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ABSTRACT

The high energy behaviour of the scattering amplitude is investigated
in the real negative region of momentum transfer -t, below the threshold t=
= 41112 of the crossed channel, If one assumes the existence of bound states
in the crossed t-channel with angular momente larger than one, one can show
that the high energy scattering amplitude behaves as if dominated by 8,
Regge trajectory o(t) of even signature and the quantum numbers of the wvacy
wm, Tt is shown that o(t) s continuous in the open interval (0,4m<), and
an upper bound for «(t) is given under the assumption of analyticity in the
domein Re Vt < 2m.

* fThis work was performed under the auspices of the National Science Four-

dationy
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It 1s known that the Froissart bound 1

for the
relativistic secattering amplitude F(s,t) can be deduced from
analyticlty in the lLehmann ellipse plus the weak assumptions
that the absorptive part of F(s,t) is analytic in t, in the
neighbourhood of some finite positive interval (O, to) and is
bounded there by a power of s 2y 3, 1t has now also been
proved,4 by using, in addition, analytielty in the s-plane;
that if F(s,t) has no poles in t corresponding to bound states
with angular momentum larger than one in the interval (0,4m23
the dispersion integrals are actually convergent with only two
subtractions. We shall discuss here the agymptotle behaviour
of F(s,t) assuming the existence of poles with angular momentum
lafger than one. Although no elementary bosons exist with spin
higher than one, this analysis has interest in itself as it
discloses a connection between the high energy behaviour of the
scéttering amplitude and the angular momenta of the assumed
bound states according to the pattern of a leading Regge
trajectory «(t) of even signature and the quantum numbers of
the vacuum. It is shown that o(t) is continuous in the open

interval (0,4m%).

We have also obtained an upper bound for a(t), assuming
analyticity inside the parabola Re +/% = 2m. This parabola 1is
the 1limit as k% —> o0, of the ellipse of convergence of the

Legendre polynomial expansion.

Let F(sy u, t) be the scattering amplitude describing

three processes:
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T A+ B=—> At + Bt
II A + Br—> At + B

H‘P -
IIT A + At=—> Bt + B

where A and B are two scalar particles of mass MA and MB
regpectively. The first two processes are elastie scattering
and the last one is a collisien In a state with the quantum

numbers of the vacuum. The wvariables s, u and t are related by:
2 2 .
s+t+u = 2(M,"+ M) . (1)

We assume as in reference 4 that F(s, u, t) 1s an analytie
funetion of t in a certain domain & as required to derive the
Froissart bound, 1s bounded by a power sN of s and, In addition,
for fixed t inside £, it is an analytlec function of s with cuts
along s = (M, +M)% to + oo and u = (M, + M;)% to + . The
domain £ includes a neighbourhood of the positive real axis from

t=0tot=&£

with the exception of a finite number of points
where F(s, t, u) has simple poles. Here m is the mass of the
least massive particle, say the pion mass. One can show | that
glven a positive € <1 one c¢can find a real t_> 0 and independ-
ent of s such that for t<t,, F(s, u, t) is bounded by s'**,
Therefore for fixed t<t. one can write a dispersion relation
for F(s, t, u) with only two subtractions:

ooAl(gP’t)
F(ssuat)=Co(t)+Cl(t)(s=u)+-s;;- ["-—“—'——“-' dst +
(stas)st?

+

u2 °°A2(u'gt)
-—'[ dut (2)
" (urendur?
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The dispersion integrals may extend below the elastie threshcold
so(uo) = (Mi-+M§)Z but above thls threshold esach abgorptive

amplitude and gll its derivatives with respect to % are
pdsitive definite, for t in the interval (0,4m2). Now for t

N

in this interval, F(s, t, u) is bounded by s so that one can

write a dilspersion relation with N+ 1 subtractions:

N
Fsyust) =Co(t)+Cq(£)(s=u)+2 ~ I, (£)s™+ I, (t)u") +

, n=2
JHL P Ay (s1yt) S+ © A(utyt)
+ ds' + J dur (3>
T 7 (s1es)st L ” (ur-ndur™*T

For t<t, a comparison of (2) and (3) shows that C_(t) and C;(t)

are the same In the two expressions and:

Al(S'gt)
I, () =% J ——— as? (4)

g+l

with a gsimilar expression for IZn(t)°
Now let us Introduce the variable,

5=U

4k k5

z.-..

(5)

where k; = $ /t=4M,%, k, = 2 /t-a1,% are the initial and final
momenta in the center of mass system for process III and z =

= cos @ where ® is the scattering angle. In the region we are
considering both kl and k2 are pure imaginary and the product

is real and negative. One can express s and u in terms of z and

t by:



2kjkoz = s+kyS 4 kE = - (udk

2 2
> +k2) (63

1
Therefore, since k12 and k are negative in the expansion of
s¥ or_u in power series of z all the coefficients of even

powers are positive. On the other hand one can expand z?  in
Legendre polynomials of order L€ p and (1 -p) even. Again in
this expansion all the coefficients are positive. Therefore one

can finally write:
X n )= 3 ,
% (Iln(t)s + I, (ta” )= Eg:_=o Co(t) Py(z (7)

wliere
L

N
Cp(8) = 3 Hy () [Ton(e) + (-10F 1 ()] (8)

and for even !, all the Pln are positive. (Actually the pln's
are all positive definite for both even and odd L.) In the
real interval 0<t<am® the only singularities of F(s, u, t) ag
a funcetion of t are poles corresponding to bound states In the
erosssed channel III. Let tl’ tz, sse tk be the energiesg of
these bound states, 414055 oo %, the corresponding angular
momenta. In the neighbourhood of t = tr all the coefficients
Cy(t) are regular except Cﬂét)’ which has a pole at t = t.. It
is then clear, by the result of Jin and Martin 4 that the
representation (2) is valid all through the interval 0¢ t‘it
where tl is the first bound state with angular momentum larger
than one. Since the residue at this pole behaves like |z|
and, at least in the direction of the imaginary axis
|F(s,t£-€)|<c|s|2 it follows that Pi =2
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Let us next consider the sequence of bound states with

P ? e
increasing energies tlg tzgooo tn and even angular momenta

T ¢ ]
X:lg 2!2,000 Ern

all bound states preceding tgo Let us suppose that in the

such that ££ is larger than the argulapr mumerta of

interval 0 t<t, the representation (3) is valid with N={; - 1.
Then b% a slight generalization of the argument of reference 4
one can show that in the interval 0£t <t§+1 the representaticr
(3) is valid with ¥ = L; + 1. We shall give the main steps in
the proof.

For t<(t;9 Il,Zn(t) is given by (4) when n:;ﬁio Sirice
Alaz(sﬂﬁt) and all its derivatives with respect to t are positive
(for s")-so) one can expand A(s’,t) in power series of t with
positive coefficients. It is then allowed to interchange the
order of summation and integration in (4). 5 One,; thus, obtains
a power series representation for Iﬁ(t) with positive coef =
ficients, If tv is the radins of convergence of this series then
it is also the first singularity of In(t) and vice=versa, and
for t<t' the integral representation still holds. 5 Now since
the coefficients Fln(t) in (8) are all positive analytic
functions of t thens for even 1 >Q;g t* is also a singularity of
Cz(t)o Sinece by hypotheses, all,CL(t) with even Qj>B; are
singular in the interval OS t< t;,qs it follows that the
representation (4) holds for n > ﬂi + 2 and therefore F(s;u,t’
may be represented by (3) with N = Q; + 1, Thus our assertion
is proved. Since this result is true in the interval 0t <ti
its validity in general fellows by complete induction. Now using



the same argument as before one deduces that:
7 - ¥ ra
beg = Mgt 2 (92

It may happen that in the interval (t;, t;+1) there exists a
bound state tj with angular momentum Ej==£; + 1. Sirce for odd
L the expression (8) involves the difference of the two functlons
Iln(t) and Ian(t) it is not in general true that for 1:-<t'.j (37
holds with ¥ = Ej==10 It is however obvious that, for t.ztj, at

least £j+ 1 subtractions are required.

From the above considerations it is clear that if the
angular momentum ij (even or odd) of a bound state tj is larger
than all the preceding ones the angular momentum of the next
bound state with the same property is either 234-1, or EJ + 2 if

lj is even,

Another result which emerges from this analysis is that
for all the bound states t; as previously defined, the residues
are negative. In fact as one approaches the pole t; from below.
CR£(t) will be given by (8) and 1s positive. Therefore the residue

is negative.

Let us now define a function «(t) as the limiting value

of the set of real numbers «3 for which both integrals

Q0
. A192(S°9t) )
gt
%

are convergent. 6 We shall first show that o(t) is econtinuous
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in the open Interval (0,4m2). Let us take in the t plane three
cireles with origin at t = O and increasing radit ¢, i:-%‘éf and
t, =4m‘?' respectively. These eirclesgs are inside the dowain & of
analyticity in t of A(s,t) and on each circle |A(s,t)| 1is |
maximum on the positivé real axis. Then applying to A{a,t),

Hadamard's three c¢ircles theorem 7 one obtalinss

52

ACs,t+8)€A(s,8) L A(s,t,) (11)
b |
where to : ‘_,to t+6 ta
Sy = | —|/m( — )5 §,=In| = }/1n( — }(12)
£+5 % £ t |

and €1 + §2 = 1,

Since we are excluding the points t = 0 and t= t, one can

take 6°<t<t°-,6° vhere §, is arbitrarily small. Then for 86<§,

one has: e
[ °:| S (13)
8|t 1pn =~ <2 =— 13
52 L t 60

: N :
But A(s,to) is bounded by (f—) y therefore (11) gives:
)
_ ' g \ k&
A8 yt+8) <A(s,t) (;'-) (14)
o/

where k = ZN/GO- Therefore given an ¢ one ean choose a 8§1=¢€/k

suech that for &< min. {60, 61} one has:

oo o0
J’ A(s,t+8) as < _ksJ‘ A(s,t) ¢ (15)
8 s o«
gt )etl ° L8 )H(8,~ )41
s 5
0 o

Hence |x(t+8) - a(t)|/<e sgo that «(t) is continmous. If P(s,u,t?
has a Regge behaviour, «(t) coincides with the Pomerarchuk
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trajectory. However, even in the general sense as defined above
a{t) has the properties of the Pomeranchuk trsjectory in the
interval (O,4m2), namely that, in the (R,t)~ plane the leading
poles with even angular momentum and quantum numbers of the
vacpum 1ie on a{t) and all the others lie on or below this curve.

Finally let us assume that A(sst) is aectuzlly boumded by
5x<t)+€ for whatever small ¢, and that «(t) is analytlec inside
the parabolas

Re vt =/t = 2m (16)

This parabola is the limit as k2 — @, of the ellipse of
cbnvergence of the Legendre polynomial expansion. 8Since in the
Legendre polynomial expansion of A(s,t),all the coefficients are
positive, for all t on or inside the parabola (10) Re «(t) has

an absolute maximum at t = t,e Then for A real and positive
9(t) = exp A[x(t) = alt,)]

is bounded by one in the same region. Now the interior of the

parabola is analytically mapped into the interior of the unit

circle by the transformation 83

%
z i
= Al (172
4 to

z = tg

Therefore one can apply Pick’s inequality I to the function
¢[t(z)]. One obtains (for real positive t):
A(0),, Aalt)

eAq(t) < (18)

1+zeAEx(0)”d(to)]
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In the limit A —= 0, (12) becomes:

2z
«(£)<x(0) + — alty) = a(0)]
1+2

ot(t)<<x(t0)—cos % \hj—:— Ex(to)-ct((})] (19)
)

which is an upper bound for «(t) joining the values at t = O and

or

tl = to' Considering that the absence of w- m bound states imply
a(t0)<2 and since «(0){1l, an absolute upper bound for the
Pomeranchuk trajectory in the interval (0,am) is:

t
o{t) = 2=~ cos _72!‘. —_ . (20)
to ,
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