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1 Introduction

The Supersymmetric Quantum Mechanics [1] has important applications in mathemat-
ical physics in connection with, e.g., the Morse theory and the Atiyah-Singer index.
The large N extended supersymmetry (up to N = 32) plays a fundamental role as
a dimensional-reduced quantum mechanical system derived from the maximal eleven-
dimensional supergravity or its M-theory extension. In condensed matter, applications
of supersymmetric quantum mechanics in the N → ∞ limit have been investigated to
describe the BCS model, see e.g. [2].

In this paper we present the classification of the irreducible representations of the
algebra of the N -extended supersymmetric quantum mechanics, obtained in [3].

The N -extended one-dimensional supersymmetry algebra is a Z2 graded superalge-
bra with N odd generators Qi, i = 1, . . . , N and a single even central charge H . The
algebra is defined by

{Qi, Qj} = δijH,

[Qi, H ] = 0. (1.1)

The irreducible representations linearly realized on an equal (finite) number n of
bosonic and fermionic fields, depending on a parameter t ∈ R (the time coordinate)
are labeled by the multiplets (see [4])

(n1, n2, . . . , nk) (1.2)

where the ni’s are non-negative integers satisfying the condition

n1 + n3 + . . . = n2 + n4 + . . . = n (1.3)

The odd (even)-indiced nis denote the number of bosonic (fermionic) fields in the given
irrep of degree i−1

2
.

The problem solved in [3] consists in finding the allowed (1.2) multiplets for any
given value N . This was an open problem in the literature.

2 Irreps of the N-extended d = 1 supersymmetry

and Clifford algebras: the connection revisited

In this section we review the main results of ref. [4] concerning the classification of
irreps of the N -extended one-dimensional supersymmetry algebra.

The N extended D = 1 supersymmetry algebra is given by

{Qi, Qj} = ηijH (2.1)

where the Qi’s are the supersymmetry generators (for i, j = 1, . . . , N) and H ≡ −i ∂
∂t

is a hamiltonian operator (t is the time coordinate). If the diagonal matrix ηij is
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pseudo-Euclidean (with signature (p, q), N = p+ q) we can speak of generalized super-
symmetries. The analysis of [4] was done for this general case. For convenience in the
present paper (despite the fact that our results can be straightforwardly generalized
to pseudo-Euclidean supersymmetries, having applicability, e.g., to supersymmetric
spinning particles moving in pseudo-Euclidean manifolds) we work exclusively with
ordinary N -extended supersymmetries. Therefore for our purposes here ηij ≡ δij .

The (D-modules) representations of the (2.1) supersymmetry algebra realized in
terms of linear transformations acting on finite multiplets of fields satisfy the following
properties. The total number of bosonic fields equal the total number of fermionic
fields. For irreps of the N -extended supersymmetry the number of bosonic (fermionic)
fields is given by d, with N and d linked through

N = 8l + n,

d = 24lG(n), (2.2)

where l = 0, 1, 2, . . . and n = 1, 2, 3, 4, 5, 6, 7, 8. G(n) appearing in (2.2) is the Radon-
Hurwitz function [4]

n 1 2 3 4 5 6 7 8
G(n) 1 2 4 4 8 8 8 8

(2.3)

The modulo 8 property of the irreps of the N -extended supersymmetry is in conse-
quence of the famous modulo 8 property of Clifford algebras. The connection between
supersymmetry irreps and Clifford algebras is specified later.

The bosonic (fermionic) fields entering an irreducible multiplet can be grouped to-
gether according to their dimensionality. Throughout this paper we use, interchange-
ably, the words “dimension” or “spin” to refer to the dimensionality of the component
fields. It is in fact useful, especially when discussing the D = 1 dimensional reduction
of higher-dimensional supersymmetric theories, to refer at the dimensionality of the
D = 1 fields as their “spin”. The number (equal to l) of different dimensions (i.e. the
number of different spin states) of a given irrep, will be referred to as the length l of the
irrep. Since there are at least two different spin states (one for bosons, the other for
fermions), obtained when all bosons (fermions) are grouped together within the same
spin, the minimal length of an irrep is l = 2.

A general property of (linear) supersymmetry in any dimension is the fact that the
states of highest spin in a given multiplet are auxiliary fields, whose supersymmetry
transformations are given by total derivatives. Just for D = 1 total derivatives coincide
with the (unique) time derivative. Using this specific property of the one-dimensional
supersymmetry it was proven in [4] that all finite linear irreps of the (2.1) supersymme-
try algebra fall into classes of equivalence, each class of equivalence being singled out by
an associated minimal length (l = 2) irreducible multiplet. It was further proven that
the minimal length irreducible multiplets are in 1-to-1 correspondence with a subclass
of Clifford algebras (the ones which satisfy a Weyl property). The connection goes as
follows. The supersymmetry generators acting on a length-2 irreducible multiplet can
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be expressed as

Qi =
1√
2

(
0 σi

σ̃i ·H 0

)
(2.4)

where the σi and σ̃i are matrices entering a Weyl type (i.e. block antidiagonal) irre-
ducible representation of the Clifford algebra relation

Γi =

(
0 σi

σ̃i 0

)
, {Γi,Γj} = 2ηij (2.5)

The Qi’s in (2.4) are supermatrices with vanishing bosonic and non-vanishing fermionic
blocks, acting on an irreducible multiplet m (thought as a column vector) which can
be either bosonic or fermionic. The connection between Clifford algebra irreps of Weyl
type and minimal length irreps of the N -extended one-dimensional supersymmetry is
such thatD, the dimensionality of the (Euclidean, in the present case) space-time of the
Clifford algebra (2.5) coincides with the number N of the extended supersymmetries,
according to

� of space-time dim. (Weyl-Clifford) ⇔ � of extended su.sies (in 1-dim.)
D = N

(2.6)

The matrix size of the associated Clifford algebra (equal to 2d, with d given in (2.2)) cor-
responds to the number of (bosonic plus fermionic) fields entering the one-dimensional
N -extended supersymmetry irrep.

The classification of Weyl-type Clifford irreps, furnished in [4], can be easily recov-
ered from the well-known classification of Clifford irreps, given in [5] (see also [6] and
[7]).

The (2.4) Qi’s matrices realizing the N -extended supersymmetry algebra (2.1) on
length-2 irreps have entries which are either c-numbers or are proportional to the
hamiltonian H . Irreducible representations of higher length (l ≥ 3) are systematically
produced [4] through repeated applications of the dressing transformations

Qi 
→ Q̂
(k)
i = S(k)QiS

(k)−1
(2.7)

realized by diagonal matrices S(k)’s (k = 1, . . . , 2d) with entries s(k)
ij given by

s(k)
ij = δij(1 − δjk + δjkH) (2.8)

Some remarks are in order [4]
i) the dressed supersymmetry operators Qi

′ (for a given set of dressing transfor-
mations) have entries which are integral powers of H . A subclass of the Qi

′ s dressed
operators is given by the local dressed operators, whose entries are non-negative inte-
gral powers of H (their entries have no 1

H
poles). A local representation (irreps fall

into this class) of an extended supersymmetry is realized by local dressed operators.
The number of the extension, given by N ′ (N ′ ≤ N), corresponds to the number of
local dressed operators.
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ii) The local dressed representation is not necessarily an irrep. Since the total
number of fields (d bosons and d fermions) is unchanged under dressing, the local
dressed representation is an irrep iff d and N ′ satisfy the (2.2) requirement (with N ′

in place of N).
iii) The dressing changes the dimension (spin) of the fields of the original multiplet

m. Under the S(k) dressing transformation (2.7), m 
→ S(k)m, all fields entering m are
unchanged apart the k-th one (denoted, e.g., as ϕk and mapped to ϕ̇k). Its dimension is
changed from [k] 
→ [k]+ 1. This is why the dressing changes the length of a multiplet.
As an example, if the original length-2 multiplet m is a bosonic multiplet with d spin-0
bosonic fields and d spin- 1

2
fermionic fields (in the following such a multiplet will be

denoted as (xi;ψj) ≡ (d, d)s=0, for i, j = 1, . . . , d), then S(k)m, for k ≤ d, corresponds
to a length-3 multiplet with d− 1 bosonic spin-0 fields, d spin- 1

2
fermionic fields and a

single spin-1 bosonic field (in the following we employ the notation (d− 1, d, 1)s=0 for
such a multiplet).

Let us fix now the overall conventions. The most general multiplet is of the form
(d1, d2, . . . , dl), where di for i = 1, 2, . . . , l specify the number of fields of a given spin
s + i−1

2
. The spin s, i.e. the spin of the lowest component fields in the multiplet,

will also be referred to as the “spin of the multiplet”. When looking purely at the
representation properties of a given multiplet the assignment of an overall spin s is
arbitrary, since the supersymmetry transformations of the fields are not affected by s.
Introducing a spin is useful for tensoring multiplets and becomes essential for physical
applications, e.g. in the construction of supersymmetric invariant terms entering an
action.

In the above multiplet l denotes its length, dl the number of auxiliary fields of
highest spins transforming as time-derivatives. The total number of odd-indiced equal
the total number of even-indiced fields, i.e. d1+d3+. . . = d2+d4+. . . = d. The multiplet
is bosonic if the odd-indiced fields are bosonic and the even-indiced are fermionic (the
multiplet is fermionic in the converse case). For a bosonic multiplet the auxiliary fields
are bosonic (fermionic) if the length l is an odd (even) number.

Just like the overall spin assignment, the assignment of a bosonic (fermionic) char-
acter to a multiplet is arbitrary since the mutual transformation properties of the fields
inside a multiplet are not affected by its statistics. Therefore, multiplets always ap-
pear in dually related pairs s.t. to any bosonic multiplet there exists its fermionic
counterpart with the same transformation properties (see also [8]).

In [4] it was shown that all dressed supersymmetry operators producing any length-
3 multiplet (of the form (d− p, d, p) for p = 1, . . . , d− 1) are of local type. Therefore,
for length-3 multiplets, we have N ′ = N .

3 Classification of the irreps

In this section we present a systematic procedure to produce and classify length l > 3
irreps of the (2.1) supersymmetry algebra for arbitrary values of N . We apply it to
fully classify all irreps up to N ≤ 10 and, for the next cases of the oxidized N = 11(∗)
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and N = 12 supersymmetries, the length-4 irreps.
Our approach is based on the following points:
i) the (2.4) and (2.5) connection between oxidized Clifford irreps and (oxidized and

reduced) length-2 irreps of the (2.1) supersymmetry algebra,
ii) the (2.7) dressing transformation of length-2 irreps, producing length l > 2 local

type representations of the (2.1) supersymmetry algebra,
iii) the matching condition (2.2) between the number of the extended supersym-

metries and the dimension of the representation. It is satisfied if and only if the
representation is irreducible and, finally,

iv) the algorithmic properties of the real Clifford irreps discussed at the end of
Section 3.

As explained in Section 2, the dressing can produce 1
H

poles in the dressed super-
symmetry operators. An S(k) dressing (2.7, 2.8) of a given supersymmetry operator Q
has the total effect of multiplying by 1

H
all Q’s entries belonging to the k-th column

and by H all Q’s entries belonging to the k-th row, leaving unchanged all remaining
entries. In order to count (and remove) dressed operators with 1

H
poles one has to de-

termine how non-vanishing entries are distributed in the whole set of supersymmetry
operators (since the Q’s are 2 × 2 block-antidiagonal matrices, we can focus on the
upper-right block, the lower-left block presenting the same structure). Up to N ≤ 8,
all non-vanishing entries of an oxidized supersymmetry fill the whole upper-right block
(for N = 8, e.g., we have eight supersymmetry operators with 8 non-overlapping non-
vanishing entries each, s.t. 8 × 8 = 64, filling the 8 × 8 upper block chessboard of
the N = 8 supersymmetry). Starting from N ≥ 9 this is no longer the case. The
16 × 16 right upper block “chessboard” of the N = 9 supersymmetry is filled with a
total number of 9 × 16 = 144 < 162 non-overlapping non-vanishing entries.

In the N = 9 example each column and each row of the upper-right (bottom-left)
block intercepts the same amount of 9 non-vanishing entries belonging to the whole set
of 9 gamma matrices; the remaining 16 − 9 = 7 entries are zero.

Not only the total number, but also the distribution of the non vanishing-entries
inside the block matrices matters when computing the locality condition of the dressed
supersymmetry operators. The structure of the non-vanishing entries filling the large-
N oxidized supersymmetries can be recovered from the algorithmic construction of the
Clifford irreps. For N ≥ 8, the filling of the upper-right block can be symbolically
presented (the block-symbol diagrams below) in terms of the three fundamental fillings
of an 8 × 8 matrix. The three fundamental fillings, denoted as O, I, X, represent,
respectively,

i) O ≡ only vanishing entries,
ii) I ≡ non-vanishing entries filling the diagonal,
iii) X ≡ non-vanishing entries filling the whole 8 × 8 matrix.

The block-symbols, explicitly presented here for the oxidized supersymmetries with
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8 ≤ N ≤ 12, are given by

N = 8 :
(

X
)

N = 9 :

(
I X
X I

)

N = 10 :

⎛
⎜⎜⎝

I O I X
O I X I
I X I O
X I O I

⎞
⎟⎟⎠

N = 11∗ :

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

I O O O I O I X
O I O O O I X I
O O I O I X I O
O O O I X I O I
I O I X I O O O
O I X I O I O O
I X I O O O I O
X I O I O O O I

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

N = 12 :

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

I X I O I O I O
X I O I O I O I
I O I X I O I O
O I X I O I O I
I O I O I X I O
O I O I X I O I
I O I O I O I X
O I O I O I X I

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(3.1)

Block-symbols can be straightforwardly computed for arbitrary large-N values of the
oxidized supersymmetries.

For reduced supersymmetries extra holes appear in the block-symbols, correspond-
ing to the non-vanishing entries belonging to the N − N ′ supersymmetry operators
that have been “removed” from the whole set of oxidized operators in order to produce
the reduced N ′-extended supersymmetry.

Concerning multiplets, it is worth reminding that the diagonal dressing operator

S =

(
H · 1d 0

0 1d

)
(3.2)

applied on a (d, d) length-2 multiplet reverses its statistics (the same transformation
reverses the statistics of fields in any given multiplet).

Length-3 multiplets are obtained by applying, on a (d, d) length-2 multiplet, diag-
onal dressing operators S with a total number of k (with 1 ≤ k ≤ d− 1) single powers
of H in the first d diagonal entries, while the 2d− k remaining diagonal entries are 1.
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Length-4 multiplets require dressing operators with k̃ (for 1 ≤ k̃ ≤ d − 1) single
powers of H diagonal entries in the positions d+ 1, . . . , 2d.

Length-5 (length-6) multiplets require a dressing operator S with at least one H2

second power diagonal entry in the position 1, . . . , d (and, respectively, d+ 1, . . . , 2d).
Length-7 and length-8 multiplets require dressing operators with at least a third

power, H3, diagonal entry and so on.
We are now in the position to compute the length l ≥ 4 irreducible representations

of the oxidized supersymmetries. Let us illustrate at first an N = 9 example. An
N = 9 length-3 irrep with 15 auxiliary fields (i.e. (1, 16, 15)) is such that the original
(16, 16) upper-right block B is mapped into a new block, B 
→ B′, by multiplying 15
columns by H , while leaving the remaining column unchanged. The lengthening 3 
→ 4,
obtained by leaving unchanged the number of fields, 15, in the third position, produces
a block-mapping B′ 
→ B′′, where the new block is obtained from B′ by multiplying
a certain number of rows by 1

H
, while the remaining ones are left unchanged. The

condition that no 1
H

poles appear in B′′ implies that, at most, seven rows can be picked
up. They have to be chosen among the ones corresponding to the zeroes of the single,
unchanged, column of B′. It turns out that N = 9 admits seven inequivalent length-4
irreps of the type (1, 16 − k, 15, k), for k = 1, 2, . . . , 7.

The same strategy can be applied starting from (2, 16, 14), (3, 16, 13) and so on.
At the end we produce the complete list of length-4 irreps of N = 9. This procedure
straightforwardly works for computing length-4 irreps of any oxidized value of N , once
the corresponding block-symbols are known.

For what concerns l > 4, let us illustrate the N = 10 length-5 example, since 10
is the least value of an extended supersymmetry admitting irreps with l > 4. Let us
check, at first, whether we can produce a single auxiliary field in the fifth position. This
amounts to multiply by 1

H2 a single row of the original (32, 32) bottom-left block. Since
all its entries, see (2.4), are already multiplied by H , this implies that the new bottom-
left block admits a single 1

H
pole in correspondence with the non-vanishing entries of

the transformed row, while it is regular anywhere else. We get on the transformed row
ten poles. In order to kill them we need to multiply (at least) the 10 corresponding
columns of the bottom-left block by H . This multiplication corresponds to the trans-
formation which maps (at least) 10 fields from the second to the fourth position. This
transformation acts on the upper-right block by multiplying the corresponding rows
by 1

H
. In its turn, these extra-poles have to be cancelled by multiplying a convenient

number of columns by H (in correspondence with the transformation mapping fields
from the first to the third position). The extra 1

H
poles produced by this new com-

pensating transformation on the corresponding rows of the bottom-left block do not
produce any further singularity, due to the presence of the overall H factor mentioned
above.

The same procedure can be later applied to verify whether there is enough room to
have two, three or more fields in the fifth position.

Length l ≥ 6 irreps can be analyzed along the same lines.
For what concerns the reduced extended supersymmetries, the computation of their

irreps can be carried on just like the oxidized supersymmetries, but taking into account
that their block-symbols admit extra holes. We concentrate on N = 8 reductions. The
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eight gamma matrices generating N = 8 under the (2.6) correspondence are all on equal
footing. We can single out any one of them (let’s say the one with a diagonal upper-
right block) in order that the remaining ones generate N = 7. The diagonal holes in
the N = 7 block-symbol imply that, just like the first N = 9 example discussed above,
we can lengthen the N = 8 (1, 8, 7) irrep into an N = 7 (1, 7, 7, 1) irrep. The analysis
of the N = 5(∗), 6 (and N = 3(∗∗) derived from N = 4) cases is done in the same way.

Let us now make some necessary remarks on the irreducible representations. Two
types of dualities act on them. We have at first the fermion ⇔ boson duality, obtained
by exchanging, via the (3.2) dressing, the statistics of the component fields in the
multiplet. A second type of duality can be referred to as the high ⇔ low spin duality.
This new duality involves the mapping of a (d1, d2, . . . , dl) irreducible multiplet into its
irreducible dual multiplet

(d1, d2, . . . , dl) ⇔ (dl, dl−1, . . . , d1) (3.3)

obtained by turning the highest-spin fields into the lowest spin fields. Therefore this
duality relates two opposite statistics multiplets if l is even and two multiplets with
the same statistics if l is odd.

Let us denote with ( 1xj1 ;
2xj2 ; . . . ;

lxjl
) the set of fields entering (d1, d2, . . . , dl)

(here ji = 1, . . . , di). The dual irreducible (dl, dl−1, . . . , d1) multiplet can be realized
with the fields ( lxjl

; l−1ẋjl−1
; . . . ; 1xj1

(l−1)), where x(k) here denotes the application
of the time derivative k-times. Applying the same transformation on the latter multi-

plet we obtain a new multiplet, ( 1xj1
(l−1)

; 2x
(l−1)
j2

; . . . ; lx
(l−1)
jl

), whose supersymmetry
transformations are nevertheless the same as the original ones. As a corollary, the class
of the irreducible representations is closed under the (3.3) high ⇔ low spin duality.

The high ⇔ low spin duality (3.3) concides with the fermion ⇔ boson (3.2) duality
only when applied to self-dual (under (3.3)) multiplets of even length. It is a distinct
duality transformation in the remaining cases.

For what concerns the total number κ of inequivalent irreps of the N -extended
supersymmetry, it is given by the sum of the κl inequivalent irreps of length-l, namely,

κ =
L∑

l=2

κl (3.4)

where L is the maximal length for an N -extended supersymmetry irrep.
k is the counting of inequivalent irreps irrispectively of the overall statistics of the

multiplets. A factor 2 can be introduced if we want to discriminate the statistics of
the multiplets (bosonic or fermionic). In this case the number of inequivalent irreps is
κ, with

κ = 2κ (3.5)

Let us present now a series of results concerning the irreducible irreps.
Up to N ≤ 8, length-4 irreps are present only for reduced supersymmetries. The
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complete list of length-4 irreps up to N = 8 is given by

N = 1 NO
N = 2 NO
N = 3 (1, 3, 3, 1)
N = 4 NO
N = 5 (1, 5, 7, 3), (3, 7, 5, 1), (1, 6, 7, 2), (2, 7, 6, 1), (2, 6, 6, 2), (1, 7, 7, 1)
N = 6 (1, 6, 7, 2), (2, 7, 6, 1), (2, 6, 6, 2), (1, 7, 7, 1)
N = 7 (1, 7, 7, 1)
N = 8 NO

(3.6)

Since there are no length-l irreps with l ≥ 5 for N ≤ 9, the above list, together with
the already known length-2 and length-3 irreps, provides the complete classification of
inequivalent irreps for N ≤ 8.

Please notice that the length-4 irrep of N = 3, (1, 3, 3, 1), is self-dual under the
(3.3) high ⇔ low spin duality, while two of the inequivalent length-4 N = 5 irreps are
self-dual, (2, 6, 6, 2) and (1, 7, 7, 1). The remaining ones are pair-wise dually related
((1, 5, 7, 3) ⇔ (3, 7, 5, 1) and (1, 6, 7, 2) ⇔ (2, 7, 6, 1)).

The list of inequivalent length-4 irreps is the same for both derivations (real and
quaternionic) of the N = 3 and N = 5 extended supersymmetries. It is however conve-
nient to distinguish between real and quaternionic derivations of the N = 3, 5 mod 8
extended supersymmetries, due to their different properties. As an example, the
(1, 3, 3, 1) length-4 irrep of the N = 3(∗) supersymmetry can be oxidized to a length-4
irrep of the (3, 3) pseudosupersymmetry (2.1), while the corresponding quaternionic
(1, 3, 3, 1) N = 3(∗∗) irrep cannot be oxidized to a pseudosupersymmetry. Similarly, the
quaternionically derived length-4 irreps of the N = 5(∗∗) supersymmetry are oxidized
to length-4 irreps of the (5, 1) extended pseudosupersymmetry. For what concerns the
real length-4 irreps of the N = 5(∗) supersymmetry the picture is the following. Due
to the reduction chain from the N = 8 oxidized supersimmetry

N = 8 → N = 7 → N = 6 → N = 5(∗) (3.7)

it turns out that the (1, 7, 7, 1) irrep of N = 5(∗) can be oxidized as an N = 6 and N = 7
irrep. The (1, 6, 7, 2) ⇔ (2, 7, 6, 1) and (2, 6, 6, 2) multiplets, thought as N = 5(∗) irreps,
can be oxidized and promoted to be N = 6 irreps.

In the Appendix B the complete classification of inequivalent irreps for N = 9, 10
is presented. Therefore, we are able to produce here another table, expressing the
maximal length L and the total number κ of inequivalent irreps for the N -extended
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supersymmetries with N ≤ 10. We have

su.sies L κ2 + . . .+ κL = κ
N = 1 2 1
N = 2 3 1 + 1 = 2
N = 3 4 1 + 3 + 1 = 5
N = 4 3 1 + 3 = 4
N = 5 4 1 + 7 + 6 = 14
N = 6 4 1 + 7 + 4 = 12
N = 7 4 1 + 7 + 1 = 9
N = 8 3 1 + 7 = 8
N = 9 4 1 + 15 + 28 = 44
N = 10 5 1 + 31 + 176 + 140 = 348

(3.8)

We conclude this section pointing out that the procedure here outlined can be
systematically carried on to fully classify inequivalent irreps for arbitrarily large values
of N ; the limitations are only due to the increasing of the required computational work.

4 Some results

Classification of the N = 9, 10 irreps and length-4 N = 11(∗), 12 irreps

i) Classification of the N = 9 irreps

The length-4 irreducible multiplet (d1, d2, d3, d4) is for simplicity expressed in terms
of the two positive integers h ≡ d1, k = d4, since d3 = 16 − h, d2 = 16 − k.

N = 9 presents 4 length-4 irreducible self-dual (under (3.3)) multiplets for

h = k = 1, 2, 3, 4 (4.1)

and 2× (6+4+2) = 24 non self-dual length-4 irreducible multiplets given by the series
of coupled values

h = 1 & k = 2, . . . , 7

h = 2 & k = 3, . . . , 6

h = 3 & k = 4, 5 (4.2)

together with the (h↔ k) dually interchanged multiplets.
The previous results can be summarized as follows. Inequivalent length-4 irreps are

in 1-to-1 correspondence with the ordered pair of positive integers h, k satisfying the
constraint

h+ k ≤ 8. (4.3)
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The total number k4 of inequivalent length-4 irreps (without discriminating, see (3.4),
the statistics of the multiplets) is

k4 = 28 (4.4)

ii) Classification of the N = 10 irreps

N = 10 admits irreps up to length l = 5. We have

iia) The length-4 classification.

The length-4 irreducible multiplet (d1, d2, d3, d4) is for simplicity expressed in terms
of the two positive integers h ≡ d1, k = d4, since d3 = 32 − h, d2 = 32 − k.

N = 10 presents 8 length-4 irreducible self-dual (under (3.3)) multiplets for

h = k = 1, 2, . . . , 8 (4.5)

and a set of 2× 3(
∑7

j=1 j) = 168 non self-dual length-4 irreducible multiplets given by
the series of coupled values

h = 1 & k = 2, . . . , 22

h = 2 & k = 3, . . . , 20

h = 3 & k = 4, . . . , 18

h = 4 & k = 5, . . . , 16

h = 5 & k = 6, . . . , 14

h = 6 & k = 7, . . . , 12

h = 7 & k = 8, 9, 10 (4.6)

together with the (h↔ k) dually interchanged multiplets.
If we set

r = min(h, k) (4.7)

the previous results can be summarized as follows. Inequivalent length-4 irreps are
in 1-to-1 correspondence with the ordered pair of positive integers h, k satisfying the
constraint

h+ k + r ≤ 24. (4.8)

The total number k4 of inequivalent length-4 irreps (without discriminating, see (3.4),
the statistics of the multiplets) is

k4 = 176 (4.9)

iib) The length-5 classification
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A length-5 multiplet (d1, d2, d3, d4, d5) is characterized by three independent positive
integers, let’s say d1, d2, d5, since d4 = 32 − d2 and d3 = 32 − d1 − d5. The full list of
length-5 irreps of the N = 10 supersymmetry can be listed according to the number
d5 of highest-spin auxiliary fields. The maximal number of auxiliary fields is 7. At any
fixed d5 = 1, . . . , 7 the number of inequivalent irreps is (8 − d5)

2. Therefore, the total
number k5 of length-5 inequivalent irreps is given by

k5 = 12 + 22 + . . .+ 72 = 140 (4.10)

The full list of irreps is here produced in terms, at any fixed d5, of the ordered d1, d2

pairs. We have

d5 = 7 : 1, 10.

d5 = 6 : 1, 10, 1, 11, 1, 12/2, 12.

d5 = 5 : 1, 10, . . . , 1, 14/2, 12, . . . , 2, 14/3, 14.

d5 = 4 : 1, 10, . . . , 1, 16/2, 12, . . . , 2, 16/3, 14, . . . , 3, 16/4, 16.

d5 = 3 : 1, 10, . . . , 1, 18/2, 12, . . . , 2, 18/3, 14, . . . , 3, 18/4, 16, . . . , 4, 18/5, 18.

d5 = 2 : 1, 10, . . . , 1, 20/2, 12, . . . , 2, 20/3, 14, . . . , 3, 20/4, 16, . . . , 4, 20/

5, 18, . . . , 5, 20/6, 20.

d5 = 1 : 1, 10, . . . , 1, 22/2, 12, . . . , 2, 22/3, 14, . . . , 3, 22/4, 16, . . . , 4, 22/

5, 18, . . . , 5, 22/6, 20, . . . , 6, 22/7, 22. (4.11)

One can check that the above set of irreducible multiplets is indeed closed under the
(3.3) high ⇔ low spin duality transformations.

iii) Classification of the length-4 N = 11(∗) irreps

The length-4 irreducible multiplet (d1, d2, d3, d4) is for simplicity expressed in terms
of the two positive integers h ≡ d1, k = d4, since d3 = 64 − h, d2 = 64 − k.

N = 11(∗) presents 16 length-4 irreducible self-dual (under (3.3)) multiplets for

h = k = 1, 2, . . . , 16 (4.12)

and 776 non self-dual length-4 irreducible multiplets given by the series of coupled
values

h = 1 & k = 2, . . . , 53 h = 9 & k = 10, . . . , 30
h = 2 & k = 3, . . . , 50 h = 10 & k = 11, . . . , 28
h = 3 & k = 4, . . . , 47 h = 11 & k = 12, . . . , 26
h = 4 & k = 5, . . . , 44 h = 12 & k = 13, . . . , 24
h = 5 & k = 6, . . . , 41 h = 13 & k = 14, . . . , 22
h = 6 & k = 7, . . . , 38 h = 14 & k = 15, . . . , 20
h = 7 & k = 8, . . . , 35 h = 15 & k = 16, . . . , 18
h = 8 & k = 9, . . . , 32

(4.13)
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together with the (h↔ k) dually interchanged multiplets.
The previous results can be summarized as follows. Let us set, as before (4.7),

r = min(h, k) and introduce the s(r) function defined through

s(r) =

{
8 − r for r = 1, . . . , 7

0 otherwise

}
(4.14)

Inequivalent length-4 irreps are in 1-to-1 correspondence with the ordered pair of pos-
itive integers h, k satisfying the constraint

h+ k + r − s(r) ≤ 48. (4.15)

The total number k4 of inequivalent length-4 irreps (without discriminating, see (3.4),
the statistics of the multiplets) is

k4 = 792. (4.16)

iii) Classification of the length-4 N = 12 irreps

The length-4 irreducible multiplet (d1, d2, d3, d4) is for simplicity expressed in terms
of the two positive integers h ≡ d1, k = d4, since d3 = 64 − h, d2 = 64 − k.

N = 12 presents 12 length-4 irreducible self-dual (under (3.3)) multiplets for

h = k = 1, 2, . . . , 12 (4.17)

and 584 non self-dual length-4 irreducible multiplets given by the series of coupled
values

h = 1 & k = 2, . . . , 52 h = 7 & k = 8, . . . , 28
h = 2 & k = 3, . . . , 48 h = 8 & k = 9, . . . , 24
h = 3 & k = 4, . . . , 44 h = 9 & k = 10, . . . , 21
h = 4 & k = 5, . . . , 40 h = 10 & k = 11, . . . , 18
h = 5 & k = 6, . . . , 36 h = 11 & k = 12, . . . , 15
h = 6 & k = 7, . . . , 32

(4.18)

together with the (h↔ k) dually interchanged multiplets.
The total number k4 of inequivalent length-4 irreps (without discriminating, see

(3.4), the statistics of the multiplets) is

k4 = 596. (4.19)
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