ISSN - 0029 - 386!

CBPF-NF-014/84
FRACTONS AND THE FRACTAL STRUCTURE OF PROTEINS

by

J.S. HELMANT, Antonio CONIGLIO* and C. TSALLIS

Centro Brasileiro de Pesquisas Fisicas - CBPF/CNPq
Rua Dr. Xavier Sigaud, 150
22290 - Rio de Janeiro, RJ - Brazil

*on leave from Departamento de Fisica _
Centro de Investigacion del Instituto Politecnico Nacional
Mexico 14, DF, Mexico 07000

* N
Permanent address: GNSM, Istituto di Fisica Teorica,
Universita di Napoli, Mostra d'Oltremare, Pad. 19, 80125
Napoli, Italy



CBPF-NF-014/84

Abstract

We propose a model for (Tow spin) hemoproteins and ferredoxin
which takes into account both the fractal structure of the pro-
tein backbone (polypeptide chain) and the cross-connections (H-
bridges) between segments of the folded chain. Within this pic-
ture the {racton dimensionality d]cr (recently introduced by A-
lexander and Orbach), the {4ractaf dimensionality df and the Sta-
pleton et al. experimental non-integer exponent n (spin-lattice re

laxation rate 1/T] o Tn) become satisfactorily consistent.

PACS numbers: 87.15., By, 63.50. +x, 76.30.-v
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In low spin hemoproteins and ferredoxin, the spin-lattice
relaxation of the Fe®®™ ions is dominated by a two-phonhon pro-
cess (Raman)[]]. This mechanism leads to a re]axationrate]/T]
whose temperature dependence is given by

4« 13%2d501/0 .7 (1)

where © is the Debye temperature and f is a smooth finite fun-
ction of T/ © . The dimensionality d enters into the exponent
of T through the phonon density of states p, which at low fre

quencies has the form
p(w) « o (2)

For an ordinary d-dimensional object d coincides with the eu-
clidtan dimensionality d.

Experiment|:2’3] shows that in low spin hemoproteins and
ferredoxin,the low temperature (4 - 20K) behaviour of 1/T] is

best described by a non-integer power law of the form
1 n
T T (3)

with n v 6.3 for hemoproteinsl:ZJ and ny 5,67 for fem@doxﬂ1[3].
Such a temperature dependence cannot be satisfactorily adjusted by
expression (1) using d =3 and a single value of © . Attempts
to fit with d=2, presuming a dominant role of the planar struc
ture of the heme group where the Fesits (in hemoproteins) were not

satisfactory eitherL3].
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A new and appealing approach was proposed by Stapleton
et aLEz] who took at face value the non-integer experimental
power law (3). They postulated the validity of Eq. (2) also
for non-integer values of d, which would be a result of the
complex space structure of the proteins. They identified d
with the fractal dimension df of the protein backbone, defined
through RIF « N where N is the mean value of the number of
alpha carbons which 1ie within a sphere of radius R centered
in an arbitrary alpha carbon (Fig. Ta). The concrete value
for d]c was calculated on the basis of the detailed structure
of the protein as obtained from X-ray data; they obtained
df ~ 5/3 for the hemoproteins and df ~ 4/3 for the ferredoxin

(the value obtained for the hemoproteins coincides with the

fractal dimension of a random self-avoiding walk, as pointed out by the
authors [[2]). The agreement between d. calculated from the X-ray struc-
ture and d obtained from the temperature dependence of 1/Tﬁ turns out
to be very satisfactory for all hemoproteins]:z:l and ferre-
doxinl:3].

Recently, however , the frequency dependence of the phonon
density of states in fractal systems was actually calculated

by Alexander and Orbach,-4J, showing that
plw) « wifr™] (4)

where the "fracton dimensionality" dfr digferns in general from
df. In fact dfr reflects the topological aspects of the sys-
tem. For instance, for a £{inear chain (and this includes random

walk or self-avoiding walk configurations) it is dfr =1, no
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matter what its fracta] dimensionality is. Thus, if only the
backbone of the protein is considered, it results dfr =1 and
the conrnect Eq. (4) leads to 1/T, « T® which disagrees with
experiment.

In this paper we propose a fractal model for the protein
which incorporates massless springs cross-connectingthe folded
backbone (Fig. 1b). They may represent for instance the hydro-
gen bonds which bridge close monomers in the folded polypeptide
chain (Fig. Tc) [5:[. Thus, the protein is no longer described
by a one-dimensional chain but by a more complex topological
object for which dfr # 1. We argue that for a high enough den-
sity of bridges dfr equals df, and the agreement with experiment
is restaured,

Within the Alexander-Orbach theory|:4] it is established

that

dfr ToTd (5)

where dW is the fractal dimensionality of a random walk con-

strained to the fractal; it is defined by ther@]atﬂw1<r2>qvm

t?, where <r?> is the mean square end to end distance of the
walk after t steps. For a linear chain (Fig. la) with fractal
dimensionality df, it is dW =2df[4’6j, therefore dfr =1 din-
dependently of df. The bridges incorporated in our model (Fig.1b)
are massless and therefore the fractal dimensionality of the
chain is not changed. However, they do change dW since the ran-
dom walk is no Tonger constrained to be along the chain but has

the possibility of taking short cuts. We argue that in this
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case d =2 independently of d, In order to show this, et
us consider a linear chain with df-=2 embedded in a two-di-
mensional plane. For a high enough concentration of bridges
between monomers of the chain (Fig. 2), the system looks two-
dimensional from the point of view of a random walk, hence
dwa=2. The same result holds for a linear chain of fractal
dimensionality dJc = d embedded in a d-dimensional euclidean
space. Now, even if the fractal dimensionality of the linear
chain is smaller than d, we can conceive that by adding e-
nough bridges we can reach a point where dwa=2(Fig.3). Thus,
it follows from Eq. (5) that for a sufficiently high concentra

tion of bridges, d,._ =d

fr £ in agreement with the experimental

results.

In conclusion, we are proposing for proteins a model which
consists of a linear chain with cross-connecting bridges. It
seems to contain the basic ingredients to account for the low
temperature dependence of the spin relaxation time of Fes* in
hemoproteins and ferredoxin. It should be useful also for
other proteins, in order to describe properties which depend
on the phonon density of states.

The considerations made in this Tetter are qUitegemﬂa].
We would 1like to caution, however, that these results should
apply whenever the number of all possible bridges that
one can add is large enough. This can be realized when the
euclidean dimensionality d in which the linear chain is em-
bedded is not too high compared to df (if d>> dfthe<ﬁffemmt
pieces of the folded chain will seldom hecome close to each

other to allow the incorporation of cross-connecting bridges
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of reasonable length, that is, of lengths much sma]]er than
the end to end separation of the chain). We helieve that this
is still the case for d=3 and d. =5/3 or 4/3. It would cer
tainly be interesting to test the validity of these predic-
tions by direct numerica] simulations, and to extend this a-
nalysis to other fractals. Finally, through the Einstein re-
lTation between conductivity and diffusion, considerations com
pletely parallel to those presented herein should apply to

conducting fractal structures,
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Caption for Figures

Fig.
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Fig.

1

- Schematic draw of a portion of a folded protein.@: monomer

of the polypeptide chain; ————: backbone of the
polypeptide chain; ----: cross-connections (e.g.,hy
drogen bonds). (a) Stapleton et al picture; (b) Pic
ture proposed herein; (c) chemical structure of a
protein chain (V are side chains attached to alpha
carbons; beautiful pictures are found in Ref. [[5]).
Schematic representation of a massive self-avoiding
linear fractal chain of dimension df_gd(dmmnskma1ﬂm
of the euclidean space into which it is embedded).
The massless bridges (~---) provide short cuts for a
random walker on the fractal.

Variation of the rjandom walk dimensionality dW as a func
tion of d; for a massive Tinear fractal, with and whith

out bridges.
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