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ABSTRACT

We examine the gravitational coupling of neutrinos to
matter vorticity; in the context of the Einstein's theory of
gravitation and for technical simplicity we have considered
the GHdel model as the gravitational background, whose matter
content has a non-null vorticity. Dirac's equation is solved
by separation of the neutrino amplitudes into invariant angu-
lar-momentum and energy modes. These modes provide two dis=-
tinct representation bases for the algebra of the total angu-
lar momentum of the system (one finite-dimensional and the
other infinite-dimensional). The presence of a vorticity field
of matter generates, via gravitation, microscopic asymmetries
in neutrino physics. The angular momentum space appears to be
polarized along the direction determined by the local vortici
ty field 5, At the microscopic level, currents are asymmetric
along the direction determined by the vorticity field: Neutri
no (anti neutrino) currents are larger along the direction an
tiparallel (parallel) to the vorticity field. In the case of
production of pairs under CP violation a net number asymmetry

may be generated between neutrinos and antineutrinos.



1. INTRODUCTION

Our purpose is to describe the effect of matter vorticity
in the physics of neutrinos, the coupling of neutrinos to the
vorticity field being realized through gravitation. This prob-
lem is not purely academic because the observed anisotropy of
the microwave background radiation can possibly be due to a
large scale primordial vorticity of the universe[ﬁ’zj. This
fact and the present observed rotation of galaxies and nebulae
could be an indication that the rotation of matter was a re-
markable feature of earlier eras, playing an important role in
the dynamics of the primordial universe.

The present paper continues a program initiated in ref.
(3), in which we have examined microscopic asymmetries in neu-
trino physics (generated by matter vorticity), the ‘amplitudes
for neutrinos/anti-neutrinos being described by quasi-Cartesi-
an invariant excitation modes of the neutrino field. Here we
discuss this problem in terms of hyperbolic excitation modes
of neutrino field, which correspond to a new coordinatization
of the group manifold of the model. The advantage of these hy-
perbolic modes over the quasi-Cartesian modes is because they de-
fine a complete basis of total angular momentum eigenstates for
the coupled neutrino field. Also in these modes we were able
to separate Dirac equation for mass u# 0, which shall be the
subject of another publication[}].

The gravitational field is considered here as described by
the Theory of General Relativity (Einstein's theory of Gravita
tion) and for technical simplicity we take G8del universe[:]as

the gravitational background. It is the simplest known solu-



tion of Einstein field equations with rotating incoherent mat
ter. The vorticity field of matter is connected to the proper
ty that matter rotates with nonzero angular velocity, in the
local inertial frames of its comoving observers. The model ad-
mits a global time-~like Killing vector, a fact that 1is cru-
cial for constructing invariant energy modes of the neutrino

field. Neutrinos are introduced as test fields over the back-

ground gravitational field, and are described by spinorial
fields which satisfy Dirac's equation on the curved space-
-time.

In section II we characterize the GYdel universe as the
Lie group H®xR with a left-invariant metric defined on it.This
garantees that all vector fields over H®xRexist globally,and
that the hyperbolic excitation modes - in which we decompose
the neutrino field - are invariantly and globally defined over
the manifold. In section III, the local dynamics of neutrinos
is discussed, with its basis in Dirac's equation, obtaining as
a result the local precession of the spin of the neutrino and
the conservation of helicity. A complete basis of neutrino so
lutions is obtained, which are eigenstates of energy, helicity,
total angular momentum and of the projection of the angular
momentum along the axis determined locally by the vorticity
field. They satisfy boundary conditions related to the test
field character of neutrinos. In sections IV, V we construct
the Fourier space associated to the above basis and discuss
the local microscopic asymmetry of neutrino emission which

appears in the presence of a vorticity field; we also discuss



the asymetry between neutrino and anti neutrino amplitudes
which could appear due to CP violation and could produce a net

asymmetry between the number of neutrinos and anti neutrinos.

2. THE STRUCTURE OF GODEL UNIVERSE AND. THE HYPERBOLIC EXCITA-

TION OF NEUTRINO FIELDS

G8del's universe is shown here to have the structure of
the simply connected Lie group H®xR moduloidentification of points,
with a left-invariant metric introduced on H®x R and which is a
solution of Einstein field equations for a perfect fluid.This
provides a global characterization of the complete basis of
solutions in which we expand neutrino fields, because the vec-
tor fields and forms used to construc the invariant excitation
modes are globally defined over the group manifold. The meth-
ods used on this section are borrowed from Ozsvath and
Schiicking F6]

Let E4 be the four-dimensional Euclidean space with Car-
tesian coordinates q"=(q°,q',q2,q°), and the unit vectors a-
long the Cartesial axes denotes by gu. With a multiplication

law defined by
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EM becomes anzﬂgebra,thequaternion algebra, and the vectors
G=q" 8 =q" é,+] q* ¢, (2.2)
' i

are called GHdel quaternions.The algebra multiplication of qua

ternions is non-commutative and satisfies the properties of as
sociativity and distributivity. From (2.1) we have that go is
the identity of the algebra, with the quaternions of the type
a= qogo isomorphic to the field of real numbers, and we hence
identify q go“‘Qo-

For a quaternion (2.2) we define its conjugate quaternion
by

Gr-a0 &,-) ot E (2.3)
1=1

We then have q q*=q* 4= (q°)%+ (q!)2- (q2)2- (q%®)?. Denoting
N(Q) = (q9°)2+(q!)%-(q?)2-(q®) 2%, every quaternion ¢ such  that
N(H)# 0 has an inverse a—1= (N(q))_la*, which obviously sat-
isfies g a-1= q ' g=1.

The equation of the 3-hyperboloid H?® can be expressed

> >

a* = (q" ¥+ (9')*-(q*)*-(q°) %=1 (2.4)

We now identify H® with the group of motions of H®, with
H® acting on itself by left multiplication. In fact, for any

. > 3 T . 3 . .
guaternion V € H°(V*V=1), a left motion of H® on itself is ex

pressed by

QY
I

¥

QY

(2.5)



and we have, using that (33)*: B 3*,
R &
H® is a simply transitive group since for each a € H3, there

exists only one left translation T from a to a given 3’, name
ly T=3a’ a*,

H® acting on itself by left multiplications (2.3) is a
group, and the independent left invariant[7] vector fields and
/or forms over H® yield a representation of the algebra of H®.To
obtain these fields and forms we proceed as follows. Representing

the unit G8del quaternions (go,gi) by the matrices

R
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[en]

(2.6)
N 0 -1 . -1 0
62= , 63=
-1 0 0 1
. ->
we replace every quaternium q € H® by the matrix
qo_qs q1_q2
A= 1 2 0 3 (2.7)
-q -q q *q
with
det A=1 (2.8)

The quaternion multiplication goes over to matrix multiplication. In

troducing on H?® the coordinates (t,r,¢) by the transformations



q = coshr cos l/—g—— t
q'= coshr sin —‘/—g-— t
(2.9)
q? = -sinhr cos (—/%—t—d))
g’ = sinhr sin (—'—/-Zz~t—¢)
V2 u

where 0< —5— t,p<2m, 0<r<eo, the left-ivariant l-forms w

over H® are obtained by calculating [8]

o=A"" dA=o" g, (2.10)
and we have
]
|
- %(dt + V72 sinh’r d¢) i— sin(vZ t-¢)+cos(v2 t-¢)Jdr +
1
]
'+ [cos(VZ t-¢)-sin(v¥2 t-¢)] sinhr coshr d¢
0=  mmmmm e % ---------------------
[sin(V/Zt-¢)-cos (V2t-¢)]dr E ~‘/—§—-(dt+/'2' sinh’r d¢)
i
i

- [cos (VZt=¢)+sin(V2 t- ¢)]S'lnhr coshrd¢

and the last equality (2.10) yields the three independent left

-invariant 1-forms

Q
"

-sin(V/2t -¢ )dr + cos (Y2t -¢ )sinhr coshr d¢
(2.11)

Q
1

‘cos(/'Z-t -¢)dr+ sin(V/2t - ¢ )sinhr coshr d¢

o= ——%——(dt + V2 sinh?r dg¢)

Dual to (2.11) we have the corresponding left-invariant vector fields



x3= V2 3/t

sinhr cos(V2't -¢)

— 3 | 5 a
Xy = -VZ cos(VZt - ¢) Coshr ot sin(/2 t-9) 57 TSinhr coshr 3¢

sinhr 9 sin(v2t - ¢) d

: o — 0
X, = -/ sin(/Zt- 9) ~ e 5+ oS (V2 t-9 5=* bt coshr 3¢

(2.12)

The left-invariant vector fields and forms (2.11) e (2.12) sat-

isfy the algebra of H?,

X;.X] = -2X,

X5.X,] = 2X; (2.13)
[X).X,] = 2X4
and
do'= 2 o2p08
do?=-2 olAcg? (2.14)

do®=-2 ogl!A g2

We have the analogous picture for right motions of thelLie

group H® into itself, namely (cf.(2.5))

Q4
(il
Nap
<¥

(2.13)

The corresponding right-invariant vector fields and forms over

H3 are obtained (similarly to the above method)lnrcalmﬂaxingﬁﬂ

p=dA A" =p" ¢ (2.14)

and we have



. \

sin¢ dr- /2 sinhr coshr cos¢ dt: coso dr*-K%—(sinh2r4-cosh2r+-ZSinhr coshr
H

+ coshr sinhr cos d. i sin¢)dt + (sinh®r + sinhr coshr sin¢)d¢
i
]
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cos¢ dr4~x%%{-sinh2r—cosh2r+ -sin¢ dr + v2- sinhr coshr cos¢ dt

1
!
i
1
-2sinhr coshr sin¢)dt + i -sinhr coshr cos¢ d¢
I
(sinh?r-sinhr coshr sin¢)d¢ i

The last equality (2.14) gives the three independent right-invar

iant 1-forms

1]

ol i%; (sinh?r + cosh?r)dt - sinh?r d¢

= -cos¢ dr - V2 sinhr coshr sin¢ dt + sinhr coshr sin¢ d¢

©
I

-sin¢ dr+ /2 sinhr coshr cos¢ dt - sinhr coshr cos¢ d¢

©
1]

(2.15)

with the corresponding dual right-invariant vector fields

_ 5 Y2 ) 3
Y1220 57 5

_ .. _sinhr 3 _ d .. _sinh’r + cosh’r 3
Y, vZ sing coshr 3t - 0S¢ 5y * sin¢ sinhr coshr 3¢
Y. = ~/7 cosé sinhr - sing 9 cosd sinh’r + cosh’r Jd_
3 coshr 5t or sinhr coshr 30

(2.16)

which provide the representations of the algebra of H?,

[Yy,Y,] = -2y,



Yo, Y,]=-2v, (2.16)
brpovsl= oy
and
dp1=_2 p2/\03
dp?=-2 plap?® (2.17)
dp®=2 pthp?
We obviously have
I_Xi,Yj]=0 , i,j=1,2,3 (2.18)

Taking on the one-dimensional +anifold R the 'coordinate
z, with vector field X4= 3/5z and dual 1-form o* = dz, the group
H3®xR can be characterized by the left-invariant 1-forms (o!,d?
0%,0") which provide a representation of the algebra of H®xR,
namely satisfy (2.14) and do®=0, and which are a basis for

the 1-forms on H®x R. Correspondingly the left-invariant dual

vector fields (XI’XZ’XS’X4) satisfy (2.13) and
[xi,x4]=o , i=1,2,3 , (2.19)

and provide a basis for the vector fields on H®x R. The mani-
fold H®x R is the covering group of the algebra (2.13) and
(2.19).

We obtain the GYdel universe by introducing on H®*x R the

left-invariant metric
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ds?= — [(V7 0°)%= (") (67)°10")7] (2.20)

w
where w is a positive constant. The metric (2.20) is a solution
of Einstein equations[p] with cosmological constant A and in-

coherent matter whose density p must satisfy
kp=w?=-2A (2.21)

he four-velocity of matter is 3/3t. The model is stationary be
cause (2.20) admits a time like Killing vector. The velocity
field of matter has zero expansion and shear but has a non-

null vorticity
Q=vZ w 3/3z (2.22)

We remark that the GBdel universe is locally isometric to (2.20),
but concerning connectivity-in-the-large the above model is ob
tained from the G8del model by identification of the points
(1%;Jt+2nﬂ, r, ¥, z), n=integer. In the GYdel universe any geo
desic of the congruence determined by 3/3t is time-1like and
open.

From (2.18) and (2.20) we have that GYdel's geometry admits the

five Killing vectors
(Y.,Y,,Y,, =, -2 (2.23)
1’ 29 3! az$8t .

All these vector fields are globally defined on the group man-

ifoldLiO]. We then select the Killing vector fields
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9 9 3 _ 1 o
(az ot 99 2 Y1

N'h

3
=) (2.24)

to construct the global invariant modes ¢ defined byt}lj

3/3z
= - 2.20
g(gt KONERRICS (2.20)
with respective solutions ¢(3)mleik z, ¢(2)nJe‘im¢ and ¢(O)%e"i€ﬁ

3/3t is a globally defined time-like Killing vector generating
time translations and we interpret (2.20) as the definition of
invariant energy modes; 93/9t actually defines the Hamiltonian
operator which describes the local dynamics of neutrinos. We
use the invariant modes ¢(i) to separate neutrino amplitudes in

the modes (e.m,ks) and which are globally def{ined.

3. THE LOCAL DYNAMICS OF NEUTRINOS AND THE SOLUTIONS OF DIRAC'S

EQUATION

Neutrinos in interaction with gravitation is describrd by
spinorial fields in the curved space-time. For a general re-
view of spinors on a curved space-time see Ref.[12]. Here we
use four-component spinors from the point of view of the tetrad
formalism. We choose a tetrad eéA)(x) such that the line ele-
ment is expressed[lsj' as

ds? = nag O O (3.1)
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where 8A= eéA) dx%. The definition of the neutrino wave function
in a curved space-time involves two group structures. Its spinor
character ‘is defined with respect to the local Lorentz struc-
ture (3.1), that is, it provides a spinoral representation of

the local Lorentz group
orA =LA (x) 8P (3.2)
with

LA 60y LPe ()= e (3.3)

These transformations, which can be made independently at each
space-time point, have (3.1) invariant. Under (3.2) and (3.3)

the spinors ¥ transform as

Y'(x) = S(x)¥ (x) (3.4)

where the 4x4 matrix S(x) must satisnyM--l
~1,A B . -1
@ e vP =50 v s () (3.5)

On the other hand, spinors ¢ transform as scalar functions with
respect to general coordinate transformations of the space-time,
and thus provide a scalar representation of the isometry group
of the space-time.

The Lagrangian for neutrinos is

Vg @Y -9, T (5.6)
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. -+ . .
In the above formalism U=1¢ v°, where v° is the constant Dirac

matrix. The spinor covariant derivatives are given by

= o0 -
VA w—-e(A) BaU) FA P

(3.7)
V, T=¢e%,, 3. P+ T T
A (A) "o A
where the Fock-Ivanenko coefficients FA have the form
_ 1 B _C
FA— T YBCA Y Y (308)
The Ricci rotation coefficients Yapc 2T defined by
= ~e% B
YaBcT ") g faB) (O (3.9)

and Dirac equation for neutrinos coupled to gravitation is

expressed as

YA Va¥= YA(G%A) au-lk)w= 0 (3.10)

For (2.20) we take

%= a(dt+ vZ sinh?r d¢)
'= a dr
(3.11)

6%= a sinhr coshr d¢

3= a dz

where a=2/w. With this choice the Fock-Ivanenko coefficients

(3.8) have the expression



- 14 -

o

r = ZYIYZ

0 a

_ V2 0.2

Fl— ZaYY

(3.12)

_ V2 o 1 cosh?r + sinh?r 2.1
==Y Y *73 Yoy

coshr sinhr

For a neutrino field in invariant energy excitation modes (2.20),

and eigenstates of y°,
Y=Ly, L*=1 .

We have in the representation usedLJS]

¢ (X) -
Y= Lo i) e Lt (3.13)
X

and using (3.11) and (3.12) Dirac equation (3.10) yields

+
eLy=Jemy (3.14)
- > .
Here ) is the spin matrix [ ° %) and 7™ is the generalized
o o

local momentum operator
m=diae®y ~in + y°8 (3.15)

> osh®’r + sinh?
where 1. = ( cosh r sinh®r

, 0, 0) and

N,F—‘

coshr sinhr
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w § = (0, 0, ) (3.16)

is the vorticity of matter in the local frame (3.11). We use
the notation A% = % ﬁ$ Ek.ann(S.LD we have that the operator
L T+7 is the Ham?iionian of the system (expressed in terms of
objects defined in the local frame determined by (3.11), in the
sense that the time development of any operator acting on the
space of neutrino wave functions is proportional to the commu-
tator of the operator and LT 7., With respect to this Hamiltonian
Tem is conserved, that is, the projection of the spin Y on the
direction of the local momentum 7 is conserved. In this sense
L= f-%/e has a precise meaning as the helicity of neutrino, 1in
the local Lorentz frames determined by (3.11). The wave func-
tions (3.13) are energy and helicity eigenstates for neutrinos.
Later we shall characterize neutrino amplitudes by L=+1, >0
and antineutrino amplitudes by L=+1, >0,
The motion of the local momentum 7 is calculated

N e .
m= il m,Lx+m | and we have

Sy

=VZ e L 3D (3.17)

Since the projection Tem is conserved, that is, the helicity L
of neutrinos is conserved, we have from (3.17) that, for a given
sign of e, the spin b precesses locally about the direction de
termined by &, with angular velocity proportional to VTe
and independent of the sign of L, that is, independent of being

neutrino or antineutrino.

To separate Dirac equation for neutrino in GHdel's back-
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ground we consider neutrino wave functions which belongs to

the complete set of modes (e,ks,m,m') described by

¢(r, ¢) . :
IIJ=( ¢)> e—1k32—1€t (3.18)
Lé(r, ¢
where
a(r) e—imhq))
¢(r, ¢) = IPTE F (3.19)
B(r) e im'¢

which are invariantly and globally defined, as we have dis~
cussed in sec. 2. Using (3.18)/(3.19) and the explicit expres

sions of e%A) from (3.11), Dirac equation (3.14) reduces to

ds m' sinhr 1 ., cosh?r+ sin’?r . ,_
Ir * TsInhT coshr P - VZ e coshr B+'7_( COShr sinhr ) B=
- -iEa (3.20a)
da m sinhr 1 ., cosh?r+ sinh?r
dr Sinhr coshr ¢7 V2 e coshr * +’7_(
= -iEZB (3.20Db)
where we have introduced the notation
_ V2
By = L(-e+ %2 Lk,)
(3.21)
V2

Ey= L(~e - 55+ Lk;)

Introducing the variable x = coshr 2r, the second-order equa-

Jao
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tions resulting from (3.20) are

2 2 \ d _ (m'-1/2) (m-1 2y _
(x*-1) :X‘j + [ 2x+ (m'-1/2) - (m-l/z)]§+[ 2= +k (m'-1/2) m=1/2) | -

x2-1

(3.22a)

m+m'

where Q= 824'£Z e (m'+m+l) + ——, and

2

x2-1) LE4 [ox+ (n+1/2)-e1/23] L [ Q_ 4 ! *1/2)(m+1/2)J3 0
ax?

x+1
(3.22b)
1
where Q' = g%+ %?e(m+m'—1)— m;m . For both cases
‘/7 2
=3 - 2 = - 2— - ——
4k (ElE2 2e“+1)=-¢ (k3 3 L) +1 (3.23)
For consistency, if we take a given solution o of (3.22a) the

corresponding solution B is obtained by using (3.20b); similar-
ly for a given solution B of (3.22b), the corresponding solu-
tion o 1s obtained from (3.20a).

We distinguish the set of solutionsl--ls:J

¢(m,m',k,,L,e) . .
w(m,m',ks,L,€)=< 3 e~ik3z o-iet (3.24)
L¢(m,m",k;,L,€)
where
m'-m+1 m+m’ %fg \
(m+m'+1) ( X+l) 4 1) ¢ Cx+l)_2- F(a,b,c;lgﬁ)e—un¢

¢(m9m'ak3,Ls€) =
X+1\———— m’-m-] M'_ —/—ZE 1- -im'q
iL(e+ Lk~ )( 1) & (X1 (x+1)72 F(a,b,c+1§"'2£)e .

\ (3.25) /



- 18 -

F(a,b,c; 1%5) is the hypergeometric function[lﬁj with argument

1%5 and parameters
_ m+m' V2 1 n
a=s — A A
m+m' V2 l - n
b— 7 5 € + "2—"‘-—2—‘ (3.26)
m+m'+1
C
2
where
n=\/52+ (ks— -—‘/2-7—L)2 (3.27)
On the space of solutions (3.25) we now define the opera-
tors
1)
J( 0
(-)
Ty = (2) (3.28)
0 J
(=)
where

IR e 2 R X Tl oy 1

) RTINS w7
. g (Xzi)% (3.29)
ettt iy e F g e L
__g_ (X2>j1)1/2 } (3.30)

and
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1
Jg+% 0
J. .= (3.31)
(+) 0 J(z)
(+)
where
gW e 0 (x2 1)/2 3 P 9 . VT & 1)/2 3 . (@l
(+) 3 x2-1)/2 ? 7 G 3 V72 (Xz-l)l/
o X
- 5 .32
2 (X _1)1/2 (3 3 )
2)_ -1 /2 3 d b,
JE+%_8 1¢{(X2 1) 2 X 1 (XZ i()lz— aq)" 2 (X+1) 2 at
+ (2 1 r X } (3.33)
2T x -1r T (ki Y,
We have denoted
m' = m+o (3.34)

We define J (3 by the relation EJ(+),J(_)]==2J(3) and obtain

9
ot

(2

J(3) = 15

-+

el

)+ é} 3 (3.35)

The effect of the operator (3.28), (3.31) and (3.35) on the

set of solutions (3.25) is

Toybmem'y = 2 (WAL g ey (3.36)
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J ¢(m,m’) = - ab $(m+1l,m'+1) (3.37)
(+) (m+m'+l)
T gy o0mm) = g e) o(mom) (3.38)

n?-1

32 emm') = -0 4y L)+ I g7 () * Ty Holmam) = d(m,m")

From the definition of J(S) and from the relations

\:J(+)’J(3)]=‘J(+) (3.39)

‘J(_), J(S):l = T (3.40)

we 'see that the operator J(S)’ J(+), J(_) generate the algebra
of angular-momentum. By using (3.39) we can show that 1if

¢(m,m"') is a solution - which is eigenstate of J(S) with eigen
value m;m' - é; e - then J(+) ¢(m,m') is also a solution of
the set (3.25) which is eigenstate of J(B) with eigenvalue

—E%E— - %; e +1.. Analogously from (3.40) J(_) ¢(m,m') is also

a solution of the set (3.25), which is eigenstate of J(S) with
m+m' V2

eigenvalue 5 - 5 €-1. So given ¢(m,m') it is possible to

construct a sequence (in values of (m,m')) extending indefini-

tely in both directions or terminating if J(+)¢ and/or J(_) ¢
m+m'
2 L]

Unfortunately in the present case it is not possible to use

vanishes for some value of

the same procedure as in the case of the spherical harmonics

basis for setting bounds on the range of m+o/2, because the

_ 1 . !
operatorsJ(l)—- TT(J(+) J(_)) and J(Z)-_TZT{J(+)—J(-)) lack any



hermiticity property, with respect to the normalization scalar
product defined in section 4 for the function (3.24)/(3.25).
There occurs an exception for o=0, in which case J(l) and J(2)
are anti-hermitiansJ(S) in all cases is obviosly hermitiani171
To proceed we shall then make use of regularity and boundary
conditions on the wave functions, and obtain two distinct sets
of solutions, one infinite dimensional and the other finite
dimensional representation basis of the algebra of angular-mo-
mentum.

On the set of solutions (3.24)/(3.25) we now impose boun-
dary and regularity conditions, namely that neutrino fields
(which are test fields and do not contribute to the curvature
of the cosmological background) are finite perturbations at

any space-time point. We imposeLJSJ.

lim 'y = finite (3.41)
x>1

. 2 1/ 2 .t
lim (x°-1) v P=10 (3.42)
X

By using (3.25), the regularity condition (3.41) implies

m > = (3.43)

So starting from a given solution y(m,m') and sucessively ap-

plying J(_) we necessarily arrive at a solution which do not

satisfy (3.43) unless J(_)w= 0 for some value (m,m'). From
(3.36) we have that the sequence finishes on the left for
m+m'’

—— = -1/2, and we must then have
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s -1/2 (3.44)

m+nm'’
2

-1/2. In the right the sequence could in principle extend to

that is, takes half-integer values greater or equal to

1
infinite valuesof —E%E—— by successive application of J(+).

Condition (3.42) will nevertheless impose a bound on the values

From (3.42) two distinct possibilities ariseL}gj. Either

on the right.

(D) a= negative integer or zero (3.45)
or
(I1) c-b=negative integer or zero (3.46)
with
as= m;m + %; £ + %? + %} (3.47)
1
b= L0 +—-2‘/Ze+ -é———;‘- (3.48)

for both cases (I) and (II), and we obtain the two distinct set

of solutions:

Type (I) solutions

We denote any negative integer or zero by

t A
m;m - J, with j = half-integer > m;m » that is,
1
_1/25_.“1’:2@__5_3' (3.49)

From (3.45) and (3.47) we then have



j;TU%;%JO (3.50)

which implies

e=-vZ (2j+1) - /(2j+1)2+ (1<3—L/7/2)2 (3.51)

The corresponding positive-energy solutions of type (I) are ob
tained from the symmetry ¢~ iy?y* of Dirac equation (3.10),where

* denotes complex-conjugation. We remark, for example, that the

and J2 for this case are given by m+ — +

(3) 2
é; e and (j-—%; g)(j—-%zs +1), respectively.

eigenvalues of J

Type (II) solution

We here denote any negative integer or zero by

-(j+1/2), where

1

j = half-integer > - - (3.52)
From (3.46) and (3.48) we have
j- gwé—w 5 =0 (3.53)

which implies

=4V (2§+ 1)+ Y (2j+1)2 + (k3-LvZ/2)?  (3.54)

The corresponding negative-energy states of type (II) are ob-

tained from the symmetry v+ iy? y* of Dirac equation (3.10).
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1
We remark that for type (I) solutions the values of mEF

are bounded for a given j (cf.(3.49)), and for type (II) solu-

. _
tions the range m;m, > = %% is completely independent of the

value of j. In other words, for a given j = half-integer > -1/2,

type (I) solutions provide a finite dimensional (dim= j+3/2)re
presentation basis for the algebra of angular momentum, while
type (II) solutions provide an infinite dimensional representa
tion basis for the algebra of angular momentum. In the above
discussion we have discarded normalizable solutions which could
not constitute a basis of representation for the algebra of
angular-momentum, although we should mention that some of these
solutions have interesting features as zero energy and eigen-
value of J(S) equal to an integer.

The zero-energy modes in both types (I) and (II) solutions

_ _o-1
T3y 2
(actually its eigenvalues), and the statistics (boson or fer-

occur for j=-1/2 and kg = LvZ/2. For these modes

mion character) depends on the value of o. Also the modes
j=-1/2, k,=0 with corresponding le| = ¥2Z/2 have the eigen-
values of the total angular-momentum projection J(3)= + 1 + é}
as well 1= i]_+‘€;, respectively for positive/negative e-
nergy solutions - in other words, due to the gravitational cou
pling to matter vorticity, these massless fermions for o=0 are
converted to bosons polarized along the direction 5, with ei-
genvalues of projections J(3)= Z3=‘11, respectively for positi

ve/negative energy.
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4. COMPLETE SET OF SOLUTIONS, NORMALIZATION AND GENERALTZED

- FOURTER SPACE OF NETRINO AMPLITUDES

We restrict ourselves to the complete basis of type (I) so
lutions for two reasons. It is physically more satisfactory be-
cause it corresponds to a finite dimensional representation of
the angular-momentum algebra of the system, that is, for a fixed
energy € and for a given value of the total angular momentum

(j—z;:s)(j-%zje+ 1) , where j= half-integer > -1/2 we have
j+3/2 eigenstates of the angular-momentum projection on the lo
cal axis 5; also for simplicity, because all following results
are analogous to the ones obtained if we have also considered

type (II) basis. Without loss of generality, in what follows we

consider only the case o= 0. We have the complete basis:

Positive-energy modes

Cb(+)(j,m,k3,L,€) . . -
w(+)(j sm,ksaL9€)= elmq)e_lksz e'llE,t

L¢(+)(j ,m$k39L’€) (4.1)

where

y m+1/2 _Q— El‘ _1_~
-i(-Jef kg Py 2 o) 2 “F(a,b,crl; 155

¢(+)(jam,k3,L,€) = m_1/2 _ /2‘€]+ 1

L(2m+1) (x2-1) 2 (x+1) *Fa,b,c; 159

(4.2)
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Negative-energy modes

(b(_) (j amak3sL’€)
w(_)(j,m,kS,L,e) = oimy  -iksz Jilelt

Loy (3 mksg,Lse)

(4.3)

where
m-1/2 V2| 1
"z'/' “olelr 5
(2m+1) (x -1) (x+1)
¢(_)(J ,m,k3,L,€) = m+1/2 )
. N 2
iL(-[e|+Lk3= Z) (1) 7 (x+1)
In the above, j = half-integer > - %%,
-1/2<m<] (4.5)
and
a=m-j
b=m+j-vV2|e|+1 (4.6)
c=m+1l/2

For all cases

el = /Z(25+1) + f (ZI*)7 + (kg £l (4.7)
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The lower bound m=1/2 in (4.5) is notin contradiction with the

regularity condition (3.43) because

-1/2 V2 1
mz/ -~ lelr 7

(x+1) 2

lim  (2m*1)(x -1) F(a,b,m+1/2; 235 = finite

m>-1/2

for all x.
The positive-energy (4.1) and negative-eenrgy (4.3) set of

solutions are related by
=—. 5 2 * —-— —
kp(*_) (kS’L) iLly>y IP(_)( k3’ L) (4.8)
We now discuss the normalization of the complete set of mo

des (j,m,L,ks,e) defined in (4.1) - (4.7). Let us consider the

local classical Dirac current
i =T s e Ty (4.9)

The component j(o)= w+w of (4.9) is the local number densityof

neutrinos. As expected j(o) transforms as the zeroth component
of a Lorentz vector with respect to local Lorentz transforma-
tions (3.3) and it is a scalar function with respect to coordi-
nate transformations (and/or point transformations ) of the
space-time. The local number j(o)/:§ d*x is thus a scalar and

integrated over a given volume of the manifold
f/-“‘g j (@) quy (4.10)

yields a positive definite quantity which is coordinate invari-
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ant.

Neutrino amplitudes are thus normalized according to the
integral (4.10), taken over the whole G8del manifold for rea-
sons extensively discussed in Ref.[3], and for the complete set

(4.1) - (4.4) we have the § normalization

3
<W(r)(j',m',ké,€')Iw(s)(j,m,k3,8)>= (2m) NZGIS aﬁ, § S Ckg=kg)

» 8(lel-1e'D (4.11)
where r,s=+, - corresponding respectively to positive (4.1)
and negative (4.3) energy solutions, and L}O]

NZ = 4202 el (4.12)
w* (|e|+Lk3-/7/2)
where
2m-vZ|e|+3
<g> = 2 ‘ (3+1/2) ((m+1/2)1)2(j-m) ! (V2]e|~j-m-1)!
(VZlel-2j-1)(j+1/2) (VZ|e|-j-3/2)!
(4.13)

The factor (2m)? N? in the right-hand side of (4.11) can be in
terpreted as inversely proportional to the local number densi-
ty of states (j,m,kS,L), that is, the local number density in
the Fourier space associated to the complete basis of solu-
tions (4.1) - (4.4). It is clear from (4.12) that the local
number density of states (j,m,kS,L) depends strongly on the
sign of LkS'
Since we have used the local number density j(o) to norma

lize the wave functions, the normalization depends on the ori-
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entation of the field of tetrad frames e% )(x), with an arbi-
trariness due to local Lorentz transformations (3.2)/(3.3).
The present orientation of the tetrad frame in which (4.11) and

(4.12) were calculated in nevertheless a preferred orienta-

tion 1in the sense that (3.11) is based on the matter flow of

the model - actually the zeroth vector of the tetrad frame is

o

defined by the four-velocity field of matter e(o)= 5%

o° and

(4.11) and (4.12) are invariant under Lorentz transformations
which preserve this condition, that is, LOA= SAO. The matter
flow of the model singles out (4.11) and (4.12).

The Fourrier space associated to the complete basis (4.1)

- (4.4) is constructed as follows. The kernel of the trans-

formation is defined byEZl--l

K(om,kg,e5%) = Ky (om kg, [e s X+ Ky Gomkg, [e]52) (4.14)
where
K . =diag(—b—, —% _, B8 | ) exp(-img+ ikyz+ ile|t)
(+) <>l /2 <qyl/2 <gsl/2 g 1/2 5

(4.15)

and

o B a
? 2 ’
<ot/ <pst/2 ] o1 /2 <B>

K,y = diag( 1sz ) exp(img+ ik z - i]e|t)

(4.16)

where

m—1/2 I I
o= (2m+ 1) (x2-1)" 2 (x+1)" 7€ F(a b,c; —-—)
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m+l/2 vZi_ .1 _
B= (x*-1) ~ 2 (x+1) 7T|€I 2 F(a,b,c+1; 1759 (4.17)

and

o0 [ee]

<a> = [a?(x)dx, <B>= JBz(x)dx= <02

4(j+1/2) (VZ|el-3-1/2)

1 1
(4.18)

The parameters a, b and c are given 'in: (4.6) and <o> in (4.13).

The Fourier transform of a neutrino field ¢ has the expression
PEP] =(¢F'j',m',ké,€')=f /:g_ d*x K(j‘,m',ké,e";x) Y(x) (4.19)

where the integration is taken over the whole manifold.

For (4.14) we have the unitarity property

j V=g d*x KG'm',kg,e"5%) K*{j,m,ks,e;x)= 22m® 1 -

. 5mm‘ Sjj' S(ks—ké) s(lel-le']) (4.20)
We remark that the first term K(+) of the kernel (4.14)can be
considered as projector - with respect to the operation (4.19)
- into positive-energy states since its action on negative-e-
nergy states (4.3)/(4.4) results zero; analogously the second
term K(_) in (4.14) is a projector into negative-energy states
since its action on positive-energy states (4.1)/(4.2) gives
zero. Because the inverse of a projector is not a one-to-one
map, the inverse Fourier transform is then defined separately
for positive - and negative-energy amplitudes, with kernels

K(+) and K(_) respectively, that 1is
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- @ ] dk_de
Flplmiglel )= T 1
j==1/2 m=-1/2 >0 ‘"

Koy Gom ke x)hy

(4.21)

for positive-- and negative-energy states respectively. We have the unita

Ty properties

@ ) dk. de 4
ﬁ r j i ' § -x'
! Z —‘f“;K+(+)(J,m,k3,e;x)1<(+)u,m,ks,g;x ) = _ﬁgz___z.l 1
j==1/2 m==1/2 50 (™) E o
[ J dk_de .,
S K Gamkg ek Gam kg, ext) = SEXD g
: 2m?® () 3 (-) 3 —
j=-1/2 m=-1/2 e50 (?™) =
(4.23)

which actually imply FF '= F'F-= 1, as expected.

The Fourier transform of a positive-energy amplitude (4.1)

/(4.2) is the four-spinor

2
-i(Lkg-le|- é;)<8;/

wF(j’m’k3a|€|’+) = (2'”)3 L <0(,>1/2 .
ST 1/2
SiL(Lkg-]e |- S)<p>

<u>1/2

S 6jj, §(ky-kg) s(lel-]e' D)

(4.24)

The local Lorentz group (3.2), (3,3) - with respect to which

the spinor structure is defined - induces on the Fourier space
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the group of transformations

dkéde'
wF(JmkSsg )_ Z Z (

] '—E'Z—')'T S(J m, kS’S J am k"E )IPF(J m k" a—)
j'm' i

(4.25)
where
S(3mkgeij m'kge') = [/gd'x K

Jmk €;X) S(x) K j'm k e';x) (4.26)

) e

The Fourier space described above is actually a momentum
space for neutrinos. In fact, expressing a positive-energy
state (4.1), (4.2) as

” J
dk3d€

Yy (LK) =
()73 j-z-—l/z mz-l/Z f (2m)?

+ .
Kiay Gomokg,e5x) wp(.m kg, €,4)

and using Dirac's equation YAVA1P= 0 we obtain the transformed

Dirac's equation

. A
-1 HA Y sz 0 (4.27)
where HA is given by
ny= el 0, ~2[Gey2y 0lel-3-1/2)) T, -k r 2
(4.28)
We have
A
I, T"=0 (4.29)

as expected for a massless particle, where HA= nAB . The fomm

g
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of the component HS (along the local direction of the vorticity
field) shows that the "leptonic charge' L behaves like the cou-
pling constant in the coupling of the spinor structure of neu-

trino to the vorticity field. For a negative-energy solution

(4.3)/(4.4)

o j dk3d€ + )
by (k) = | Ky G kg, €3%) U kg -
O stz w2 ) emr ) 3 S
(4.30)
we analogously obtain (4.27) where HA is given now by
1/2 -
my= (-lel, 0, 2[(+1/2) (VZ]el|-3-1/2)] , -kz+ 5 L)
(4.31)

with HA HA= 0. The same results (4.27)-(4.31) are obtained if

we have instead used the infinite dimensional representation ba

sis which was discussed in Section 3, the only difference being

that the parameters j and m are completely independent, with
range -1/2<j <, —l/Zf}n< w, We remark that HS has the same
sign in (4.28) and (4.31) due to our definition of (4.16) - in

fact, if in (4.16) we change k3->--k3 and L~ -L we have in (4.31)
that H3-+-H3 without altering other components. It follows that
the corresponding HA for negative-energy solutions has the oppo
site sign of HA for the positive-energy solutions, a behaviour
characteristic of "plane-wave type' positive- and negative-ener
gy amplitudes related through the property (4.8). This fact is

important when we consider symmetry transformations between par

ticle and antiparticle amplitudes.
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We now calculate the component (along the local vorticity

field @) Jés) of the local four-current
(A)
w Y Vg = (wF Vs wF Y Ve ) (4.32)

and we obtain, using (4,24),

I
(3) _ 3 3 . 1 _ 1
580 = 4 2m e < 8550 80 SClel-]enD)
(4.33)

We now make an important remark about the normalization of so
lutions Y (x) and wP. As a result of the normalization integral
(4.10), we see that is exactly the zeroth component I = |e
which appears as a factor in (4.12) and characterizes its beha

vior under the local Lorentz transformations. We shall therefo

re normalize all solutions with the remaining factor in (4.12),

R2 = 450 L (4.34)
w*  (lel-LI,)
This corresponds to have (dropping &-factors)
<+
Vp Yp=lel o <vlv>= el (4.35)

By using (4.35) or (4.34), the expression (4.33) of 3(3) re-

sults

j§3)= 42m)° Ty S e 855 S(kgkg) 8(lel-[e"]) (4.36)



- 35 -

We use the expression (4.36) in the next section to discuss the
microscopic assimetry of neutrino emission in the presence of

a local vorticity field.

5. SYMMETRY TRANSFORMATIONS FOR NEUTRINO AMPLITUDES AND

MICROSCOPY ASYMMETRY OF NEUTRINO EMISSION

In order to examine question connected to neutrino-antineu
trino symmetry of some processes, we shall try to define ampli-
tudes for particle and anti-particle states. To this end we ob-
tain transformations which can be interpreted as leading from
particle to anti-particle amplitudes, and which are actually sym
metry transformations for the present neutrinos in the sense
that they preserve the Hilbert space of neutrinos solutions gen
erated by the basis (4.1) - (4.4). These transformations can be
reasonably understood as corresponding locally to known :Symme-
tries of particle physics.

The use of tetrads is practically unavoidable to describe
the interaction of fermions with gravitation[?z’lzj and, in this
context, the theory has two groups involved: the local Lorentz
rotation (3.2) of the tetrads and the isometry group of the ma-
nifold. Spinors are defined with respect to the local Lorentz
structure, in the sense that they provide a basis space for a
spinoral representation of the local Lorentz group. On the other
hand, these spinors provide a basis space for a scalar represen
tation of the isometry group of the manifold. For the present
case of neutrinos, we are restricted to a subspace of spinor
functions which are eigenstates of v°, namely the Hilbert space

of solutions generated by (4.1) - (4.4).
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In the definition of neutrino and anti-neutrino amplitu-
des, both groups are involved; for instance the energy eigenmo
des are related to the Killing vector 3/3t of the isometry group,
while the charge conjugation operation must take into account
the local spinor structure. Our procedure here will be obtain
consistent neutrino-antineutrino symmetry transformations of
the Hilbert space of neutrino amplitudes generated by (4.1) -
(4.4) and which then necessarily takes into account the two
group structures present.

Starting from a negative-energy solution (4.3)/(4.4)

¢ (k,L)
(- 3 . _ g
N eming gmikgz gilele

Lo _y(kyl)

we define the transformation

-1 =T
k;,L s k .
0oy (ksoL) > 878 L (kgL (5.1)
where S is a matrix of the algebra of Dirac matrices, which
satisfies
T
-1
syh g7 o oyA (5.2)

In the present representationL;4J, (5.2) 1is satisfied by

0
S ~noy? oy (5.3)

where ~ denotes equality up to a constant phase factor. An ex
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plicit calculation of (5.1) gives
2 yo 3T = X, - 5.4
Y Y Ty (kga L) = by (g1 (5.4)

Transformation  (5.1) has the following properties: (i) it is a
symmetry transformation of the Hilbert space of neutrino am-
plitudes, since it takes a negative-energy solution (4.3) to
a positive energy-solution (4.1), and vice-versa; (ii) the S
matrix (5.2) and (5.3) has the character of a charge-conjuga-
tion operator on the amplitudes (4.1), (4.3) (in case of char
ged particles it relates solutions with distinct signs of the
charge); (iii) neutrinos amplitudes related by (5.1) have op-
posite helicity L and momentum k3 - the local momentum I (cf.
(4.28), (4.31)) change sign under (5.1). We note that (5.4)
is precisely the symmetry (4.8) between positive- and negati-
ve-energy solutions. From the above properties we interpret
(5.1) as a charge-conjugation-parity (CP) transformation for
neutrino amplitudes, and hence we have the independent positi

ve-energy wave functions interpreted as

w(+)(k3,L)= neutrino amplitude

(5.5)
w(+)(-k3,—L)= corresponding antineutrino amplitude

The positive-energy amplitudes (5.5) are said CP related in

the sense that the corresponding negative-energy amplitude
w(_)(kSQL)[w(_)(—ks,—L)] of one is transformed into the other
¢(+) (-kg,-L) EP(+)(k3,IJ] under (5.1). From the local CP invariance of

neutrino physics (only negative helicity neutrinos exist)we take L=-1 for
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neutrinos which implies L=+1 for anti-neutrinos (cf.(5.5)). Neutrino and
antineutrino amplitudes (5.5) have their respective momentum M with oppo-
site sign.

We can now discuss the microscopic asymmetry of neutrino  emission
along the direction determinated by the vorticity vector field.

From the expression (4.36) for the component of the local Fourier

current jf along 5, we take the relevant factor

.(3) . _ V2
JF —H3—-k +LT

3 (5.6)

and we distinguish the two cases

(1) |k3|>/772: for neutrinos (L=-1) we have that §F is larger along the
direction antiparallel to ¢ than along the parallel direc-
tion; for antineutrinos (L=+1), 3# is larger along the
direction parallel to G.

(2) lk3l</772: for neutrinos (L= -1), the component qf ?F along § is al-
ways negative (3% has only antiparallel component along ?b;
for antineutrinos (L=+1), the component ?F along ¢ is al-

ways positive. The following diagram is illustrative[?4]:

antineutri-

t nos
v (3) 0
: Jp7 7 (L=+1) N antineutrino
2 ' | ‘ (3)
£ 4 ! T ' jpo 7 (L=+1)
{ *! 1
}
' I
. neutrino
neutrinos
.(3)
(L=-1)
‘j§3)(L=—1) ’F

Case lk3{>/§/2 Case}k3§</§/2
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As for the local j(A)(x)='$(x) yA Y(x), we calculate the

(3)
(x)

normalization (4.35), we have

component j (that is, along 5) at the origin x=1. In the

33 =2 el vinyer-a?]  (5.7)
Rz - } J

where R? is given by (4.34), and o and B have their expression
in (4.17). We note that j(A)(x) depends on the coorvdinate
x = cosh2r only. At the origin x=1, we can see that for a giv
en j>1/2 only the modes m=*1/2 contribute to (5.7), namely

for a given j>1/2

j(S)(X:'l) _ L(|€l+LH3)2 2_‘/'2—|€|
=-1/2 R® (5.8)
(cf. Ref.[23]) and
(J‘(S)(x=1)> = ——1—6%— 27 /2lel (5.9)
m=+1/2 R

The total local current along ) (at the origin x=1) for a giv-

en mode j>1/2,

i x=1y= 3 i3 =1y
=~1/2,1/2 m

is then calculated to be
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(VZ]|e|-2j-1) (V2]el-2j-1)
I =

53 (x=1) - (~ky*LVZ/2)

2 3 2
(5.10)

The same analysis and diagram for the asymmetry of the Fourrier
current (5.6) applies to (5.10).

A special case is the mode j=-1/2 for which

539 (x-1) - ZZle|qn, + Lle])

j:m:—l/z

Finally we draw some interesting conclusions concerning the
number density of neutrino and antineutrino states, CP viola-
tion and lepton asymetry, for the present problem. To this end
we note that the number density of states - which we denote

by n(LkS) and is proportional to

lEJ-/Z—(Zj'*‘l) R_Z

V2
ks' -Z—L

N(Lks) uv

where R* is given by (4.34) - depends strongly on the sign of

Lk, (through |e| and LI,), for |k.| of the order of vZ/2. Con-

2|
sequently for a given value of (j,m,ks), such that [k

3] of the
order of /2/2, we could have a number density of states dif-~
ferent for L=-1 and L=+1, This fact can be significative in

the presence of CP-violating interactions, as we shall discuss

now for the case of creation of neutrino-antineutrino pairs



in the presence of a CP-viclating perturbation, when a neutrino-antineutri

no number asymmetry may possibly occur.

Having in mind the (P-symmetry (5.5)[cf also remarks below (5.5)] and

that T = -k3+L/§/2 we can draw the diagram shown in Fig.2 for the amplitu

des (5.5) according to the sign of Lk3.

CP

Lk3=_ik3' 3
Exception - %T-<k3<0,
Lk, = [k3l

Y

< o
; 3

Lky = |k3|

Constraint k3<—/§/2

CP

g
1~

_}
)
= -k —
Hy .l 5! V2 :
Exception 0<k,< 5=, Lk, = |k3|
L=+1 IV
..}
Q
= |
Lk, |k3,

Constraint k3>/§/2

Fig. 2
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In the diagram of currents in Fig.l, the large components of
neutrino and antineutrino currents corresponds to amplitudes
I and II and are CP related. The small components correspond
to CP-related amplitudes III and IV, which clearly shows that
the asymmetric emission of neutrinos is CP invariant.

In case of creation of neutrino-antineutrino pairs in the
present universe, we can distinguish two possibilities,

(i) Neutrino-antineutrino pairs whose amplitudes are CP rela-
ted, namely (VIT&I) OI‘(vIII{&V ) according to the above
diagram; for each case the corresponding current diagram
is CP invariant, and the number density of neutrino states

is equal to the number density of antineutrino states.

(ii)Neutrino-antineutrino pairs whose amplitudes are not CP re
lated, namely (vIUIV) or (vlrﬁ&l).ln both cases we note
that Lk3 has opposite signs for neutrino and antineutrino
amplitudes, which corresponds to a number density of states
different for neutrinos and antineutrinos. For (VIUIV) or

(VIL[VII) we have, respectively, the number densities of

states (n(—lksl), n(|k;[)) and (n(lkz1), n(-1kg[)). Never

theless, if the creation of pairs is due to a CP-invariant
perturbation both cases will be equally probable : since

O Ty =

tineutrino number is possible. A net asymmetry (due to dif

>(%IIGiI) and no net asymmetry in neutrino—ag

ferent density of states available for neutrinos and anti -
neutrinos) will appear if the pair production perturbation
violates CP. Indeed if pairs (v; UIV) are produced, the

pairs (vIIIviI) are then forbidden and a net asymmetry be
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tween neutrino and antineutrino number will appear, propor
tional to the ratio
n(ks)-n(—ks)

= (5.7)
3 n(k3)+n(—k3)

for positive values of k3. The ratio (5.7) is significan-

tly nonzero only for |k;| of the order of vZ/2. We also
remark that the above discussion is independent of the space
time point considered, since in our analysis we have dealt

with scalar quantities only.



6. CONCLUSIONS

The main conclusion of our investigation is that the pre
sence of a vorticity field of matter produces, via gravitation,
microscopic asymmetries in neutrino physics. These results can
also be extended to massive spin-1/2 fermions and this will be
the subject of a future publication. We have proved these re-
sults in the context of the Einstein theory of gravitation, and
for operational simplicity we have considered GHdel wuniverse
as the gravitational background, because it is the simplest
known solution of Einstein field equations which is stationary
and in which the matter content has a non-null vorticity. The
basic results follow:

(1) The local dynamics of neutrinos is obtained from the Dirac
equation in the given background. The spin of the neutrino
precesses locally about the direction of the vorticity
field. The direction of the angular velocity vector 1is
parallel to the vorticity field, both for neutrino and an
tineutrino, and the absolute value of the angular velocity
of precession depends on the energy of the neutrino/anti-
neutrino. The Hamiltonian which determines the local dy-
namics of neutrinos is defined with respect to the global
timelike Killing vector 3/0t, and we have that the heli-
city L of neutrino (defined with respect to the local Lo-
rentz frames of the tetrads) is conserved.

(2) We solve Dirac equation by separation into invariant modes
defined by the global Killing vector fields of the space-
time, and we obtain a complete set of solutions of neutri-

no amplitudes in the hyperbolic harmonic modes (j,m,ks,e,L).



(3)

(4)

These modes provide two distinct representation bases for
the algebra of the total angular momentum of the system
(neutrino coupled to gravitation), one finite dimensional
and the other infinite-dimensional. For both cases the
space of angular-momentum appears to be polarized along
the direction determined by the local vorticity field Q.
We construct the Fourier space associated to these comple
te bases and the complete unitarity relations for the
kernel of the transformation are obtained.

From the symmetry properties of the Hilbert space of neu
trino solutions and its corresponding Fourier space we
are able to define neutrino amplitudes, which are CP re-
lated as expected from the laws of neutrino physics.

The Fourier current associated with the neutrino amplitu
de as well as the local neutrino current calculated at
the origin x = 1 (for a given j > 1/2, summed over all
all contributions -1/2 < m < j) are asymmetric along the
direction determined by the vorticity field: the component
of neutrino current along the direction antiparell to the
vorticity field is larger than the component along the
opposite direction. Also the Fourier current associated
with the antineutrino amplitude as well as the local an-
tineutrino current calculated at the origin x = 1 (sum-
med over all contributions -1/2 < m £ j) are asymmetric,
since the component along the direction antiparallel to
the vorticity vector is smaller than the component along
the direction parallel to the vorticity vector. Therefore,
at the microscopic level, neutrinos are preferentially

emitted antiparallel to the local vorticity field;



as well, antineutrinos are preferentially emitted parallel
to the local vorticity field. This result is CP invariant.

In case of production of pairs under CP violation, a net

number asymmetry appears between neutrinos and antineu-

trinos, which 1s significantly nonzero for k3 of the or-

der of the vorticity value v2/2.
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The preferential emission of neutrino (antineutrino) along
the direction antiparallel (parallel) to the local vorti
city field § has a macroscopic analog in the case of neu
trino evaporation by a rotating black hole. A basic dif-
ference however lies in the local character of the vorti-
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the present case, in contrast to the asymptotic meaning
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