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Abstract

We compare, in kaon-pion scattering, chiral perturbation method and the unitarization
program of current algebra. As occured in pion-pion, we show in this paper i:hat, even having
different number of free parameters, both methods lead to the same analytic structure for the
amplitudes. The main difference between the two approaches resides in phase-shift definition.
We reproduce in this paper a three parameter fit of experimenta}- K7 S and P phase- shifts

of the quasi-unitarized amplitude.

&
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Introduction

The low energy structure of Quantum Chromodynamics (QCD) is a basic problem for
meson physics. We will consider two methods that aim to help in its understanding.

The method called chiral perturbation theory (Ch P T) consists in expanding the Green’s
functions of QCD in powers of momenta and of quark masses. As chiral symmetry implies
a set of Ward identities which link the various Green'’s functions, it is possible to interrelate
the expansion coefficients. To analyse the low energy structure of QCD, ChPT considers the
non-linear sigma model coupled with external fields (1), |

Even ignoring the underlying theory, in the early sixties, the chiral current algebra
method implied a set of Ward identities that could be solved under suitable assumptions like
saturation of axial divergences with meson poles (2), |

It has been shown that tree level ChPT calculations are equivalent to the well known
current algebra low-energy theorems. In order to go beyond threshold for meson processes,
one must calculate ChPT in next-to-leading order, including loop diagrams. On the other
hand unitarity corrections to soft-meson amplitudes allows one to access the resonance region
for meson-meson scattering. As both of them follows from chiral symmetric Ward identities
it 1s interesting to compare the results obtained by these two methods .

Consider, for instance, pion-pion scattering. One of us compared ®) the analysis made in
ChPT context 4 with the result of current algebra unitarization method ). The conclusion
is that both of them has the same analytic structure. The only difference is that our quasi-
unitarized amplitude has three parameters and fits low energy experimental phase shifts
whereas ChPT can not fit the experimental data with its two free constants that are not
constrained by symmetry requeriments.

In this letter we are considering kaon-pion scattering. We conclude that the kaon-pion
scattering amplitude derived by Bernard, Kaiser and MeiBiner (®) has the same analytic struc-

ture as the quasi-unitarized result, published long ago ("} .
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We also show that, the polynomial parts of these amplitudes are different. Whereas
ChPT has six free parameters , current algebra has only three parameters that are adjusted to
fit low energy experimental K 7 phase-shifts . The different phenomenological consequences
of the two approaches are due to the fact that in ref.(6) the phase-shifts weré defined from
the real part of the amplitude while we addopted the usual definition. We will discuss this

point in the conclusion.

II Comparison between the two methods
Current Algebra quasi-unitarized amplitude

We applied our current algebra unitarization method to kaon pion scattering. The start-
ing point in our derivation was an exact expression for the four current correlation function
with the quantum numbers of kaon and pion in terms of three- and two- point functions.

From this expression, by using vertex and propagators estipma.tes, we could re-obtain
the so-called soft meson Weinberg result(®) that, as expected, coincides with the tree level
approximation named T¢? in formula 3.13 of ref. (7) . .

The remaining of the amplitude is the equation 2.14 of ref.(7), namely:

— C: C%
Tapys(s,t,u) = —K;-‘—tc(s t,u) + dayedeps fr (8)A° (£) f (2)+

FareSeps(s =) (578 +1 - F2®) A%0) (53 +1 - £20) — 18]+
{ —Japefexs [(9 P)( S+1-— f+(s))

(@ + D) {(F-(9) + 2 fo(s) = 5z (mk — m2)D*(9)) K%()
[( ~9) (58 + 1= 14()) +(d + ) (F-(0) + 2 ols) = gz my — m2)D*(s)) ]+
i fapefes (8= 05 + (mk ~ m2PD*)] + P@A @) P(e) + (s ww)}, (L)

where f+ are the Ky form factors, f° and f5 are the scalar form factors of the meson m,

A™ are current propagators and S is the Schwinger term.
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The current algebra unitarization program, proposed by one of us and applied to pion-
pion and to kaon-pion scattering, consists in estimating the behaviour of form-factors and
propagators at low energy. In this way we have assumed that f, and the eletromagnetic form
factors are, near threshold, of the same order of magnitude as current algebra amplitudes while
other functions are comparably smaller at low energies.

For example, equation 2.15 of ref (7) establishes this assumption,since we write, at z ~
(mk +m,)? , the Kis form factors as fu(z) = 1+ fi(2) and f_(2) > fV(2).

All functions denoted by a superscript (1) are of the order (my + m,)2/X? , X being of the
order of magnitude of the vector meson mass in a vector dominance approximation and so,
at low energies, they can be considered as corrections to the soft meson limit.

The main point in the construction of the amplitude is that, since current algebra gives
real amplitudes, the corrected partial-wave has an imaginary part that is known to first order

of the calculation. Namely,
ImTP(s) = 2= p()TEAW?, -

where TG4 is the partial-wave £, with isospin I soft meson current algebra amplitude obtained
from eq. 2.8 of ref.(7).
The absorptive part of partial-wave amplitudes comes from elastic unitarity used in a

peculiar way for form-factors and propagators. For instance,

Imf(l)("’)"" 167 ==—p(z)T, 1/2(3’)

where p(z) = L [z = (mxc +me)?]'/? [z (m —mg)?] .

Collecting first order corrected form-factors and propagators determined via dispersion
relation technique, we get the final expression for the isospin 3/2 kaon-pion scattering am-
plitude presented in the appendix of ref. (7):




CBPF-NF-014/93

T (s, 1,8) = 53 (M? — ) + 724 (,,_Mz)[(s-Mz)G(H - M:]+

ﬁfl(t - 2mi)(t — 2m3) + F(fz - &) (s — M?)’ + *F“q(ﬁz +&)(u — M)+

1 ) t
=) [(2""‘ g6x2 | T
— M) [(u— M2 u_ M
pF ~ M) [(" M)G(4) + 5302 e

Jﬁ(t-s+ﬁ)[(u-2M+ﬁ)G(u)+ u_3M 1 M2]+

327 2(2 " 5)_321#
u ,7M*
397 2( mt

(5u — 2M? — 3—) [(5u —2M2 ~ 3—-)G( )+

32 }II 2)

In this expression £; , {2 and £3 are "seagull” free parameters, F is the pion decay

962

constant, here considered equal to the kaon decay constant,

2 2 2

MZ=mi +mi m?=mi-m? and

2
— M’ +zp +( - El-)fn + 1+ imp(z).

1672G(z) = —p(a:)fn

2mgmy

Chiral perturbation calculation

Meson-meson transition amplitudes to second-order in the momenta and quark masses
can be evaluated by expanding a non-linear sigma-model Lagrangian L, in powers of the
fields. The tree diagrams derived in this way give rise to the current algebra predictions up
to order O(p?, m2,), with p denoting an external momentum and m,, the meson masses.

To go further, as required by unitarity, O(p*, p*m?2,, m*) corrected amplitudes are to be
found. These have different sources, namely tadpole graphs and loop diagrams with vertices
from L, as well as higher order in field derivative terms tree graph .

The arbitrary coupling constants allow one to absorb all divergences of one loop diagrams.
This is a very important point firstly conjectured by Weinberg(® .
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The application of ChPT to kaon-pion scattering performed in ref. | (6) follows exactly
these lines. The corrections to current algebra come from loop diagrams, tadpole and higher
order couplings tree graphs. The six renormalized couplings, denoted by L" , as well as
tadpole contributions, depend on a renormatization scale 4 .

The T matrix calculated from the effective action can be written in terms of physical
masses and of physical decay constants. In the following we present the isospin 3/2 K~
amplitude obtained in ref. (6) in a form that is convenient for us in order to compare with

expression (I1.2) .

1 1 —
T3,2(s,t, u) = Yl (‘M’2 —38)+ i (s — M2)2J(a)+
2 1 %, .
e+ L3)(t - 2mi )t — 2m2) + o La(s — M?) + 37 (2L5 + Ly)(u — M7)'+

1 [ m* 2, m 2_amitmt g 2 ™ Bl
3554 (t—s+ T)(u - 2M* + T)—(5u—2M —37)7 +(1lu® - 12M*u +4M )] J(u)+
5 41F4 [(u — s}t — 4m3) + 3t(2t — m3)] T(t) + 4321"'2 [(u — s)(2 — 4m¥%) + 9% T (t)+

2 1 2
— LiM% — FL;(S +m?) + Fr2Le+ L5 - 4L)(M* - m*)+

F4
ﬁ.ﬁ [BK(4M? — 45 + m?) + 2p.(5s — BM? — m?)] +
%F—(m — p) [(2s — 3u — 14t + 2M? — 2m?) + su — (11u® — 12M%u + 4M*)] +

1 mt

The comparison of the last expression with eq (11.2) leads us to make the following
observations :
i) We can identify J as the real part of the function G(z) and Jx(t) = 2 Re gx(t).
i1} We have omitted the terms corresponding to loop diagrams including nn and K7 interme-

diate states because, as checked in ref. 6, they introduce corrections up to 3 % .
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iii) We can relate the low-energy parameters of the two amplitudes:

£, =2(L]+ L}) 26, =2L7+5L) and 2{3 =3Lj +2L3.

iv) The remaining parameters as well as the scales ux and xy have no pla.<_:e in our final
amplitude.

v) The coefficients of J(u) and G(u) in these expressions are the same and this is a consequence
of the correct crossing properties of amplitudes derived from Ward identities.

vi) In our final expression the t-channel exchanges are somewhat incorrect for we did not
include the pion and kaon electromagnetic form-factors that appear explicitly in formula
(I1.1). We claim that this error has minor consequence on experimental data fitting. For this
we present in the figures the results including t-channel exchanges of ref. (6) and the results
corresponding to no t-channel exchanges at all.

vii) The polynomial part of the quasi-unitarized amplitude comes from the regularization of -
dispersion relation integrals whereas that of chiral perturbation ane due to tadpole calculation.
We also see that the number of free parameters of ChPT exceeds that of quasi-unitarized
amplitude in three. .

We would like to emphasize that the basic structure of the amplitudes is the same. The
main difference between the two approaches resides in the definition of phase-shifts § . As
elastic unitarity is not satisfied in either of the amplitudes, the definition of partial-wave
phase-shift is quite arbitrary.

We have adopted for partial-wave £ , isospin I phase-shift §,; the definition

Im Ty
Re Ty’

the quasi-unitarized amplitude satisfies  Im T3 = p [TS4)2.

tan é¢; =

The authors of ref. (6) prefered adopting the definition 8,7 = p Re Ty , which is valid
only for very small values of the phase-shift.
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Conclusion

In this paper we have extended to kaon-pion scattering the comparison between chiral
perturbation calculations and the unitarization program of current algebra .

Exactly as in the previous analysis made in pion-pion scattering, we have shown that
both methods lead to the same analytic structure for the amplitudes, in spite of having
different number of free parameters.

In respect to phase-shift definition, we would like to emphasize that current algebra
gives real amplitudes. Thus any method, intending to go beyond threshold for meson pro-
cesses, must explore the imaginary part it develops. One of the advantages of the phase-shift
definition used in the current algebra unitarization program is the possibility of exploring
the resonance region. It is interesting to note that our a.pproach leads to a good fit for K*

resonance and S-wave using only three parameters.

One of us (J. S4 Borges) would like to thank CBPF for hospitality.
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Figure Captions

Fig. 1. Isospin 1/2 P-wave phase-shifts. Solid line is our result, dot-dash line is our result
without any contribution to t-channel and short-dash line corresponds to the inclusion in our

amplitude of t-channel exchange of ref. 6 . The experimental points are from ref. 10.

Fig. 2. Isospin 1/2 and 3/2 S-wave phase-shifts with the same convention as in Fig. 1 for
line drawing. The experimental data are indicated by circles (ref. 11) and triangles (ref. 12).
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