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ABSTRACT

Two different renormalization-group approaches are
used to determine approximate solutions for the paramagnetic-
ferromagnetic transition line of the square-lattice bond-di-
lute first-neighbour-interaction Ising model. The first one
(in two different versions, named RGl and RG2) consists in
substituting a single bond for an H-shaped cluster. In the
second one (RG3, RG4, RG5 and RG6) we take advantage of the
self-duality of the square-lattice and define a duality renor-
malization operation. All six renormalization groups are de-
fined as operations on the p-t space, where p is the inde-
pendent occupancy probability, and t = th (J/KBT). Both approa-
ches yield very good results, including the exact values
t, = Y2 -1 and p, = 1/2 (for all six RG's) and
dtc/dp p = i =8 - 6/ 2 (for RG5 and RG6), as well as the
correct assymptotical behaviour in the neighbourhood of t =1
(that is, T=0). The transition lines obtained through RG5 and
RG6 are very likely to be extremely close (better than 0,5% in
the most unfavourable case) to the exact solution; moreover

4

one of the two might be the exact one.



The Hamiltonian of the square-lattice bond-dilute
spin-1/2 first-neighbour-interaction ferromagnetic Ising

model can be written as:

where Ojr O35 = + 1, and Jij is a random variable with

probability distribution P(J,; )= (1-p) 83, )+ PS5 4=0) T2 0.
The sum is taken over all pairs of nearest-neighbouring atoms
of a plane square lattice. There have been in recent years

(

several attempts '=®) to obtain exact or approximate infor-
mation concerning the paramagnetic-ferromagnetic transition
line of this model. So far, the only available exact results
(see Table I) are the critical temperature for p=l(7), the

(8)

critical probability for T=0 , the assymptotical behaviour

in the neighbourhood of T=0(3), including upper and lower
bounds on T_, and finally the derivative ch/dplpzl(l).

We present here to different approaches for the above
problem. The first one is a standard application of expansion-
type real-space renormalization group; the cluster we have
used is the H-cluster, introduced by Reynolds et gi;(g), which

proves to be very efficient, since it is self-dual.



We use throughout the paper the variable t=thBJ (where &ﬂJkBT),

5,10
which is very convenient in the treatment of such ;mobkmm( r10),

and will be referred to as the thermal transmittivity of the

bond.

The overall transmittivity distribution of an H-cluster

whose elementary bonds have distribution

P(t) = P(t;p,tO (1-p) &6(t) + p6(t—t0) (1)

)

is given by (see also Reference (5)):

P (t) = Py(tip,to) = [(l—p)5+ 5p(1-p) "+ 8p? (1-p) *+ 2p° (l—p)z:, S(t) +

+ [ZPZ(l-p)3 + 6p* (1-p) 2} §(t-to?) + 2p3(1-p)? S§(t-to?) +

2to?

+ p‘*(l—p) 6[t - N .
+ to

J + 4p*(1-p) 6 [t -

L 2 3
+p5(3 £ - 2 toc + 2 to
1+ 2 to?® + to

We now define a renormalization operation (RGl) on the

parameter to by holding p fixed and calculating to' so that

<t>p, = <ty , (2)
H
where P'(t) = P(t;p,to'). We seek the fixed points of the
function té (to). For each p satisfying 1/2 < p < 1 we have

a non-trivial fixed point to(p); the line of such points in
the p—to space is expected to be an approximation to the tran-

sition line we are looking for.



Let us add that although we cannot prove it, we strongly believe

(6,11)
! that this method leads to the exact solution in the limit

of increasingly large clusters. For results, see Table I:

We can also get an estimate for the critical exponent

. -V
v, (defined by &  ~ |T - Tc[

correlation length), by taking p=l. We have:

t , where Et is the wusual

Vt < 1n b/lnAt,

where b 1is the expansion factor of the RG (in the present case

= 1 ' P—1 v i y
b=2) and A_ = dr'/dT | dto/dtO [to =t This gives us

vt ~ 1.149, to be compared with the exact value vt = 1. In a

completely analogous way, we can make to = 1 and renormalize

T=T
C

p thus obtaining a function p'(p) (see also Reference (9)),
whose derivative Ap in the:fixed point p=1/2 leads us to an estimate

of the critical exponent '\)P (defined by Ep ~ |p-p I—vp, where §

c
is the mean cluster size:

v_ = 1n b/1 = 1,428
P /nlp ’

to be compared with the value Vp = 1n 3/(2 1n(3/2)) = 1.3547(12{

An alternative renormalization group (RG2) can be

defined by requiring that equations (2) and

<t?>_, = <t?> (3)

be simultaneously satisfied. P'(t) now denotes P(t;p',to').



We thus get p' and to' as functions of p and to. Equating

p' to p and to' to to leads to the non-trivial fixed points
(1/2,1) and (1, v 2 - 1). A flow line extends from the first

to the second of these points, as suggested by Harris (1). The
slope of this line at both fixed points is obtained through
diagonalization and search for eigenvectors of the Jacobian matrix
of the joint functions p'(p,to) and to‘(p,to). This line is a
better approximation to the exact transition line than that obtained

by RGl1 (see Table I).

We now proceed to the exposition of the second approach
(RG3, RG4, RG5 and RG6). Given a transmittivity t, we define its dual
transmittivity as tD = (1-t) / (1+t). The word "dual"(ls) Sféms
from the fact that, given a cluster (or two-—terminal graph(e))with

bond transmittivities '{ti} , its dual cluster will have trans—

mittivities | T T % | |
T+t

For instance, let us consider a series arrangement of two bonds

with transmittivities tl and t2 : the overall transmittivity

will be given by (%)

t = t, t (4)

On the other hand, the overall transmittivity of a parallel arrange-
ment of two bonds is given by

t, + t

p
| 1 + tlt2

We immediately verify that equation (5) may be written as follows:

1-t 1 -t 1 -+t
— - L. 2 (5")
1+t 1+
D tl 1+ t2




which clearly has the same functional form as (4), thus exhibiting
1-t

the duality between t and .
1+t

Now if t is a random variable with probability dis-

tribution P, let P be its dual distribution, that is, the pro-

D
bability distribution of the dual random variable tD. PD is given
by
PD(t) -2 P 1-t . (6)
(1 + t)2 1+t

In our particular case, P(t) is given by equation (1), so that

PD(t) is given by

1 -t
Po(t) = P (tip,t)) = (1-p) &§(t-1) +p &t - —=2 (7)
o)
1+t
o)
We verify that P and PD satisfy
2
S <t>P + <t>P =1,
1 + t D
o
and
2 2
—_— kK (P) = «k (P.) (8)
1+t 2 2= D
o)
where KZ(P) = <t2>P - [<t>P:|2 is the second-order cumulant

associated to P.

We next define a renormalization group (RG3) by holding

p fixed and imposing the following condition:

<> = <t , (9)
D



where P'D(t) = PD(t;p,t'o). This is justified by the self-duality
of the lattice. We get a line of fixed points joining the points
(1/2,1) and (1, v 2 - 1), in complete analogy with RGl. For re-
sults see Table I. We notice that this approach does not allow
us to calculate the critical exponents Ve and vp, since both
the expansion factor b and the derivatives.?‘p and A, have

absolute value equal to unity, thus leading to an indeterminancy in

the calculation of the critical exponents.

Another way to define a renormalization group (RG4) ,

analogous to RG2, is to require that equations (9) and
k (P) = x (P') (10)
2 2 D

be simultaneously satisfied, where P' (t) = PD(t;p',to'). The
flow line joining the non-trivial fixed points (1/2,1) and (1,Y2 -1)
gives us once more an approximation for the transition line we are

seeking.

Comparing the results of RG3 and RG4 with the available
exact results (Table I), we notice that the exact solution is in a
sense intermediate between those obtained by RG3 and RG4. This led
us to substitute a new condition for Eg. (10). This condition is
based on the following heuristical argument : for RG3, we have

Py = PD' on the fixed points to' = tO , so that Eg. (8) gives us

Kz(P) = KZ(PD') (11)



Equation (11) could be taken as an.accessory condition for RG3,

since it imposes no further restrictions than those automatically,

created by Eq. (9)) and the fact ﬂum'to'= to. We were thus led to con-

sider an intermediate condition between those Egs. (10) and (11),

namely
2 '
k (P) =k (P_.") (12)
1+t 2 2 D
o
2 _ '
or — k (P) =k (P_.") (13)
1+t 2 2 D
o

We define a renormalization group (RG5) by simultaneouly requiring
that Egs. (9) and (12) be satisfied,and another one (RG6) through
use of (9) and (13). Again, we get a flow line joining the fixed
points (1/2,1) and (1,Y/2 - 1), which is intermediate between those
of RG3 and RG4. As we see in Table I, the results obtained by means
of RG5 and RG6 agree with all available exact results. In Table II
we present a few points that lie in the transition lines obtained

by RG5 and RG6. Figure 1 shows these lines in both p-T and p-t

spaces.

We now proceed to a summary analysis of our results. As
we can notice in Table I, all six RG's presented lead to results
that agree fairly well among them, which allows us to suppose that
these results are close to the exact solution as well. In fact, it
would not be suprising if one of the two solutions obtained by means
of RG5 and RG6, (wWhich differ among them by :less then 0,2% for the
variable t in the most unfavourable situation) was found to be the
exact one, since they agree perfectly with all available exact re-
sults. At any rate, comparing the solutions of RG3, RG4, RG5 and

RG6, we may evaluate the error (inferior to 0.5% in mid-range) of
the solutions of RG5 and RG6.



The derivative dto/dp deserves a special

p=1/2
(s '

commentary. Bergstresser found rigorous upper and lower bounds
for tc(p) (Eq. (45) of his paper); those bounds are depicted in
Fig. 1. It is a straightforward matter to verify that all solu-
tions from RGl to RG6 fall within these bounds; as a matter of
fact, this would be the case (at least in a neighbourhood of

p = 1/2) whenever -4 < dt_/dp 'p = 172 £ ~2 . Incidentally, we

remark that Fisch(u), through use of Bergstresser's results, pre-
sents the value dto/dp!p =1/2 = -2 as being the exact one ;
however, it is not clear to us that he has not overlooked second-

-order corrections in Bergstresser's Egs. (42) and (43). Also,

our second derivative dzT/dpz'p - 1 disagrees with the value

suggested by Harris(l).

One of the authors (C.T.) aknowledges useful remarks

on the subject by ME Fisher and R B Stinchcombe.
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CAPTION FOR FIGURES AND TABLES

Fig. 1: Full lines - Transition line obtained by means of
RG5 or RG6 (they are undistinguishable within the

present scale) in a) p-t space, and b) p-T space.

(3)

Broken lines - Rigorous upper and lower bounds
for a) the critical transmittivity to’ and b) the
critical temperature TC.

Table I

Summary of the results obtained by means of RGl to RG6, as

well as the exact available ones.

Table II

Critical transmittivities (to) and temperatures (Tc) obtained

by means of RG5 and RG6 for various values of p.
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TABLE 1

at ar azt a2t dt -28J
RG | Egs. | t_ S 1 e ‘ JpaiC -1 % % o |- o _ ,de
gp  lp=l|T_ ap |p=1| ap® l|p=1| T_ ap® [p=1| © | dp lp=1/2 & |pl/2
65-31/ 2 ~
22Tot £ 20,5038
1 (2) V2 -1 42 1.3800 1.30 0.45 1/2 2
3994+u5)$/§~04908
2 (2),(33) { /Y2 -1 44183 | 1.3444 1.19 0.30 1/2 2.687
3 9 | /2 -1 1/2 1.3696 1.18 0.16 1/2 8/3 = 2.667
4 (9),(10) | VY2 -1 {Y2/3 2 0.4714 1.2912 1.17 -0.48 1/2 3
.2 . = .
5 (9,12 | /7 -1 |6/2-8z04853| 1:3293 1.14 0.23 1/2 14/5 2.8
6 (9),(13) | /Y27 -1 6/2 -8 1.3293 1.10 0.12 1/2 2.857
(7) (1) (8) (3)
exact — /2 -1 6V 2 -8 1.3293 — — 1/2 e [ 2,4]




tO(RGS)

1

0.876844
0.780307
0.702744
0.639135
0.586063
0.541129
0.502604
0.469212
0.439994

0.414214

TABLE II

KTdKHFGS)

0

0.734243
0.955881
1.145867
1.321510
1.488875
1.650844
1.809024
1.964407
2.117642

2.269185

to(RG6)

0.875351
0.778727
0.701490
0.638262
0.585511
0.540814
0.502447
0.469151
0.439981

0.414214

Rmcﬁjumﬁ)

0

0.737722
0.959575
1.149124
1.324090
1.490740
1.652059
1.809712
1.964709
2.117714

2.269185





