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ABSTRACT

The critical frontier (as well as the thermal-
type critical exponents) associated to the quenched bond-
dilute spin-—% Ising ferromagnet in the simple cubic lattice
is approximately calculated within a real space renormaliza-
tion group framework in two different versions. Both lead to
qualitatively satisfactory critical frontiers, although one
of them provides an unphysical fixed point (which seem to be
related to the three-dimensionality of the system) besides
the expected pure ones; its effects tend to disappear for in-
creasingly large clusters. Through an extrapolation proce -
dure the (unknown) critical frontier is approximately lo-

cated.



I - Introduction

Much effort is presently being dedicated to the theo-
retical study of random magnetic systems (site or bond, dilute
or mixed, quenched or annealed models). . Concerning the
random Ising ferromagnets, techniques like Monte Carlo[l’zj ’
high-temperature expansions[3’4], variational method[sl per-
turbative methods[6—9](effective—medium, coherent potential ,
random phase approximations), duality and/or replica trick

[10—16]’

arguments exact arquments[l7:| and finally real space

renormalization group (RG) approachestu%26] have been used.

The latter have been applied almost exclusively to
pPlanar lattices, where they have led to a certain success. The
ipurpose of the present paper is to use the same type of RG
approach for a three-dimensional lattice, namely the simple
cubic (SC) one, in order to calculate the critical frontier

and thermal-type exponents.

IT - Rencrmalization group approach
The model we adopt ds the quenched first-neighbour
bond-dilute %-—spin Ising ferromagnet; its Hamiltonian is given
by
= - = + i
b N T3 9495 (0, = * 1 Vi) (1)
<i,j>

where Jij is a random variable whose probalility law is



P(Jij) = (1-p) G(Jij) + p«S(Jij—J) (J >0) (2)

By introducing the variables (hereafter referred as thermal

transmissivities)

J..
= i1
t = th T (3)
B
and t = th - (4)
° kT

the law (2) can be substituted by

P(t) = (1-p) 8 (£) + pd (t-t)) (2")

To construct the RG we shall adopt the cluster indi-
cated in Fig.l(a), which can be considered as the first graph
(associated to a renormalization lattice expansion factor
b = 2) of a family whose last term (b + «) is expected to be
equivalent = ( thermodynamically speaking ) to the infinite
SC lattice. The use of this family of clusters has 1led to
satisfactory results for the SC pure bond percolation[27—29]
[30,31]

and pure Ising problems. Once we associate  the law

(2') to each bond of the cluster, we obtain, for the trans-
missivity between the two terminal sites of the cluster, the

following overall distribution law

- b L -
P (t) = ] p (1-p) Z My S (t-t
2=0 m

) (5)

Lm

where Nb is the total number of bonds of the cluster (in our

case Nb==12), tlm is given by



and represents the transmissivity of a particular bond occu-

pancy configuration of the cluster with 2 absent bonds

(r)

({nr)} and @

} are integer coefficients), sz’m is the  number

of such configurations which share the same transmissivity

tRm' and m runs over the set of such classes associated to

a given value of &. The multiplicity factors'{Mlm} clearly

satisfy

b
L LM =2 (7)

2=0 m

Let us illustrate these statements through the cluster

indicated in Fig.1(b); we obtain L 22724]
s 2t;_+ 2tg
Pc(t) = p 6 t -

1+ 2¢% + ¢t

0 0
u 2t; t2 + t3
+ p (l-p) /S |t - + 46 | ¢-~--20 0
1+t 1+ t3
o o]

+ p3(1-p) 2 «{2 G(t—tg) + 6 G(t—té) + 2 6(t)}
+ p?(1-p)* {2 G(t—tg) + 8 d(t)}

+ p(l-p)* 5 8(t) + (1-p)° &(t) (8)



For the case we are interested in (Fig.-l.a) we obtain the
results presented in the Table 1. In order to establish the
recursive relations which renormalize (p,to) into (p',té) we

propose, as in Refs. [22-24],

<E> Ly = <ty = Fl(p'to) (9)
c
2 - 2 -
<t > = <t >Pc = F,(p,t)) : (10)
where
P'(t) = (1-p")6(t) + p'G(t—té) (11)
hence
| I 2
p' = [F (p,t)]? / F,(p,t)) (12)
ty = Fylpet)) / Filp,t)) 4 (13)
The associated flow diagram (see Fig. 2.a) ‘presents four

trivial fixed points, namely (0,0), (1,0) and (1,1) which are
fully stable and (0,1) which is semi-stable, as well as three
non trivial ones, namely (pc,l) (pure percolation point;
fully unstable), (l,tc) (pure Ising point; semi-stable) and

(pO,O) (unphysical point; semi-stable). The values pc,'ﬁzand

P, respectively satisfy
— 2
P. = [Fi(p.,1)]%/ F,(p,1) (14)
tc = F2(l,tc) / Fl(l,tc) (15)
and
— . 2
p, = lim [Fl(po,t)] / Fylp ,t) (16)
t£-+0

This last equation becomes, in the present case (cluster of

Fig. l.a),



10 2
10-% . & (2) |
po Z po (1 po) % M%m an
2=0
=1 (16")
10
10-2 L (2),2
Z po (l—po) % Mlm(nzm )
2=0

The percolation'and Ising correlation length critical exponents
are (through diagonalization of the jacobian matrix aﬁﬁté)/athOH

respectively given by

4n b
vp = . (17)
' , 1) /4
tn[aF_ (p,1)/ p]pzpc
and
Zn b
v, = (18)

zn[dFl(l,t)/dt]tztc

with b=2 in the present case. The set of the main results is
presented in Tables 2 and 3, where FI(PI) refers to the frontier
between the ferromagnetic (paramagnetic) and intermediate re-

gions.

Let us now discuss what happens, as b increases,
with the unphysical fixed point (pO,O). In the limit to -0 ,
only the shortest paths between the two terminals of the graph
have to be considered, therefore we can reduce our analysis to
a cluster made by b? branches in parallel, each of them con-
sisting in b bonds in series. The probability law associated

to each one of the b? branches is given by

(1-pP) 6 (£) + pbé(t—t?)



hence
b2

2 2_ S
I I B P e M N k] (19)

s=0

in the limit to-+0. Finally by using equation (16) we obtain

b2 2 s ]2
( 7 [b2) plg(b ~s) (l-p]g) (b%-s)
[s=0 '°®
S:
Yo T T p b2) b(b%-s) b S 2
1 [27) R e e
s=0
hence
b2-1 \ , s
z [Z -l) (bZ_s) pg(b —S_l) (l_pIO)) - b2p1;-l (20)
s=0

This equation is equivalent, for b=2, to Eé.(lG') and for b -+ =,
leads to po-*l. And what happens with the PI- frontier? We have
no closed argument to answer this gquestion but if we take into
account that (a) the fixed point (po,O) coalescés with the (1,0)
one, (b) the b=2 FI- and PI- frontiers are quite close among
them in the neighbourhood p = P, r(c) the b=2 derivative of the
PI- frontier at p€=pO is quite high (10 in absolute value), (d)
P and tc present, as b grows, the correct tendency towards the
(almost) exact values, (e) the flow sense of the PI- frontier
coincides with that of the FI- frontier and that of the Ilow
branch (t < tc) of the p=1 axis, one can speculate that, for b » »,
the PI~ frontier coalesces with the FI- one (and both with the

exact one) as indicated in Fig. 3 (such a shrinkage of an un-

physical region has already been observed[BBJwithin a bond per-

colation RG approach). If it is so, the flow diagram will become

similar to the two-dimensional case (see in Fig. 2.b the flow



diagram associated to the cluster of Fig. 1l.b).

Before going further along this line let us wonder
if the anomalous renormalization flow behaviour we found for
the family of clusters we are concerned with is restricted to
this family or rather is typical of any other similar three-
dimensional cluster within the present formalism. To have an
idea on these grounds we studied, within the same framework,
the simplest three-dimensional cluster, namely the one indi-
cated in Fig. l.c (let us stress that within the present con-
text a two-terminal graph can be considered planar if and only
if it can be embeded in the plane in such a way that both ter-
minals remain planarly accessible from the "outside" of the
graph; clearly the cluster of Fig. l.c does not satisfy this
restriction). The results obtained with this cluster are qua-
litatively identical to_those obtained with the cluster of Fig
l.a (for the main numerical results see Table 2). As the anoma
lous flow behaviour they both present is absent from the two-
dimensional case (see Figs. l.b and 2.b) we are inclined to
believe that it is related to the three-dimensionality (to be
precise, to the fact that the dimensionality d > 2). This could
be an ( insatisfactory ) indication that "at- d = 3 and
according to Harris criterium[3], a new universality class

(associated to a dilute fixed point) is expected to appear.

Before closing this Section let us formulate, for
the cluster of Fig. l.a, a different 'RG (a parametric one[23’29’37])
whose results will later on enable us to roughly estimate ex-

trapolation errors. It essentially consists in maintaining Eq.

(9) while Eg. (10) is substituted by an imposition on the re-



normalization space (or path), presently straight lines conver-

ging at (p,to)= (1,1), i.e.

1 - té 1 -t
= (21)

in other words, the renormalization group acts now on a one-
dimensional space (parametrized in our case by the angle of the
straight line). Let us stress [29] that within this new frame-
work the particular choice for the paths (Eq. (21) in our case)
affects the approximate values for the critical exponents but
does not affect the approximate critical frontier which, through

Eq. (9) is given by

Pto = Fl(p,to) (22)

The main results associated to this approach appear in Tables
2 and 3: we notice that the discrepancy with the previous treat-
ment is quite small in what concerns}the PF critical frontier.
Remark also that the parametric RG provides no unphysical criti-

cal line contrarily to what happens with the canonical RG.

ITIT - Extrapolated Critical Frontier

Let us introduce here an extrapolation procedure
(quite similar to that introduced in Ref. [26]) which is ex-
pected to provide a satisfactory approximation for the critical
frontier in the p—tO space. This procedure satisfies by cohs-
truction good available values for the critical points asso-
ciated to the pure cases (pc==0.247 i0.003[32]and tc=0.2181ﬂ3{h.

First we define new variables through



x =z L+ =P (23)
1- p_ (b)
and
1 -t
vy = 9o (24)
1 -t (b)
c

where pc(b) and t_(b) respectively denote the pure percolation

and Ising approximate critical points provided by the RG associated to the
cluster with size b. We then assume that the critical frontier in the
X -y space depends only slightly on b (i.e. we assume an approxi-
mative law of "corresponding states" in what concerns the size
of the cluster that has been used). Within this respecf it is
interesting to remark that for b=2 the p- and tgf contraction

factors are numerically almost coincident and given respective=-

ly by
l—pcM)
—_— = 0.9514 (25)
l-pc(2)

and
1—tc(w)
_——— = 0.9549 (26)
1- tc(2)

The above assumption clearly closes the extrapolation procedure

as it leads to

1- 1-p
P - (27)
l—pC(2) 1—pc(°°)
and
1 - [t (p) B 1 -t (p
[ 0 ] b=2 _ 0 (28)



“where E%(E) denotes the extrapolated critical frontier. In par-
ticular Egs. (27) and (28) lead, for the pure critical points

(p=1 or to=l), to

dt_(p) 1l-p_(b) 1=t (=) 4t (p)

— = (29)
dp 1-p (=) 1-t_{b) dp
which for b =2 becomes (see Egs. (25) and (26))
dt_ (p) dt_ (p)
— = 1.0037 —— (29"')
dp dp '

The main extrapolation results are presented in Tables 2 and 3.
In the latter we notice that the extrapolated canonical RG cri-
tical frontier (from Egs. (9) and (10)) is very close to the
extrapolated parametric RG one (from Eqg. (22)). It is not easy
to decide which one of the two present extrapolations is expected
to be closer to the unknown exact one, and we are rather in-
clined to believe that their discrepancy is of the same order
of magnitude as the discrepancy they both have with the exact

one.

v - " Conclusion

Within a real space renormalization group frame-
work (in two different versions, namely the canonical and the
parametric ones) we have approximatively calculated the critical
frontier associated to the gquenched bond-dilute spin-—% Ising
ferromagnet in the simple cubic lattice (the critical exponents

t

vp and v, have been calculated as well). Both versions 1lead to

qualitatively satisfactory critical frontiers, which are very



close among them. However the canonical renormalization group
provides also an unphysical region between the para- and
ferro-magnetic ones. There are several reasons for believing
that this region shrinks until complete disappearance as larger
and larger clusters are considered. This unphysical region
seems to persist for any other similar three-dimensional finite
cluster, and could be an indication of the existence of a
random fixed point (different from the pure percolation and
Ising ones) in accordance with expectations from Harris cri-

terium[3].

In order to obtain a critical frontier which might
numerically be of some utility we have performed extrapolatiors
for both renormalization group versions: the results are close
among them and suggest that the unknown exact critical frontier
lies, in the temperature-(bond) concentration space, #ower than in-
dicated by a previous treatment, namely the Effective Medium
Approximation[gj. More specifically the present approach pro-

, . . : _ J
vides for the derivative ( dto /dp)t -1 (with tO = th T ) a

o} B
value which is at least 2% larger than the EMA one, and for
the derivative (- dto/dp)p=l a value which is at least 18%

smaller than the EMA one.

We acknowledge useful remarks from A.C.N. de Maga-
lh3aes and H.Martin. One of us (N.C.C.) would also like to thank
Prof. T.Kodama for kind invitation to the Centro Brasileiro de

Pesquisas Fisicas/CNPqg.
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CAPTION FOR FIGURES AND TABLES

FIG. 1

FIG. 2

FIG. 3

Table 1

Table 2

Renormalization group clusters (b=2): (a) for the
simple cubic lattice; (b) for the square lattice ;
{c) for the simplest three-dimensional cluster. The

internal (e) and terminal (o) sites are indicated.

Flow diagrams associated: (a) to cluster of Fig.
l.a; (b) to cluster of Fig. 1l.b. (P), (F) and (I)
respectively denote the para- , ferro- magnetic

and intermediate (unphysical) regions.

Out of scale possible evolution of the FI- and PI-
frontiers as b grows up to infinity (by "exact" we
mean the commonly expected critical frontier for
the dilute Ising ferromagnet). (P), (F} and (I)
respectively denote the para-, ferro- magnetic and
intermediate (unphysical) regions.

(r)}

The set of coefficients {M_ 1} , {ngm

im

{dé;)} (down row) associated to the cluster of Fig.

(up row) and

l.a. All missing coefficients vanish (excepting of

(0)

course dﬁm which equals unity for all (2,m)).

Critical points, exponents and derivatives. The re
sults (+) and (++) coincide with those obtained
respectively in Refs. [29] and [30,31] in the treat
ment of pure bond percolation and Ising problems.

The resﬁlts quoted for b =3 have been obtained (ex
cepting po) for the pure problems and have not been

re—-obtained within the present context (dilute pro-



Table 3

a -— 15 -—

blem) in order to avoid long computing times (same
reason for not calculating the derivatives for b=3).
Values § have been calculated with data of Ref.[9]

(EMA means Effective Medium Approximation). The
present extrapolations for the critical derivatives
have been performed throﬁgh use of Eg. (29') for
the RG associated to Egs. (9) and (10) (up value)

as well as that associated to Egs. (9) and (21)

(down value).

Y
kBT

ciated to the simple cubic lattice (SC). The cri-

Values tO = th on the critical frontier asso-
tical frontier corresponding to the RG defined
through Egs. (9) and (21) is in fact given by Eg.

(22).
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2 3 L 5 6 7
2 M om .ﬁo ﬁo .WO ﬁo .ﬁo .ﬂo
1 2 2 2 1 o0
4 8 0 2 1 2 2 0
1 2 2 2 1 0
4 16 0 1 3 2 0 1
1 1 2 2 1 1
4 16 0 2 3 2 0 0
2 2 1 1 1 1
4 16 0 1 2 3 1 0
3 1 2 1 1 o0
4 16 0 1 3 2 0 1
1 2 1 1 2 1
4 16 0 3 2 1 1 0
1 1 1 3 2 0
4 16 0 3 2 1 1 0
1 2 2 2 1 0
4 16 0 3 1 0 2 1
1 2 2 2 1 0
4 16 0 2 1 2 2 0
2 2 1 1 1 1
4 16 0 2 2 1.1 1
1 3 2 0 1 1
4 16 0 2 1 2 2 o0
1 3 1 1 2 0
4 16 0 2 2 1 1 1
2 1 2 2 1 o0
4 16 0 1 3 2 1 0
1 3 1 1 2 0
4 16 0 1 2 3 1 o0
1 2 2 2 1 o0
4 16 0 2 1 2 2 0
2 1 1 3 1 0
4 16 0 1 2 3 1 0
2 2 2 2 o0 0
4 32 | ¢ 2 1 2 2 o0
4 8 1 2 0 0 1 0
5 8 0 0 1 2 0 0
4 32 2 2 2 2 0 o0
5 8 0 2 3 2 0 -0
4 48 3 2 o 2 1 0
5 8 | 0 2 3 2 0 0

18



- 19 -~

pwto ~ —~ OO OO ©OO O~ O~ o ~ O OO (e [ —~ O [N e) OO | O oo [eNe] —~ O [ e] oo
..Mto — N O~ oM O~ o N N O AN O NMmMioo|l O — N o~ o~ ~—— ~ O ~ — ~ — ~ — o~
O.MLO N O N O OO NO oo [N o] [ N a) ~ O [N e — O AN O — O [N o] ~ O ~ O — O — O O O — O ~ o
Slg| v|le|e|le|olololelglglglglg|lsg|ls|g|sg|s]|y
xR LN [Te] [Te} n N n LN Te} LN N 'e] n N N LN N N n wn Te]




2 3 Y 5 6 A 2 3 [ 5
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6 8 0 2 0 0 1 -2 52
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5 64 1 2 1 0 0 5 32
6 16 0 1 01 1 0 6 240 | 1 1 0 0
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0 1 0 1 0 8 257 0 0 0 0
6 16 0 0o 1 0 0 9 | 172
0 0 1 1 0 10 62
6 16 0 1 0 0 0 11 12
0 0 0
6 32 0 2 0 0 0 17 1 0
7 8 0 0 1 o0 0
6 64 1 1 0 0 0
7 16 0 o o0 1 0
6 64 1 0o 1 o0 0
7 16 0 o 1 o0 0




b=2 (Fig. l.a)

b=3 (same family as

b=2 (Fig. l.a)

b=2 (Fig. l.c)

£ Fig. 1.
Egs. (9) and (10) ;;‘;S?;f e 3 | Egs.(9) and (21) sC BEgs.(9) and (10)
29 32
P_ 0.2085" 0.225 12 0.2085" 0.247+0.003 [32] 0.2761
(series)
29 33
v, 1.031% 0.97 [29] 1.0317 0.825+0.05 [33] 1.104
: . (series)
30, 31 34
£ 0.1812"" 0.1955[ /31 0.18127" 0.21811[ ] 0.2309
{series)
[30,31] +0.002 o
v, 0.8705+" 0.8189 0.8705" 0.638 _ 5 nog [3] 0.9013
0.630 * 0.0015 [36]
(series)
P 1/3 0.4215 /}/ 1
1/2
° (b w) /
FI §
- dt_ /dp 5.76 2 4.79 4.702 © (EMA) 4.50
PP 5.78 present
- 4,81 | extrapolations
FI §
- dt_/dp 0.185 2 0.189 0.2238 ° (EMR) 0.244
p=1 0.186] _cent
0.190} extrapolations
PT
-dto/dp 8.5 2 /2/ same as for FI 5.4
PP, (2)
PT
-dt /dp 10 2 Z % 8.6
PP, (?)

Table 2

_'[Z_



- 22 -

Associated extra

b=2 (Fig. 1l.a)

Associated extra

b b=2 (Fig. 1.a)
Egs.(9) and (10) | polation for SC | Egs.(9) and (21) | polation for SC

0.2085 1 - 1 -
0.247132 0.818 1 0.837 1
0.25 0.801 0.983 0.825 0.986
0.30 0.654 0.770 0.673 0.792
0;35 0.550 0.636 0.564 0.653
0.40 0.474 0.542 0.484 0.554
0.45 0.417 0.474 0.424 0.482
0.50 0.373 0.423 0.378 0.429
0.55 0.337 0.383 0.340 0.387
0.60 0.307 0.350 0.310 0.353
0.65 0.283 0.324 0.285 0.326
0.70 0.262 0.301 0.263 0.303
0.75 0.244 0.282 0.245 0.283
0.80 0.228 0.266 0.229 0.267
0.85 -0.214 0.252 0.215 0.253
0.90 0.202 0.239 0.202 0.239
0.95 0.191 0.228 0.191 0.228
1 0.1812 0.2181%34] 0.1812 0.2181£34]

Table 3




el sy

[ESu peont

T
5
3

japasan:

i

feeee:

7

T

—— T T T T T T

—
1

vt md

pab

pussbasyesasag ™

T
!
g paa: SEaEEaeRTRa IARRSI
BOSEAS 1]

T T T

T
saeaieh

: BTN

T
us
;
o
i

H1H

BEAS
T

RNy

&
1
.l

11t
T

4&;

8}

1

T

T

T
T
I

T
T
T
t
1T
b =g
1
T
T
1
T

4
ages s T L
seid uasdite mrﬁ E LT | T
EHE TR HILHE

T ; o

A R T N TR st
ah saa _ 11 HINTHE S
ol |
o B e R N |
Bat jpnpaginss e R R H I TN T i I Ty
ww W: I W: Q‘ m FrH 11 HATN : | ~
§ K5t SaATTIERES THITE TN i r
;m Tﬂ Wr“ | 1 HE afasints J,LA it .n, LEEEHILLLL \ L L
T FTIH B A TR R T f i
8 G i ﬁum 3 N / i : i
i i i I

RS
pas

R

s nawe




[PERS SEY BN BRSNS}

,4*:33._

Eoat

=

!

IESal et

jsews

=

o

e

Sathe aeaast

2ahey *.Arvv

JOSOS paed

TS

T t
et
_

i
iy




[RRESE
(PSS HaeN

i

.

HHH]

PECOS Suss 82000

1
4

Esuzssys

i,
T4

}
pasty;

I1
1

Sag st

BRSNS

g

HA e

i i

oy




