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ABSTRACT: The connection between time correlation and retarded,
advanced Green's functions is dicussed in a systematic way. The
occurence of a time independent contribution to the time correlg
tion function is connected to commutator defined Green's function,
and a simple rule is given for its calculation when a suitable

decoupling is available.
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I. INTRODUCTION

The method of double-time Green's functions has been widely
used in solid state physics, and excellent reviews such as Zu-
barev's 1 have shown how powerful the method is. Recently,

Stevens and Toombs 2

pointed out that special care should be
taken when calculating time correlation functions from previoug
ly determined Green's functions. Their main point 1is that if
one defines the Green's function through a commutator, some=
times a constant 3 should be added to the usual expression for
the time correlation function as given in terms of the jump of
the propagator on the real axis l. The purpose of this paper
is to dicuss in a systematic way why this constant should be
included,y and how this is correlated to the structure of the
commutator Green's function. Our main point is that the commu-
tator Green's function for two operators A and B involves only
off-diagonal matrix elements (En # Em) of these operators,
whereas the time correlation function involves also the diagonal
ones (En = Em). Consequently the usual spectral representation
technique 1 for calculating the time correlation function 1is
not in general sufficient to determine it completely. It follows
also from these remarks that the commutator Green's func-
‘tion has pno pole at frequency E = O, while the anticommutator
Green's function may have a pole at this frequency and its re-
sidue is directly connected to the constant discussed above
(thus providing én unique determination of it). We have also

verified that for both types of Green's functions the physical

considerations used in the decoupling procedures are the same



247
and this provides a simple method for the complete determina-
tion of the correlation functions. Finaly, the regularity of
the commutator Green's function for zero frequency introduces
restrictions on the possible decoupling schemes. This regulari
ty 1s an essential feature since if it is not verified, the
calculation of the correlation functions from the Green's fung

tion are entirely misleading.

II. RAETARDID AND ADVANCED GREEN'S FUNCTIONS

The commutador and anticommutador, retarded and advanced

Green's functions are defined as usually:

«ate)s Be (P = Csece-ed(face), Bied| >, (1-a)
K alt); B(E )>>S) = - 1ot -t) < [ace), Be)] > (1-b)

:
where 6(t) is the Heaviside's function, (~-) is for commutator,

(+) is for anticommutator and

1
< cen > =‘£ TI’(G-’H!3 o.o)’

where Z is the partition function and 2 = (kg )" . In any
casey the explicit structure of (1l=-a) and (1-b) involves the
form of the time correlation functions < A(t) B(t')) and

$B(t') A(t)) . In order to get these time correlation functions
in a clear form, let us introduce the complete set {ln>;} of
eigenstates of the Hamiltonian, corresponding to exact elgen-

values En. The time correlation functions read:

F -i(En-Em)(t-t')
e

-
(B(£*)A(t)> = (1/2) 2_<n|Blm> {(m|jAln) e ™

nym
(2-a)
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- -1(E_=E_)(t=t')
CACt)B(t' )Y = (1/2) T_ <n|Blm)y(m|Aln) e "f® e e
nym (Z’b)

Using (2=-a) and (2-b) the averages < [A(t), B(t! ﬂ > are given

by: )
d}(t), B(t* i}_): (1/2) E (n|B|m)<{m|A|n) (e'EnF'_ o mﬁ>

E_#E -i(E_-E )(t=-t')
n# m e n Em (3*8.)

(e, Bw)] )= v2) T <alslm) alalnr (B v ®)

n,n -i(E -E_)(t=t')
e n =" (3~b)

We wish to emphasize that even in the case of degenerate levels,
all the diagonal (En = Em) coftributions in (3-a) are canceled
out by the difference of exponentials, while the diagonal (En =

= E ) contributions are also included in (3=b)., Thus the
analysis in terms of exact eigenstates enables us to conclude
that in the commutator Green's function only off=-diagonal (En%Em)
matrix elements of the operators A and B are involved, while in
the anticommutator Green's functions all matrix elements are
present. In this connection, it may be mentioned that  the
response to an external perturbation (generalized susceptivility)
is given by a commutator Green's function‘é, and consequently
involves only off-diagonal (En#Em) matrix elements. Then we can
say that the commutator Green's function describes how transi-
tions between eigenstates induced by the "external' operator B
modify the thermal average of an observable A. Finally, one
concludes that the usual linear response method can be applied

only to cases where one knows that thevrepresentative operators
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have only non-=vanishing the off-diagonal (En £ Em) matrix element55°

We introduce now the Fourler transforms <<A;B>)g:;,r sultably

extended to complex energies by ls
+00
an(F) o . (F) _iE(t=t') e
KABDE ) o = (l/ZTr)J«A(-t),B(t“ Wara alt-s') , (4)
=00 '

where in order that (4) have meaning the following conditions should
hold:

«a;B» ) defined for ImE>O ,
Eyr '

(8)

<<A5B>>(+) defined for Im E<O o
E,a

Th¥®se relations define analytical functions <KA;B>>§+), which
coincide with those defined in (5) in the respective half-planes.

Using the above equations one obtains:

¢(n|B|m>¢m|A|n) (;En@m
E + En = Em

1 =F
«aBy (= — nf? (6)
n

5,

e

and

1 <{n|Blm><m|A|nd -E )
qamy{P- — 7= Dllwaltln) | Ep P 7)

2rZ n.m E + En"Em

In the eiplicit forms (6) and (7) one sees that the functions
«A3;B) é” are analytic functions for Im E # O, with singularities
on the real axis, corresponding to the excitations of the systemw6°
It follows also from equation (6) that the limit for E —@ (in

the complex plane) exists, is well defined and given by:
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1 ¢n|Blmpm|Alny - =E ~E
lim <(A;B>>§;)= — (e n@_, e m@)

E-=>0 2wz n En = Em

m
En Em

y (8)

and this 1imit is adopted as the definition of the Green's fun_g
tion at origin. The regularity of the commutator Green's func-
tion can be stated in an equivalent forms
lim JE K A;B>>(Em) =0 . (9)
E—-O0 (

The situation is rather different for anticommutator Green's

funéitions; quite similarly it can be shown thate

lin {E <<A;B>>(E+) }: C/m (10-a)
E=>»0

where

¢ =1z Y_ ¢lBlo><mlaln) e@E“P »  (10-b)
nem
By = By

These expressions mean that if C is non-zero, the anticommutator
Green's function has a pole at E=0 and conversely if thga Green's
function <<A;B>>§+) has a pole at E=0 the corresponding residue
"§s C/mr. These remarks will be of fundamental importance in the
determination of the time correiation functions. In this connegc
"tion, we should mention that Callen et al. 7 discussed the
problem of the determination of the constant C. Their results

will be critically analyzed within the framework of spectral

representations.
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III. SPECTRAL REPRESENTATIONS

We now discuss how these results affect the usualfheory

of spectral representations.

First we define as in 1 the spectral density:

J(w) =1/Z 2 (al|Bln) <{mlA|n) enEnpg(w- B, + Ey) o (11)
n,m
The time correlations functions are connected to J(w) by 1:
+00
<B(t') ACE)) =f J(w) e~1@(t=t) 4, (12-a)
=00
+00
ML) B(e )y = | J(0) o f eml®w(t=81) 4, (12-b)
=00

Comparison of equations (10«b) and (11) suggests us to divide

the spectral density in two contributions:

J{w) = J’O(w) + T (w) 3 (13)
where |
Jo(w) = ¢ 8(w) (13-b)
and
' — =5 P
J(w) =1/2 2 <alBlm) <m|aln) e ' J(w- E +E) .
4, | (13=c)
Enﬁ E S=c

The definition (13-c) implies that J (0) = O, and this means
that 1n J (@) only the excitation spectrum is included. From
(13) and (12) one gets:
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+00

c + j 1 (w) e~lwE=t') 44 (14-a)

=00

{B(t') A(t)>

+00
c +j 7wy eXPemi® (3=t 405, (14-b)

=00

{a(t) B(t'))

These expressions show that m times the residue at origin (when
the pole exists) of the anticommutator Green's functlions gives

the time independent part of the time correlation functions.
Using equations (14) and the definitions (1) and (4) it
is easily shown that:
L 200) ,
1 enr J (ewfl = 1) J'(w) d /E=wy (15=a)

=00

il

<<A,B>>‘ =)

+00

1/ 2w J (ewp+ 1) J(w) dw/E=wWo (15-b)

«A;3;B» (E+)

We wish to emphasize that in the commutator Green's function
(15-a) only the 3 (W) part of the spectral density contributes
to the spectral representation, since the constant C of (14)
cancels out; in the anticommutator Green's functions however
the complete spectral density is present. These spectral
representatlons provide a useful way for determining J (w) or

J(w) from the corresponding Green's functions 1,
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i -
(=) (=)
J'(w) = =———— 1im < LA4A3B)) = KA3B» (16-a)
w+ J

Pl o0 1e w=-1e
and
o (+) W o)
J(w) = ;;E:; 'S‘imo <<A;B>>wi€- KABD s (16-b

Substituting (16-a) in (14-a), for instance, one gets the

expression first derived by 22

(=) (=)
*oo(<A;B>>m+i€m KA3BR 1. (oot )
(B(t')A(t)) = C + lim 1Jr -~ <~ 7 =t 3w
. w\)
€0 o e -1 (17)

One should note that the intégrand of equation (17) is perfect
ly defined at w = 0, since the condition J*(0) = O must be
satisfied, and except for the exponential e“iw(t’t‘) this
integrand is precisely equation (16-a). In this connection,
(16=-a) provides a restriction for the decoupling schemes to
break the infinite chain of equations associated with the
determination of <(A;Bx>é")g the accepﬁéole schemes are such
that the commutator Green's function‘has no pole at E = 0 and
J'(0) = 0. This restriction ¢an be put in a more explicit form
using equation (l6ma); in order to have J'(0) = O the Green's

function must satisfy:

a ( (=) (=)
. E:) 1:3{11 biw <(A ,B>>w+i€= <<A,B>>w "ie
lim J (w) = i lim - % 0. (18)
wW=->0 w=>0 d '
= (&“P. 1)

dw
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Equation (18) can be used as a simple algorithm to check the

suitability of the decoupling scheme,

In conclusion, one sees that commutator Green's functions
should be handled carefully when calculating time correlation
functions; and depending on the nature of the problem, the

8

constant C may play a fundamental role ~. However the problem
of knowing "a#priori"™, if the constant C is zero or not, still
remains. This problem in general cannot be solved because the
exact eigenstates are not known, but the above equations
provide a simple trick to check the doubtful cases. In fact,
the physical considerations involved in the decoupling
procedures do not depend on the definition of the Green's fung
tions, as one verifies easily by inspection of the equations
of motion. In this way, using the same approximations, one
calculates the anticommutator Green's function, and if it
admits a pole at E = 0y the constant C is 7w times the residue

at this pole.

Now the results of Callen et al. 7 will be discussed in
the light of the present formulation. These authors define i
new operators ;mz A - (A and g =B - <B> , and introduce
new Green's functions Ezg,-which are ldentical to our Gig)o
As a consequence of this fact, equation (16=a) implies that:
Tig (W) = Jy5 (@) 4 (19)
showing that‘thc same physical information is contained in

both formulations.
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The same procedure can be used to define a constant ¢ (in
complete analogy to (10-b), the A and B operators being
replaced by A and B). After algebraic manipulation of this

formula it can be shown that:
¢ =¢C -<A)® . (20)

Expression (20) has two fundamental implications: first 1t
provides a connection between the two constants; second, this
connection is precisely the difference between the usually
defined time correlation function ¢{B(0) A(t)) and the new
definition <B(0) A(t)y . In fact, using (19), (17) and the
modified version of (17) for the K andig operators it follows
that:

(B(OYACE)) = <B(O)A()) +C - C = <B(0) A(£)) - <AX(B) (21)
These expressions show that, although the constants are dif-
ferent, the same formal expression can be used for the time
correlation functions as given in terms of Green's functions
(in terms of A, B operators or K; groperators), and the rela-

tion between these constants is provided by (20).

If A and B operate in independent subsystems, from
(10-b) and from the fact that the partition function in thii
case is a product of the partition function of each subsystgm
it follows that the constant C is precisely <A) <B) .

Finally, applications of this method to particular systems will

be presented in a forthcoming publication.
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