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Abstract

Using the heat kernel method and the analytic continuation of the zeta function, we

calculate the canonical and improved vacuum stress tensors, 〈Tµν(�x)〉 and 〈Θµν(�x)〉, asso-
ciated with a massless scalar field confined in the interior of an infinitely long rectangular

waveguide. The local depence of the renormalized energy for two special configurations
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for three special configurations.
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1 Introduction

In a previous paper, the one-loop renormalization of the anisotropic scalar model was

performed, assuming that the fields were defined in a d-dimensional Euclidean space

where the first d − 1 coordinates are unbounded, while the last one lies in the interval

[0, L] [1]. The authors analysed the vacuum activity of massive scalar fields assuming

different boundary conditions on the plates, namely Dirichlet-Dirichlet (D−D) boundary

conditions and also Neumann-Neumann (N − N) boundary conditions. They obtained

two different results. The first one has been obtained previously by many authors, and

is the fact that to renormalize the theory we have to introduce counterterms as surface

interactions. The second one is the fact that the tadpole graph for DD and for NN have

the same z dependent part in modulus but with opposite signs. This second result has

been obtained by DeWitt [2] and also Deutsch and Candelas [3]. In ref.[1], the authors

also investigated the relevance of this fact to eliminate the surface divergences.

More than thirty years ago, the local version of the Casimir original problem was

performed by Brown and Maclay [4]. They obtained a constant stress-energy tensor due

to the cancelation of the electric and magnetic sectors, showing the uniformity of the

vacuum of the electromagnetic field for this configuration. The result is due in part to

the particular field involved and also to the simplicity of the parallel plane geometry. A

similar cancelation can be arranged for the scalar field by computing the improved stress-

energy tensor, but in a more complicated rectangular geometry with the presence of edges

and corners (e.g. within a rectangular waveguide), we expect an answer strongly non-

uniform. The aim of this paper is to generalize part of the results of Fosco and Svaiter [1],

introducing edges in the domain where the fields are defined, calculating the renormalized

stress-energy tensor of a massless scalar field in an infinitely long rectangular waveguide.
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As was stressed by Maclay, geometries with corners present special problems with respect

to vacuum energy; nevertheless these issues have received little attention in the literature

[5]. It is commonly accepted that, the understanding of the renormalization of the stress-

energy tensor of quantum fields in the presence of classical boundaries should throw light

on the more difficult case, where there is the added complication of local curvature effects

[6].

It is well known that there are two quantities which might be expected to correspond

to the total renormalized energy of quantum fields [3]. The first one is called the mode

sum energy and its definition is

〈E〉mode
ren =

∫ ∞

0
dω

1

2
ω[N(ω)−N0(ω)], (1)

where 1
2
ω is the zero point energy for each mode, N(ω)dω is the number of modes with

frequencies between ω and ω+dω in the presence of boundaries and N0(ω)dω is the corre-

sponding quantity evaluated in empty space. The above equation gives the renormalized

sum of the zero point energy for each mode. The second one is the volume integral of the

renormalized energy density 〈E〉vol
ren obtained by the Green’s function method [4, 9]. A

recent investigation of 〈E〉mode
ren in rectangular geometries was given by Svaiter and colab-

orators [10, 11]. A seminal paper studying this kind of geometry was made by Ambjorn

and Wolfram [12], and more recently Milton and Ng studied the Casimir effect in (2 + 1)

Maxwell-Chern-Simons electrodynamics in a rectangular domain [13]. Since these defin-

itions deal with integrated quantities, surface divergence problems do not appear in the

calculations. Although global effects are more accessible to experiments, it is quite im-

portant to understand how the global effect is obtained from the local version. This issue

has recently been studied by Actor and Bender [7, 8].

In ref. [7] the author studied the use of the zeta function method to find the effective
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action associated with a scalar field defined in the interior of the infinitely long waveguide,

while in ref. [8] the authors use the same method to compute the stress-energy tensor for

various rectangular geometries. Using the relation between the local force density and the

discontinuity of the stress-energy tensor across the boundaries, they computed the local

Casimir forces, which exhibited strong position dependence.

In this paper we are interested in calculating local quantities in the presence of surfaces

and edges. As was stressed by Dowker and Kennedy [14] and also Actor and Bender [8],

to study the local problem in the infinitely long rectangular waveguide, it is necessary

to present the local form of the analytic continuation of the local zeta function in the

rectangle. Note that our choice of a rectangular cavity is related to the fact that the

modes of the field in this geometric configuration are well known and an exact calculation

can be done.

The organization of the paper is the following: In section II a brief review of the zeta

function method is presented. In section III we calculate the vacuum expectation value

of the canonical and improved stress-energy tensors associated with a massless scalar

field using the zeta function method in the infinitely long rectangular waveguide. We

also show in section III the relation that exists between the local version and the global

version of the Casimir energy for the waveguide. In section IV, we use the results of the

previous section to compute the local forces. In order to do this we introduce an external

configuration (such that the interior region is the waveguide) for which the components

of the stress-tensors are known everywhere. Conclusions are given in section V. In this

paper we use h̄ = c = 1.
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2 The canonical and improved stress tensors and the

zeta function method

In this section we will describe the basic procedure to compute the renormalized vacuum

expectation value of the stress-energy tensor for a real scalar field. Our aproach will be

based on the zeta function method.

For a real scalar field defined in a four dimensional spacetime, distorted by static

boundaries, we can use the Fourier standard expansion

φ(x) =
∑
n

1√
2ωn

[
ane

−ix0ωnφn(�x) + a†ne
ix0ωnφ∗

n(�x)
]
. (2)

Assuming that the manifold is static, i.e., that it possesses a timelike Killing vector field,

it is possible to show that there is a complete set of spatial modes {φn(�x)} satisfying a

Schrödinger-like equation

−∆φn(�x) = ω2
nφn(�x), (3)

where over these modes we will impose certain boundary conditions. Here we are con-

cerned only with Dirichlet boundary conditions, although the generalization to Neumann

boundary conditions is straightfoward. Since the set of modes φn(�x) are orthonormal and

complete, one then readily verifies that the equal-time canonical commutation relations

imply the usual commutation relation between annihilation and creation operators of the

quanta of the field.

The main point of interest for us will be the renormalized stress-energy tensor of the

scalar field confined in the interior of the rectangular infinitely long waveguide. The

canonical and improved stress tensors of a real massless scalar field are given by

Tµν(x) =
1

2
[∂µφ ∂νφ+ ∂νφ ∂µφ− ηµν∂αφ∂

αφ] (4)
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and

Θµν(x) =
1

3

[
∂µφ ∂νφ+ ∂νφ ∂µφ− 1

2
(φ∂µ ∂νφ+ ∂µ∂νφ.φ+ ηµν∂αφ∂

αφ)
]
, (5)

where ηµν is the Minkowski metric. One way to write the vacuum expectation value of

Tµν(x) using eq.(4) is

〈Tµν(x)〉 = lim
y→x

1

2

[
∂

∂xµ

∂

∂yν
+

∂

∂xν

∂

∂yµ
− ηµν

∂

∂xα

∂

∂yα

]
〈φ(x)φ(y)〉 , (6)

where 〈φ(x)φ(y)〉 is the vacuum expectation value of the product of the fields in two dif-

ferent points. (An equivalent relation exists for 〈Θµν〉.) Using the commutation relations

between annihilation and creation operators, the quantity 〈φ(x)φ(y)〉 in eq.(6), can be

written as

〈φ(x)φ(y)〉 =∑
n

1

2ωn
exp(−i (x0 − y0)ωn)φn(�x)φ

∗
n(�y) . (7)

It is clear that 〈Tµν(x)〉 can be obtained from the bilocal sum given by eq.(7). The

bilocal (spectral) sum in eq.(7) diverges and needs a regularization and renormalization

procedure. A convenient method is to set x0 = y0 and replace ω−1
n in eq.(7) by ω−2s

n with

s complex, initially holding for Re(s) > 0 and sufficiently large to guarantee convergence

even for �x = �y , followed by analytic continuation in s.

Let us work with a compact manifoldM with or without boundaries. The diagonal zeta

function associated with some elliptic, semi-positive and self-adjoint differential operator

D will be defined by ζ(s|D). Let φn(x) and λn be the spectral decomposition of D in a

complete normal set of eigenfunctions φn(x) with eigenvalues λn, i.e.

Dφn(x) = λnφn(x) (8)

where φn(x) = 〈x|n〉. Since the eigenfuctions φn(x) form a complete and normal set it is

possible to define the generalized zeta operator associated with D as

ζ̂(s|D) = µ2s
′∑
n

|n〉〈n|
λs

n

, (9)
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where we introduce the parameter µ with dimensions of mass in order to have a dimen-

sionless quantity raised to a complex power and the prime sign indicates that the zero

eigenvalue of D must be ommited. The generalized zeta function associated with the

operator D is defined by

ζ(s|D) = µ2s
∫

M
dγ(x)

〈
x|D−s|x

〉
, (10)

where dγ(x) is the measure on M . We have then to consider the bilocal zeta function

ζ (s | �x, �y) = µ2s
∑
n

(
ω2

n

)−s
φn(�x)φ

∗
n(�y), (11)

which has abscissa of convergence Re(s) = 3
2
. Since the modes φn(�x) form an ortho-

normal set then the passage from the local to the more familiar global zeta function is

straightforward for Re(s) > 3
2
. This can be done integrating the bilocal zeta function, i.e.

ζ(s) = µ2s
∫

dγ(x) ζ (s | �x, �x) = µ2s
∑
n

(
ω2

n

)−s
, Re(s) >

3

2
. (12)

A careful analysis of the analytic extension of the global zeta function associated with

some differential operator defined in compact manifold with or without boundaries can

be found in ref. [15]. Going back to the local case in the analytic extension of the local

zeta function to the whole complex plane (to the region Re(s) < 3
2
), it will appear poles

related with the geometry of the manifold. For sake of simplicity we will omit the µ factor

in the following.

The function given by eq.(11) is related to the heat kernel by a Mellin transform

ζ (s | �x, �y) = 1

Γ(s)

∫ ∞

0
dt ts−1K (t | �x, �y) (13)

where

K (t | �x, �y) =∑
n

e−tω2
nφn(�x)φ

∗
n(�y) (14)
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is the heat kernel satisfying the same boundary conditions that we choose to the complete

set of modes φn(�x). It is possible to express the vacuum expectation value of the canonical

stress tensor given by eq.(6) in terms of the modes φn and also the frequencies ωn. We

have

〈T00(x)〉 = 1

4

∑
n

ωn |φn|2 + 1

4

∑
n

1

ωn

∣∣∣�∇φn

∣∣∣2 (15)

and

〈Tii(x)〉 = 1

4

∑
n

ωn |φn|2 − 1

4

∑
n

1

ωn

∣∣∣�∇φn

∣∣∣2 + 1

2

∑
n

1

ωn

|∂iφn|2 (16)

i not summed. It is easy to see that for φn real and for plane waves

〈T0i(x)〉 = 0 (17)

and finally

〈Tij(x)〉 = 1

4

∑
n

1

ωn
[∂iφn∂jφ

∗
n + ∂jφn∂iφ

∗
n] i �= j . (18)

For the improved stress tensor we have:

〈Θ00(x)〉 = 5

12

∑
n

ωn |φn|2 + 1

12

∑
n

1

ωn

∣∣∣�∇φn

∣∣∣2 (19)

〈Θii(x)〉 = 1

3

∑
n

1

ωn
|∂iφn|2+ 1

12

∑
n

ωn |φn|2− 1

12

∑
n

1

ωn

∣∣∣�∇φn

∣∣∣2− 1

12

∑
n

1

ωn

[
φn∂

2
i φ

∗
n +

(
∂2

i φn

)
φ∗

n

]

(20)

i not summed,

〈Θ0i(x)〉 = 〈T0i(x)〉 = 0 , (21)

〈Θij(x)〉 = 1

6

∑
n

1

ωn

[∂iφn∂jφ
∗
n + ∂jφn∂iφ

∗
n]−

1

12

∑
n

1

ωn

[φn∂i∂jφ
∗
n + (∂i∂jφn)φ

∗
n] i �= j .

(22)

In the next section we will identify the divergences and the finite parts that appear in

the vacuum expectation value of the canonical and the improved stress tensors of a real

massless scalar field satisfying Dirichlet boundary conditions in all walls of an infinitely

long rectangular waveguide.
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3 Canonical and improved stress-energy tensor of a

massless scalar field confined within a rectangular

waveguide

In this section we will apply the local zeta function method to calculate the renormal-

ized vacuum expectation values of the canonical and improved stress-energy tensors of

a massless scalar field confined within an infinitely long rectangular waveguide. Let the

waveguide be oriented along the x3 axis in such a way that the field is defined free in the

region

Ω = x ≡ (x1, x2, x3) : 0 < x1 < a, 0 < x2 < b ⊂ R3, (23)

with Dirichlet boundary conditions at x1 = 0 and x1 = a and also x2 = 0 and x2 = b.

The spatial modes are given by:

φm1,m2 (�x) =
(
4

ab

) 1
2

sin
m1πx1

a
sin

m2πx2

b

1√
2π

eik3x3, (24)

with m1,2 = 1, 2, 3, ... and −∞ < k3 < ∞. The eigenvalues are given by

ω2
n =

((
m1π

a

)2

+
(
m2π

b

)2

+ k2
3

)
, (25)

where n denotes the collective indices (m1, m2, k3). Substituting eq.(24) in eq.(14) the

heat-kernel can be written as:

K (t | �x, �y) =
∑
m

e−tω2
mφm (�x)φm(�y)

=
1

2π

(
4

ab

) ∫ ∞

−∞
dk3

∞∑
m1,m2=1

exp

{
−t

[(
m1π

a

)2

+
(
m2π

b

)2

+ (k3)
2

]}

× sin(
m1πx1

a
) sin(

m2πx2

b
) sin(

m1πy1

a
) sin(

m2πy2

b
)eik3(x3−y3). (26)

The free spacetime part can be integrated imediately:

1

2π

∫
dk3 e

−t(k3)
2

eik3(x3−y3) = (4πt)−
1
2 exp

[
−(x3 − y3)

2

4t

]
, (27)
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yielding

K (t | �x, �y) =
4

ab
(4πt)−

1
2 exp

[
−(x3 − y3)

2

4t

]

×
∞∑

m1=1

exp

[
−t
(
m1π

a

)2
]
sin(

m1πx1

a
) sin(

m1πy1

a
)

×
∞∑

m2=1

exp

[
−t
(
m2π

b

)2
]
sin(

m2πx2

b
) sin(

m2πy2

b
). (28)

Using trigonometric identities and also the Jacobi θ-function identity

∞∑
m=1

exp(−m2x) cos(m2πh) = −1

2
+

√
π

4x

∞∑
n=−∞

exp

[
−(n + h)2

π2

x

]
(29)

one finds to the heat-kernel

K (t | �x, �y) = (4πt)−
3
2 exp

[
−(x3 − y3)

2

4t

]

×
∞∑

n1=−∞

{
exp

[− [2n1a + (x1 − y1)]
2

4t

]
− exp

[− [2n1a+ (x1 + y1)]
2

4t

]}

×
∞∑

n2=−∞

{
exp

[− [2n2b+ (x2 − y2)]
2

4t

]
− exp

[− [2n2b+ (x2 + y2)]
2

4t

]}
.

(30)

As we discussed before to find the bilocal zeta function we need to perform the Mellin

transform of the heat-kernel given by eq.(30). All terms of eq.(30) can be integrated using

[16] ∫ ∞

0
dt ts−

5
2 exp(−A

t
) = As− 3

2Γ(
3

2
− s). (31)

After a straightforward calculation we have

ζ (s | �x, �y) = Γ(3
2
− s)

(4π)
3
2 Γ(s)

∞∑
n1,n2=−∞

(Z1 + Z2 + Z3 + Z4) , (32)

where Zj = Zj(n1, n2, �x, �y), j = 1, 2, 3, 4, are given by

Z1 =


(n1a +

(x1 − y1)

2

)2

+

(
n2b+

(x2 − y2)

2

)2

+ (
x3 − y3

2
)2




s− 3
2

(33)
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Z2 = −

(n1a+

(x1 − y1)

2

)2

+

(
n2b+

(x2 + y2)

2

)2

+ (
x3 − y3

2
)2




s− 3
2

(34)

Z3 = −

(n1a+

(x1 + y1)

2

)2

+

(
n2b+

(x2 − y2)

2

)2

+ (
x3 − y3

2
)2




s− 3
2

(35)

Z4 =


(n1a +

(x1 + y1)

2

)2

+

(
n2b+

(x2 + y2)

2

)2

+ (
x3 − y3

2
)2




s− 3
2

. (36)

We see that divergences appear in the local zeta function ζ(s | �x, �y) in the limit �y → �x. We

note that ζ(s | �x, �x) has surface divergences when Re(s) < 3
2
. The term Z2 (0, 0, �x, �x) =

(x2)
2s−3, for example, diverges when x2 → 0 in this case.

In order to calculate the components of 〈Tµν(�x)〉 we have to evaluate the mode sums

given by eqs.(15)-(18). One then readily verifies that

∑
n

ωn |φn|2 = ζ(s = −1

2
| �x, �x) = − 1

16π2
F0(�x), (37)

where the expression for F0(�x) is given by

F0(�x) =
∞∑

n1,n2=−∞

[
(n1a)

2 + (n2b)
2
]−2

+

−
[
(n1a)

2 + (n2b+ x2)
2
]−2

+

−
[
(n1a+ x1)

2 + (n2b)
2
]−2

+

+
[
(n1a+ x1)

2 + (n2b+ x2)
2
]−2

. (38)

The other terms that we need are given by:

∑
n

1

ωn

|∂iφn|2 = lim
�y→�x

∂

∂xi

∂

∂yi
ζ(s =

1

2
| �x, �y). (39)

Substituting eq.(32) in eq.(39) for i = 1, we have:

∑
n

1

ωn
|∂1φn|2 = − 1

4π2
D1(�x) +

1

16π2
F1(�x), (40)
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where the functions D1(�x) and F1 (�x) are defined by

D1(�x) =
∞∑

n1,n2=−∞

[
(n1a)

2 + (n2b)
2
]−3

[n1a]
2

−
[
(n1a)

2 + (n2b+ x2)
2
]−3

[n1a]
2 +

+
[
(n1a+ x1)

2 + (n2b)
2
]−3

[n1a+ x1]
2 +

−
[
(n1a+ x1)

2 + (n2b+ x2)
2
]−3

[n1a+ x1]
2 (41)

and

F1(�x) =
∞∑

n1,n2=−∞

[
(n1a)

2 + (n2b)
2
]−2

+

−
[
(n1a)

2 + (n2b+ x2)
2
]−2

+

+
[
(n1a + x1)

2 + (n2b)
2
]−2

+

−
[
(n1a+ x1)

2 + (n2b+ x2)
2
]−2

. (42)

For i = 2,

∑
n

1

ωn
|∂2φn|2 = − 1

4π2
D2(�x) +

1

16π2
F2(�x), (43)

where the functions D2(�x) and F2(�x) are defined by

D2(�x) =
∞∑

n1,n2=−∞

[
(n1a)

2 + (n2b)
2
]−3

[n2b]
2

+
[
(n1a)

2 + (n2b+ x2)
2
]−3

[n2b+ x2]
2 +

−
[
(n1a + x1)

2 + (n2b)
2
]−3

[n2b]
2 +

−
[
(n1a + x1)

2 + (n2b+ x2)
2
]−3

[n2b+ x2]
2 (44)

and

F2(�x) =
∞∑

n1,n2=−∞

[
(n1a)

2 + (n2b)
2
]−2

+

+
[
(n1a)

2 + (n2b+ x2)
2
]−2

+
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−
[
(n1a+ x1)

2 + (n2b)
2
]−2

+

−
[
(n1a+ x1)

2 + (n2b+ x2)
2
]−2

. (45)

For i = 3

∑
n

1

ωn
|∂3φn|2 =

1

16π2
F0(�x). (46)

We still need to calculate

∑
n

1

ωn
∂iφn∂jφ

∗
n = lim

�y→�x

∂

∂xi

∂

∂yi
ζ(s =

1

2
| �x, �y). (47)

For i=2 and j=1, we have

∑
n

1

ωn
∂2φn∂1φ

∗
n =

∑
n

1

ωn
∂1φn∂2φ

∗
n = −F21(�x)

4π2
, (48)

where the function F21(�x) is defined by

F21(�x) =
∞∑

n1,n2=−∞

[
(n1a)

2 + (n2b)
2
]−3

[n2b] [n1a] +

−
[
(n2b+ x2)

2 + (n1a)
2
]−3

[n2b+ x2] [n1a] +

+
[
(n1a + x1)

2 + (n2b)
2
]−3

[n1a+ x1] [n2b] +

−
[
(n1a+ x1)

2 + (n2b+ x2)
2
]−3

[n1a + x1] [n2b+ x2]

= −
∞∑

n1,n2=−∞

[
(n1a + x1)

2 + (n2b+ x2)
2
]−3

[n1a + x1] [n2b+ x2] , (49)

because the first three summands are odd in one index.

For i=3 and j=1 and for i=3 and j=2, we have

∑
n

1

ωn
∂3φn∂1φ

∗
n =

∑
n

1

ωn
∂3φn∂2φ

∗
n = 0. (50)

To obtain the components of the improved stress tensor we need to calculate

∑
n

1

ωn

φn∂
2
i φ

∗
n =

∑
n

1

ωn

(
∂2

i φn

)
φ∗

n = lim
�y→�x

(
∂

∂yi

)2

ζ(s =
1

2
| �x, �y). (51)
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For i = 1

∑
n

1

ωn
φn∂

2
1φ

∗
n =

1

4π2
D11(�x)− 1

16π2
F0(�x) , (52)

where the function D11(�x) is defined by

D11(�x) =
∞∑

n1,n2=−∞
{
[
(n1a)

2 + (n2b)
2
]−3

[n1a]
2

−
[
(n1a)

2 + (n2b+ x2)
2
]−3

[n1a]
2 +

−
[
(n1a+ x1)

2 + (n2b)
2
]−3

[n1a+ x1]
2 +

+
[
(n1a+ x1)

2 + (n2b+ x2)
2
]−3

[n1a+ x1]
2}. (53)

For i = 2

∑
n

1

ωn
φn∂

2
2φ

∗
n =

1

4π2
D22(�x)− 1

16π2
F0(�x), (54)

where the function D22(�x) can be obtained from D11(�x) with the change x1 ↔ x2 and

n1a ↔ n2b. For i = 3

∑
n

1

ωn
φn∂

2
3φ

∗
n = − 1

16π2
F0(�x). (55)

Finally

∑
n

1

ωn
φn∂i∂jφ

∗
n = lim

�y→�x

∂

∂yi

∂

∂yj
ζ(s =

1

2
| �x, �y). (56)

For i = 1 and j = 2

∑
n

1

ωn

φn∂1∂2φ
∗
n =

∑
n

1

ωn

φn∂2∂1φ
∗
n = −F12(�x)

4π2
. (57)

Substituting the results of eqs.(37), (40), (43), (46), (48) and (50) in eqs. (15-18), we

obtain:

〈T00(�x)〉 = − 1

16π2
(D1(�x) +D2(�x)) +

1

64π2
(F1(�x) + F2(�x))

= 〈T00(�x)〉B + 〈T00(�x)〉F , (58)
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where B and F mean the boundary divergent and finite part respectively. In explicit form:

〈T00(�x)〉B =
1

32π2
{
[
(x1)

2 + (x2)
2
]−2

+
[
(a− x1)

2 + (b− x2)
2
]−2

+

+
[
(x1)

2 + (b− x2)
2
]−2

+
[
(a− x1)

2 + (x2)
2
]−2}+

− 1

16π2
{[x2]

−4 + [b− x2]
−4 + [x1]

−4 + [a− x1]
−4}, (59)

〈T00(�x)〉F = − 1

32π2
(

∑
(n1,n2)�=(0,0)

[
(n1a)

2 + (n2b)
2
]−2

+

− ∑
(n1,n2) �=(0,0),(−1,−1),(0,−1),(−1,0)

[
(n1a+ x1)

2 + (n2b+ x2)
2
]−2

+

+2
∑

(n1,n2) �=(0,0),(0,−1)

[
(n1a)

2 + (n2b+ x2)
2
]−3

([n2b+ x2]
2 − [n1a]

2) +

+2
∑

(n1,n2) �=(0,0),(−1,0)

[
(n1a+ x1)

2 + (n2b)
2
]−3

([n1a+ x1]
2 − [n2b]

2) ) .(60)

The restriction in the first sum above accounts for the exclusion of the free space divergent

term. We see that 〈T00(�x)〉B diverges in all walls, i.e., x1 = 0, a and x2 = 0, b and in all

edges, (x1, x2) = (0, 0),(a, 0),(0, b),(a, b) of the waveguide. The other components are:

〈T11(�x)〉 = − 1

32π2
F0(�x)− 1

16π2
(D1(�x)−D2(�x)) +

1

64π2
(F1(�x)− F2(�x)) (61)

〈T22(�x)〉 = − 1

32π2
F0(�x) +

1

16π2
(D1(�x)−D2(�x))− 1

64π2
(F1(�x)− F2(�x)) (62)

〈T33(�x)〉 = −〈T00(�x)〉 (63)

〈T12(�x)〉 = 〈T21(�x)〉 = − 1

8π2
F12(�x) (64)

〈T23(�x)〉 = 〈T32(�x)〉 = 〈T31(�x)〉 = 〈T13(�x)〉 = 〈T0i(�x)〉 = 〈Ti0(�x)〉 = 0. (65)

It can be verified by writing these quantities explicitly that all the non-zero components

have boundary divergences in all walls and all edges also. As has been remarked previ-

ously by many authors the divergences that appear in some components of the vacuum

expectation value of the stress tensor are related with the unphysical boundary conditions
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imposed on the field. We can understand why the renormalized stress tensor becomes in-

finite on the boundary. This is related with the uncertainty relation between the field and

the canonical conjugate momentum associated with the field [17, 18, 19].

For the improved stress tensor we have

〈Θ00(�x)〉 = − 1

48π2
F0(�x)− 1

48π2
(D1(�x) +D2(�x)) +

1

192π2
(F1(�x) + F2(�x))

=
1

3
〈T00(�x)〉 − 1

48π2
F0(�x)

= 〈Θ00(�x)〉B + 〈Θ00(�x)〉F . (66)

Explicitly:

〈Θ00(�x)〉B = − 1

96π2
{
[
(x1)

2 + (x2)
2
]−2

+
[
(a− x1)

2 + (b− x2)
2
]−2

+

+
[
(x1)

2 + (b− x2)
2
]−2

+
[
(a− x1)

2 + (x2)
2
]−2} (67)

〈Θ00(�x)〉F = − 1

32π2

∑[
(n1a)

2 + (n2b)
2
]−2 − 1

96π2

∑[
(n1a + x1)

2 + (n2b+ x2)
2
]−2

+
1

24π2

(∑
(n2b)

2
[
(n1a+ x1)

2 + (n2b)
2
]−3

+
∑

(n1a)
2
[
(n1a)

2 + (n2b+ x2)
2
]−3

)
.

(68)

We have to exclude: in the first sum the term (n1, n2) = (0, 0), in the second sum the

terms (n1, n2) = (0, 0), (−1,−1), (−1, 0), (0,−1).

We see that 〈Θ00(�x)〉 has no wall divergences but only edge ones, as pointed in [7, 8].

Although we cannot associate a curvature length to the edges, they seem to have a similar

behaviour, since the divergences associated with them still remain even for the conformally

coupled scalar field. The other components are:

〈Θ11(�x)〉 = − 1

16π2
D1(�x) +

1

48π2
D2(�x)− 1

24π2
D11(�x) +

1

64π2
F1(�x)− 1

192π2
F2(�x) (69)

〈Θ22(�x)〉 = − 1

16π2
D2(�x) +

1

48π2
D1(�x)− 1

24π2
D22(�x) +

1

64π2
F2(�x)− 1

192π2
F1(�x) (70)
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〈Θ33(�x)〉 = −〈Θ00(�x)〉 (71)

〈Θ12(�x)〉 = 〈Θ21(�x)〉 = − 1

24π2
F12(�x) (72)

〈Θ23(�x)〉 = 〈Θ32(�x)〉 = 〈Θ31(�x)〉 = 〈Θ13(�x)〉 = 〈Θ0i(�x)〉 = 〈Θi0(�x)〉 = 0. (73)

Again, by writing these quantities explicitly, it is easy to see that all non-zero components

of the improved stress tensor are free of wall divergences but have edge divergences.

We are now interested in comparing the local calculation of the energy density 〈T00(�x)〉

with the more familiar global one. In this way, let us now calculate the global energy inside

the waveguide by integrating the energy density 〈T00(�x)〉 given by eq.(58) over the cavity,

0 ≤ x1 ≤ a, 0 ≤ x2 ≤ b. Despite the fact that a closed form of the double sums in 〈T00(�x)〉

are presently not known, it is possible to calculate its integrals over the spatial region of

the waveguide. We shall devide this total energy by the area of the cross-section of the

waveguide a × b, and it is usually refered to also as energy density, although this comes

from an integrated quantity per unit area and is not actually a density in the sense of

a local quantity, this one legitimately represented by 〈T00(�x)〉. We shall assume, for the

global computation, that the field exists only inside the cavity.

Clearly the following expression:

∫ a

0
dx1

∫ b

0
dx2 〈T00(�x)〉 =

∫ ∫
cavity

〈T00(�x)〉 =
∫ ∫

cavity
〈T00(�x)〉B+

∫ ∫
cavity

〈T00(�x)〉F (74)

diverges because of the first term: 〈T00(�x)〉B is divergent on the walls and edges. So let

us treat the second term, in which 〈T00(�x)〉F is given by eq.(60) and is finite. The integral

of the first term of eq.(60) gives:

− ab

32π2
Z(2|a, b), (75)

where, in the notation of [7]

Z(2|a, b) = ∑
(n1,n2)�=(0,0)

[
(n1a)

2 + (n2b)
2
]−2

. (76)
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Again following the notation of [7], the integral of the second term of eq.(60) is given by:

1

32π2

∫ a

0
dx1

∫ b

0
dx2 ζF (2|x1, x2) =

1

32π2

∫
ext

ζB(2|x1, x2) =

=
1

8π2

[∫ ∞

a

∫ ∞

b
+
∫ ∞

a

∫ b

0
+
∫ a

0

∫ ∞

b

]
dxdy

1

(x2 + y2)2
,

(77)

where

ζF (2|x1, x2) =
∑

(n1,n2)�=(0,0)(0,−1)(−1,0)(−1,−1)

[
(n1a+ x1)

2 + (n2b+ x2)
2
]−2

(78)

and the right-hand side is each one of the divergent edge terms integrated over the appro-

priate quadrant outside the cavity, i.e., away of the points where they diverge, and thus

eq.(77) is also a finite contribution (see [7] for further explanations).

The integration of the third (and fourth) term of eq.(60) is not difficult:

− 1

16π2

∫ a

0
dx1

∫ b

0
dx2

∑
(n1,n2)�=(0,0)(0,−1)

[
(n1a)

2 + (n2b+ x2)
2
]−3 [

(n2b+ x2)
2 − (n1a)

2
]
=

= − 1

16π2

∫ a

0
dx1

∫ b

0
dx2


 ∑

n2 �=0,−1

1

(n2b+ x2)4
+

+
∞∑

n2=−∞,n1 �=0

[
(n1a)

2 + (n2b+ x2)
2
]−3 [

(n2b+ x2)
2 − (n1a)

2
] .

(79)

The first integral above was also calculated in [7]:

− 1

16π2

∫ a

0
dx1

∫ b

0
dx2

∑
n2 �=0,−1

1

(n2b+ x2)4
= − a

16π2

∫
ext

ζB(2|0, x2), (80)

where ∫
ext

ζB(2|0, x2) =
∫ ∞

b
dx2

1

x4
2

+
∫ 0

−∞
dx2

1

(b− x2)4
(81)

is also finite. The other term gives

− 1

16π2

∫ a

0
dx1

∫ b

0
dx2

∞∑
n2=−∞,n1 �=0

[
(n1a)

2 + (n2b+ x2)
2
]−3 [

(n2b+ x2)
2 − (n1a)

2
]

=
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= − a

4π2

∞∑
n=1

∫ ∞

0
dy

y2 − (na)2

[y2 + (na)2]3

= +
1

32πa2
ζ(3), (82)

where

ζ(s) =
∞∑

n=1

n−s

is the usual Riemann zeta function, and use has been made of the integral [16]

∫ ∞

0
dx

xµ−1

[1 + βx]ν
= β−µ Γ(µ)Γ(ν − µ)

Γ(ν)
, |arg β| < π; �ν > �µ > 0.

Gathering all previous results we have that:

∫ ∫
cavity

〈T00(�x)〉F = − ab

32π2
Z(2|a, b) + 1

32π
ζ(3)

(
1

a2
+

1

b2

)
+
∫

ext
〈T00(�x)〉B , (83)

where

∫
ext

〈T00(�x)〉B = − 1

16π2

(
a
∫

ext
ζB(2|0, x2) + b

∫
ext

ζB(2|x1, 0)
)
+

1

32π2

∫
ext

ζB(2|x1, x2)

(84)

is finite, because it is the sum of each of the wall and edge divergent terms integrated

outside the cavity, i.e., far from the spatial points where they diverge. Eq.(83) can be

written as:

1

ab

∫ ∫
cavity

〈T00(�x)〉F = EC(a, b) +
1

ab

∫
ext

〈T00(�x)〉B , (85)

where EC(a, b) is the global Casimir energy divided by the cross-section area a × b for

the waveguide, in agreement with [7] (in fact, Actor’s definition of Veff is twice the usual

one). We can add the same infinite term

∫ ∫
cavity

〈T00(�x)〉B

to both sides of the equation above, obtaining:

1

ab

∫ ∫
cavity

〈T00(�x)〉 = EC(a, b) +
1

ab

∫
all space

〈T00(�x)〉B , (86)
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where the last integral above is an infinite constant independent of the cavity dimensions

a, b. In global calculations one usually discards this infinite constant because it does

not give rise to forces. Discarding this infinite constant, one obtains from the expression

above the total Casimir energy per unit area inside the waveguide with Dirichlet boundary

conditions in all walls. It can be shown that the improved stress-tensor yields the same

Casimir energy per unit area EC(a, b):

1

ab

∫ ∫
cavity

〈Θ00(�x)〉 = EC(a, b) +
1

ab

∫
all space

〈Θ00(�x)〉B . (87)

It is known that the sign of the global Casimir energy is dependent on the relative size

of a and b. For example, for the square waveguide a = b a positive value for EC(a, b) is

found. Because this is a symmetric configuration, an equal total outward force appears

acting on each of the four walls, which tends to make the cavity expand.

An important lesson that we learn from eq.(85) is that the integral inside the waveguide

of the finite part of 〈T00(�x)〉 does not yield directly the total energy EC(a, b), but this one

plus the constant:

C(a, b) =
1

ab

∫
ext

〈T00(�x)〉B =

= − 1

24π2

[
1

a4
+

1

b4
− 3

4a2b2
− 3 arctan(b/a)

4a3b
− 3 arctan(a/b)

4ab3

]
. (88)

Dowker and Kennedy [14] have evaluated the total energy of the conformally coupled

scalar field in the interior of the waveguide for two special configurations. For the square

a = b, they showed that it assumes a positive value. When b = 2a the energy decreases,

assuming a negative value. Figures (1) and (2) show the form of 〈T00(�x)〉F and 〈Θ00(�x)〉F
for the square waveguide, assuming a = b = 1. They present a minimal value in the middle

of the waveguide and assume only positive values, which produces a positive value. From

the integral of this density one should subtract the constant C(1, 1) in order to obtain the
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total Casimir energy per unit area of the square waveguide. As the value of b increases

(for a = 1), these local quantities acquire negative values in some space points, making

the total energy decrease. Figures (3) and (4) show the local energy density in the case

b = 2a. In this case the contribution of the negative part of the local energy dominates

and since one still has to subtract C(1, 2) from the integral of this energy density, one

obtains a negative total energy per unit area.

4 Local forces

In this section we will calculate the local Casimir force density that acts on the walls

of the waveguide. To do this we will use the relation between the local force density

and the discontinuity of the stress tensor across the walls. Although we don’t know

the modes outside the waveguide (because the external mode problem for the waveguide

is unsolved), we can introduce an external structure where the modes of the field are

known [8], in such a way that the interior region is the interior of the waveguide. One

way to do this is connecting two parallel infinite Dirichlet planes by two strips. In this

configuration, we know the modes in all regions and the stress tensor can be calculated

anywhere. Let us position two parallel infinite Dirichlet planes at x1 = 0 and x1 = a

and connect these planes by two strips, positioned at x2 = 0 and x2 = b. The interior

region of this configuration is just the waveguide. In the regions x1 > a and x1 < 0

there are no contributions from the stress tensor to forces that act in the two infinite

planes (〈T11(�x)〉ext = 0). In the regions 0 < x1 < a, x2 > b and 0 < x1 < a, x2 < 0,

the components of the stress tensor have a nonzero contribution to the forces that act

on the strips. In these regions the stress tensor has already been calculated in [8]. For
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completeness, we present the relevant component here, i.e., 〈T22 (�x)〉ext:

〈T22 (�x)〉ext =
1

32π2

∞∑
n=−∞

(
(na)−4 + 2(na+ x1)

−4

−3
[
(na+ x1)

2 + x2
2

]−2
+ 4x−4

2

[
1 +

(
na+ x1

x2

)2
]3

 . (89)

The equation above will serve to compute the local Casimir force that acts on the strip

at x2 = 0 (a similar one exists for the strip at x2 = b). We note that the edge divergences

above at (x1, x2) = (0, 0), (a, 0) will not be canceled, when we come to calculate the

local force, by those of the interior of the waveguide that appear in eq.(62). Nevertheless

neither the equation above nor eq.(62) present wall divergences as x2 → 0. Thus the local

Casimir force at the strip at x2 = 0 diverges only at the edges, but not on the strip.

We note also that the components 〈T21 (�x)〉ext and 〈T12 (�x)〉ext vanish on the walls. To

obtain the local forces, we use the local force density that acts on the point �x and is given

by fi (�x) = −∂jTij (�x) . Thus the local force per unit area on the boundary plane at x1 = 0

is:

F (x2)

A
= lim

ε→0
[〈T11 (x1 = −ε)〉 − 〈T11 (x1 = ε)〉]

=
1

32π2

∞∑
n1,n2=−∞

( 4
[
(n1a)

2 + (n2b)
2
]−3

[n1a]
2 +

−4
[
(n1a)

2 + (n2b+ x2)
2
]−3

[n1a]
2 +

−
[
(n1a)

2 + (n2b)
2
]−2

+
[
(n1a)

2 + (n2b+ x2)
2
]−2

) , (90)

in the positive x1−direction, and an equal but opposite force acts in the plate at x1 = a.

(We have to exclude the term (n1 = n2 = 0) in the third and fourth sums and the

term (n1 = 0, n2 = −1) in the fourth sum. The last two exclusions accounts for the

renormalization of the edge divergences.)

The force on the wall parallel to the plane at x2 = 0 is given by

F (x1)

A
= lim

ε→0
[〈T22 (x2 = −ε)〉 − 〈T22 (x2 = ε)〉]
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=
1

32π2

∞∑
n=−∞

{(an)−4 − (an+ x1)
−4}+

− 1

32π2

∞∑
n1,n2=−∞

( − 4
[
(n1a)

2 + (n2b)
2
]−3

[n2b]
2 +

+4
[
(n1a + x1)

2 + (n2b)
2
]−3

[n2b]
2 +

+
[
(n1a)

2 + (n2b)
2
]−2 −

[
(n1a+ x1)

2 + (n2b)
2
]−2

)

=
1

32π2

∞∑
n1,n2=−∞

(
4
[
(n1a)

2 + (n2b)
2
]−3

[n2b]
2 − 4

[
(n1a + x1)

2 + (n2b)
2
]−3

[n2b]
2
)
+

+
1

16π2

∞∑
n1=−∞

∞∑
n2=1

(
−
[
(n1a)

2 + (n2b)
2
]−2

+
[
(n1a+ x1)

2 + (n2b)
2
]−2

)
. (91)

An equal but opposite force acts on the wall at x2 = b. (The edge divergences of eq.(89) do

not cancel those of eq.(62), as we have stressed; nevertheless these were discarded when

calculating the local force above, and thus they do not appear.)

Let us analyse how the local forces calculated above depend on the relative sizes of

the waveguide. Figure (5) shows the dependence on x2 of the finite part of the local force

that acts on the wall parallel to the plane x1 = 0. It assumes only negative values and

thus it is a repulsive force, in agreement with global calculations. The modulus of the

force has a minimum in the middle of the wall and two maxima near the edges. Figure

(6) shows the depence on x1 of the force on the wall parallel to the plane x2 = 0. It

is an attractive force but with only one maximum in the middle of the wall. Although

the global computation for the square waveguide gives a repulsive force in all walls, our

attractive result is due to the external structure.

Figures (7) and (8) show the forces that act on the walls at x1 = 0 and x2 = 0

when b = 2a. The local force at x1 = 0 assumes only positive values which makes it an

attractive force, as we expect by approaching the parallel plate configuration, but still

highly non-uniform. The force at x2 = 0 assumes only positive values and it is very small

in comparison with the previous force. As b grows, this force vanishes and the force at
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x1 = 0 behaves like the uniform Casimir force in the parallel plate configuration as figure

(9) shows.

5 Conclusions

In this paper we obtained the canonical and the improved stress-energy tensors of a mass-

less scalar field in the interior of an infinitely long waveguide. The result found is strongly

position dependent as expected. Although the global Casimir effect is related to experi-

ments where we measure the force between macroscopic surfaces, the local properties of

the vacuum field fluctuations can in principle be observed by measuring the energy level

shift of an atom interacting with the electromagnetic field. In the case of the local prob-

lem, surface and edge divergences appear related with the uncertainty principle. In order

to compute the local forces we introduced an external configuration for which it is possible

to solve the eigenmode problem. We have shown that the particular external configura-

tion that we chose was not able to eliminate the wall and edge divergences of the interior

of the waveguide. In order to eliminate them two possible ways are to take into account

the real properties of the material, i.e., imperfect conductivity at high frequencies, or else

make a quantum mechanical treatment of the boundary conditions, as was done by Ford

and Svaiter [19]. An alternative method of calculation (using a modified version of the

Green’s function method) to find the renormalized stress-energy tensor associated with

the scalar field defined in the interior of an infinitely long waveguide is under investigation

by the authors.

We have also shown that the integral inside the cavity of the local result gives the

known values for the global calculations, although the integral of the finite part of 〈T00(�x)〉

gives the total Casimir energy plus a constant dependent on the waveguide sizes C(a, b).
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Figure 1: Renormalized local energy density of the minimally coupled scalar field in the

interior of the square waveguide.
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Figure 2: Renormalized local energy density of the conformally coupled scalar field in the

interior of the square waveguide.
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Figure 3: Renormalized local energy density of the minimally coupled scalar field for the

b = 2a waveguide.
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Figure 4: Renormalized local energy density of the conformally coupled scalar field for

the b = 2a waveguide.



CBPF-NF-015/01 29

–0.0035

–0.003

–0.0025

–0.002

–0.0015

0 0.2 0.4 0.6 0.8 1
y

Figure 5: Renormalized local force density that acts on x1 = 0 wall for the square
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Figure 6: Local force density that acts on x2 = 0 wall for the square waveguide.



CBPF-NF-015/01 31

0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
y

Figure 7: Renormalized local force density that acts on x1 = 0 wall for the b = 2a

waveguide.



CBPF-NF-015/01 32

0

2e–07

4e–07

6e–07

8e–07

1e–06

1.2e–06

1.4e–06

1.6e–06

1.8e–06

2e–06

2.2e–06

2.4e–06

2.6e–06

2.8e–06

3e–06

3.2e–06

0.2 0.4 0.6 0.8 1
x

Figure 8: Local force density that acts on x2 = 0 wall for the b = 2a waveguide.
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