = Ω21(k, τ) = −
(

tb z1 + tb Λ2

(z1 − z2)(z1 − z3)(z1 − z4)
ez1τ +

+
tb z2 + tb Λ2

(z2 − z1)(z2 − z3)(z2 − z4)
ez2τ +

+
tb z3 + tb Λ2

(z3 − z1)(z3 − z2)(z3 − z4)
ez3τ +

+
tb z4 + tb Λ2

(z4 − z1)(z4 − z2)(z4 − z3)
ez4τ

)
, (A.33)

and, finally, Ω22(k, τ) = Ω11(k, τ ; ta → td). The roots zi are given by:

z1 = −Λ2

2
+

1

2
iσ +

1

2
iγ, (A.34)

z2 = −Λ2

2
+

1

2
iσ − 1

2
iγ, (A.35)

z3 = −Λ2

2
− 1

2
iσ +

1

2
iγ, (A.36)

z4 = −Λ2

2
− 1

2
iσ − 1

2
iγ, (A.37)

with σ = (|u| − y1)1/2 and γ = (−Λ4 + |u| + y1)1/2 being real quantities. The Eqs. (A.32)
and (A.33) can be rewritten in a simpler form as:

Ω11(k, τ) = −
((

cos
(

(σ + γ)

2
τ
)

+
Λ2

(σ + γ)
sin
(

(σ + γ)

2
τ
))
h1 +

+
(

cos
(

(σ − γ)

2
τ
)

+
Λ2

(σ − γ)
sin
(

(σ − γ)

2
τ
))
h2 +

+8 ta sin
(
σ τ

2

)
sin
(
γ τ

2

)
+

+4 ta Λ2
(
g1 sin

(
(σ + γ)

2
τ
)

+ g2 sin
(

(σ − γ)

2
τ
)))

e
−Λ2

2
τ

8σ γ
, (A.38)

Ω12(k, τ) = Ω21(k, τ) =
tb

2σ γ

(
Λ2

(σ + γ)
sin
(

(σ + γ)

2
τ
)
− Λ2

(σ − γ)
sin
(

(σ − γ)

2
τ
)

+

−2 sin
(
σ τ

2

)
sin
(
γ τ

2

))
e
−Λ2

2
τ , (A.39)

where

h1 = −(σ + γ)2 − Λ4, (A.40)

h2 = (σ − γ)2 + Λ4, (A.41)

g1 = i− 2Λ2

(σ + γ)
, (A.42)

g2 = i− 2Λ2

(σ − γ)
, (A.43)
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and, as before, Ω22(k, τ) = Ω11(k, τ ; ta → td). Let us consider the convergence of the
stochastic process. In order for our stochastic process to converge, the retarded Green
function for the diffusion problem should obey Gab(k, τ)|τ→∞ → 0. In other words, we must
have Ωab(k, τ)|τ→∞ → 0. From these last expressions, it is easy to see that the stochastic
process will converge, if the quantities σ and γ are real, as imposed before. This lead us to
the following conditions: |u|−y1 > 0 and |u|+y1−Λ4 > 0, or, combining those requirements,
|u| > Λ4

2
. Remembering Eq. (A.18), we will have the following convergence criterium:

ε(1 + 2 sinh2 θ)((k2 −m2)2 + ε2)

(k2 −m2)2 + ε2(cosh4 θ + sinh4 θ)− ε2

2
sinh2 2θ

>
Λ2

2
, (A.44)

Now let us present the quantity y1. As was stated before, y1 is a real root of a cubic equation:

z3 + b2 z
2 + b1 z + b0 = 0. (A.45)

Comparing Eqs. (A.17), (A.20), (A.31) and (A.45), we have the following identifications:
b2 = u− Λ4, b1 = −2 Λ4 u− 4 v and b0 = −4u v − u2 Λ4. If we let:

q =
1

3
b1 −

1

9
b2

2, (A.46)

r =
1

6
(b1b2 − 3b0)− 1

27
b3

2, (A.47)

we will have that

q = −4

9
Λ4 u− Λ8

9
− 4

3
v − u2

9
, (A.48)

r =
4

9
Λ8 u+

2

3
Λ4 v +

1

18
Λ4 u2 +

4

3
uv − 1

27
Λ12 +

1

27
u3. (A.49)

So, writing s1 = (r +
√
q3 + r2)1/2 and s2 = (r −

√
q3 + r2)1/2, we have that:

y1 = (s1 + s2) +
Λ4 − u

3
. (A.50)

As one can see, y1 > 0. Also, in the limit ε→ 0, y1 becomes a polynomial of Λ.
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