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1 Introduction

According to classical physics, the knowledge of the state of a composed system yields
complete knowledge of the individual state of the parts. This is the principle of separability
[1] [2]. For example, if we known the state of a classical system of particles, we known
the state of each particle. However, this is not true in the context of quantum mechanics.
One of the consequences of the superposition principle is the introduction of the concept
of entanglement. After interacting, two quantum systems can end up in a non-separable
state, i.e., states that can not be factorized into a product of the states of its sub-systems.
These states of such composite system are called entangled states [3]. For instance, in a
bipartite entangled state, each part losses its quantum identity. Entanglement leads to the
non-locality properties of quantum mechanics, and action at a distance at a speed greater
than the speed of light [4] [5]. Discussing the hidden variable theories based on local realism,
Bell has shown that quantum theory is supposed to be non-local [6] [7] [8]. It was be shown
that any pure entangled state of two spin-1

2
violates corresponding Bell’s inequality [9] [10]

[11] [12].
With the development of quantum information [13] [14] [15] and its application in com-

putation and communication [16] [17] [18] [19] [20] [21] [22] [23], the entangled states have
been attracted enormous interest. For instance, new tests of quantum mechanics can be im-
plemented using some entangled states, as for example the Bell and the GHZ states [24] [25].
Also, several quantum protocols can be realized exclusively with the help of entangled states
[26] [27], as for example the quantum dense coding protocol proposed by Bennett and Wies-
ner [28], or the quantum teleportation protocol proposed by Bennett and co-workers [29]. In
the teleportation of entanglement a single qubit in an arbitrary state can be transferred, ex-
changing information over long distances, without physically transferring the system itself.
The maximally entangled pair of qubits is crucial in the quantum teleportation. Actually,
there are many physical systems that can be used to implement a quantum computer with
the quantum logic gates. Some experimental devices are based on cavity quantum electro-
dynamics, trapped ions and nuclear magnetic resonances. For example, for the realization of
quantum logic gates, a many-body system prepared in an entangled state has been proposed
[30]. Another promising system used to implement quantum computation is the quantum
dot array proposed by Loss and DiVincenzo [31]. The basic problem that arises in this area
of research is how to create entangled in many-body systems [32] [33] [34] and also how
to generate systems which are not affected by the environment, overcoming the problem of
decoherence.

In the simplest case of two atoms, it is quite important to demonstrate creation of
entanglement on such system. There are in the literature different methods for detection
of entangled states of two interacting atoms. One method is based in measure the angular
intensity distribution of the fluorescent field emitted by these two atoms, since it is well
known that radiation emitted by atoms exhibits directional properties [35] [36] [37] [38]
[39] [40]. The other is based in the dynamic of the population inversion of the system.
For instance, the properties of spontaneous emission from two identical entangled atoms
interacting with the modes of a bosonic field was investigated by Guo and Yang [41]. They
have shown that the time evolution of the population inversion, which is proportional to the
radiation intensity, depends on the degree of entanglement of the initial state of the system.

Suppose that in a many-body system an entanglement has been created in a given portion
of such system. A fundamental question is how to known whether a state of a many-body
system is entangled or not [42]. Before continue, we would like to briefly describe the
theoretical machinery that are needed to define entanglement in a pure or mixed state.
To define separability and entanglement in bipartite systems, we use the properties of the
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state vector or density operator. Since a pure state is entangled if it is not separable, it
can be shown that a pure state is separable if and only if the reduced density operators of
sub-systems represent pure states. Therefore a pure state is entangled if and only if the
reduced density operators for the sub-systems describe mixed states. In practice, a pure
state is separable if and only if the quantum fluctuations of all observable (linear self-adjoint
operators acting in the respective Hilbert space of each sub-system) are uncorrelated. If at
least one pair of linear self-adjoint operators have correlated quantum fluctuations, the pure
state is entangled. For mixed states we define a separable mixed state if the two sub-
systems have the same purity and von Neumann entropy. An entangled mixed state is
one that is not separable. We would like to stress that experimental tests for separability
and entanglement of pure states using correlated quantum fluctuations are not available
for mixed states. Strong correlation between two operators does not means that there is
entanglement for a system described by a mixed state.

Critical phenomena is a cooperative effect characterized by fluctuations in the order
parameter, where all scales of length are important. For instance, the two-point correlation
function (the expectation value of products of local observables) near the phase transition
does not decrease exponentially, but polynomially, as the distance between the points goes
to infinity. The system exhibit long range order. Since, for pure states the correlated
quantum fluctuations of two observables defines an entangled state, we should expect a close
connection between second order phase transition at zero temperature and entanglement.
We would like to note that recently Emary and Brandes [43] [44] discussed the connection
between quantum phase transition and the chaotic behavior that emerges in the full Dicke
model for finite N , where the energy level-spacing statistics changes from Poissonian to one
described by Gaussian ensembles of the random matrix theory [45] [46].

Let us now focus our attention for the super-radiant phase transition. Consider an en-
semble of N two-level atoms, all prepared into the excited state. Each atom can emit a
photon by spontaneous emission. In the situation where there is not coupling between the
atoms, each atom radiates independently. This is called the fluorescent phase. Let us con-
sider the following experimental environment: the N two-level atoms are in an optical cavity
where all atoms are in resonance with a single mode of the field. For an ensemble of atoms
in a volume with linear dimensions small compared to the emission wavelength, they start
to radiate spontaneously faster and strongly than the ordinary fluorescent phase. In this
situation the radiation rates becomes quadratic dependent on the number of atoms. This
cooperative process is called super-radiance. Recently Lambert and co-workers [47] inves-
tigated the entanglement properties of an ensemble of N two-level atoms interacting with
a field mode in the super-radiant phase [48] via the von Neumann entropy. The maximum
entanglement occurs near the critical region. The authors also studied the system at zero
temperature and how does the entanglement is affected by a quantum phase transition that
occurs in the system [49] [50]. By the other hand, in a system of N atoms, the presence
of the dipole-dipole interaction can generates entangled states in the many-body system.
See for example Ref. [51], where was discussed in detail how to generate multi-particles
entanglement of atoms trapped by harmonic potential, interacting with a classical field and
between them via the dipole-dipole interaction. Therefore one can imagine that if entangled
has been created in a portion of the many-body system, the critical behavior of the system
changes due to the strong correlation between the atoms.

The aim of this work is to investigate if the entanglement between two-level atoms,
generated by the dipole-dipole interaction, is able to change the critical properties of the
system. For instance, it is well known that the dipole-dipole decohering effect is able to
suppress the super-radiant emission [52] [53]. Note that we are not able to quantify the
degree of entanglement present in the model since we are using functional integration meth-
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ods to investigate the thermodynamic of the model. First, we investigate the full Dicke
model where the quantum phase transition and a phase transition from fluorescence to
super-radiant phase, at some temperature β−1, in the system of N atoms interacting with
a bosonic field is analyzed. Second, introducing the dipole-dipole interaction we discuss the
effects of entanglement in this many-body system, showing that the critical temperature of
the transition from the fluorescent to super-radiant phase is not modified in this case. We
proved that the spectrum of the collective bosonic excitations of the model is unaffected
by the dipole-dipole interaction. In this case, there is also a quantum phase transition, at
some values of the physical parameters of the model. For the reader interested in the the
study of entanglement in many-body systems close to the quantum phase transition, see for
example the Refs. [54] [55] [56].

Recently, using the path integral approach with functional integration method the ana-
lytic behavior of thermodynamic quantities in the full Dicke model [57] [58] [59] [60] [61] [62]
was presented [63]. See also the Refs. [64] [65]. The full Dicke model is similar to the Jaynes-
Cummings model [66] where the non-resonant processes in which the atom and the field are
excited or de-excited simultaneously, known in the literature as the anti-Jaynes-Cummings
model. In Ref. [63] the study of the nonanalytic behavior of thermodynamic quantities
in the full Dicke model, allow the authors to evaluate the critical transition temperature.
It was shown that the system develop a quantum phase transition and a phase transition
from ordinary fluorescence to super-radiant phase at some critical temperature. Based in
this analysis, the spectrum of the collective bosonic excitations, for different situations were
presented. It was study the rotating-wave approximation, the counter rotating-wave ap-
proximation and also the general case. As we discussed, the rotating-wave approximation
ignores energy non-conserving terms in which the emission (absorption) of a quantum of
a quantized field is accompanied by the transition of one atom from its lower (upper) to
its upper (lower) state. In a situation where only non-resonant processes contribute, the
full Dicke model present a second order phase transition from the ordinary fluorescent to
the super-radiant phase respectively, at some critical temperature β−1

c and also a quantum
phase transition, i.e., a phase transition at zero temperature. In the last case there are no
thermal excitations, therefore the phase transition is driven by the quantum fluctuations.
The interesting result is the fact that it is possible to have a condensate with super-radiance
in a system of N two-level atoms coupled with one mode of a bosonic field where only
non-resonant processes contribute.

In the Ref. [67], still neglecting the direct interaction between the atoms, it was con-
sidered also two different models, assuming that a single quantized mode of a bosonic field
interacts with a ensemble of N identical two-level atoms. Again we assume that the system
is in thermal equilibrium with a reservoir at temperature β−1. Analytic properties of the
partition functions of the models were also investigated. First, it was study a modified
version of the model discussed by Chang and Chakravarty, Legget and others [68] [69] [70]
[71], which has been used to analyze dissipation in quantum computers. Owing to the cou-
pling between the two-level systems and a bosonic reservoir, this model presents destruction
of quantum coherence without decay of population. Since the interaction Hamiltonian of
the model generates a quite particular non-resonant processes, it is shown that the parti-
tion function is analytic for all temperatures, and therefore there is no second order phase
transition in the model. Second, it was investigated a model where the coupling between
the bosonic mode and N two-level atoms is intensity dependent [72] [73] [74], introducing
also the couplings g1 and g2 for rotating and counter-rotating terms respectively. At low
temperatures, the contribution coming from the counter-rotating terms dominates over the
rotating ones. When the coupling constant is given by g2 = (ω0 Ω)

1
2 , where ω0 is the energy

of the single-mode bosonic field and Ω is the energy gap of the atoms, a quantum phase
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transition appears.
In this paper the physical system in consideration is an ensemble of two-level atoms in-

teracting with a single mode of a bosonic field. It is a natural question to ask if non-Gaussian
terms can change the critical behavior of this spin-boson model. We study two models, the
full Dicke model and the same model where we include the dipole-dipole interaction term
between the two-level atoms. We proved that the critical temperature that characterize the
phase transition from fluorescent to super-radiant phase is the same in both models. Also
the quantum phase transitions, at some values of the physical parameters of both models are
the same. We are using the path integral approach with the functional integration method
to investigate the thermodynamic of the models, which is given by the analytic properties
of the partition function. The paper is organized as follows. In section II we present the
fermionic full Dicke model and the model with the dipole-dipole interaction. In section
III we discuss the functional integral for the full Dicke model. In section IV we study the
full Dicke model with the dipole-dipole interaction. Conclusion are given in section V. In
the Appendix the theory of pure and mixed ensembles and the reduced density operator is
briefly presented. In the paper we use kB = c = h̄ = 1.

2 The N two-level atoms-Bose field interaction Hamil-

tonians

In this section we consider a very general situation where the system under investigation
contains a large number of two-level atoms. In order to describe the dynamics of the the
two-level atoms and the bosonic mode we have to introduce the Hamiltonian governing the
interaction of the quantized Bose field with free atoms [75] [76]. Free means that there is no
interaction between the atoms. Therefore let us consider a Bose quantum system B, with
Hilbert space H(B) which is coupled with N atoms, with Hilbert space H(Q). Let us assume
that the whole system is in thermal equilibrium at temperature β−1. The Bose quantum
system is a sub-system of the total system living in the tensor product space H(B) ⊗ H(Q).
Let us denote byHB the Hamiltonian of the quantized Bose field, byHQ the free Hamiltonian
of the N two-level atoms and HI the Hamiltonian describing the interaction between the
quantized Bose field and the N two-level atoms. The Hamiltonian for the total system can
be written as

H = HB ⊗ IQ + IB ⊗ HQ + δHI , (1)

where IB and IQ denotes the identities in the Hilbert spaces of the quantized Bose field and
the N atoms. In the Eq. (1), δ is a small coupling constant between the atoms and the
quantized Bose field.

The main purpose of this section is to discuss N -atoms-Bose field interaction Hamilto-
nian. Therefore, let us introduce the Dicke operators to describe each atom. The free j− th
atom Hamiltonian will be denoted by H

(j)
D , since we are using the Dicke representation.

Therefore, we have

H
(j)
D | i 〉j = ω

(j)
i | i 〉j, (2)

where | i 〉j are orthogonal energy eigenstates accessible to the j − th atom and ω
(j)
i are the

respective eigenfrequencies. Using Eq. (2) and the orthonormality of the energy eigenstates
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we can write the j − th atom Hamiltonian H
(j)
D as

H
(j)
D =

2∑
i=1

ω
(j)
i (| i 〉 〈 i| )j. (3)

Let us define the pseudo-spin operators σz(j), σ
+
(j) and σ−(j) for each atom by

σz(j) =
1

2
(|2 〉 〈 2| − |1 〉 〈 1| )j, (4)

σ+
(j) = (|2 〉 〈 1| )j, (5)

and finally
σ−(j) = (|1 〉 〈 2| )j. (6)

Combining Eq. (3) and Eq. (4), the j − th atom Hamiltonian can be written as

H
(j)
D = Ω(j) σz(j) +

1

2

(
ω

(j)
1 + ω

(j)
2

)
, (7)

where the energy gap between the energy eigenstates of the j − th atom is given by

Ω(j) = ω
(j)
2 − ω

(j)
1 . (8)

Shifting the zero of energy to 1
2
(ω

(j)
1 + ω

(j)
2 ) for each atom, the j − th atomic Hamiltonian

given by Eq. (7) can be rewritten as

H
(j)
D = Ω(j) σz(j). (9)

Note that the pseudo-spin operators σ+
(j), σ

−
(j) and σz(j) satisfy the standard angular momen-

tum commutation relations corresponding to spin 1
2

operators, i.e.,[
σ+

(j), σ
−
(j)

]
= 2σz(j), (10)[

σz(j), σ
+
(j)

]
= σ+

(j), (11)

and finally [
σz(j), σ

−
(j)

]
= −σ−(j). (12)

The model that we are interested is composed by the Hamiltonian of the atoms, with the

contribution of the quantized Bose field HS, and the interaction Hamiltonian H
(j)
I . The

Hamiltonian of the total system is given by

H = IB ⊗ HQ +HB ⊗ IQ + δHI =

IB ⊗ Ω
∞∑
j=1

σz(j) +
∞∑
k=1

ωk b
†
k bk ⊗ IQ +

1√
N

N∑
j=1

∞∑
k=1

gkj
(
bk + b†k

)
⊗
(
σ+

(j) + σ−(j)

)
. (13)

where the first summation in the right hand side is

N∑
j=1

Ω(j) σz(j) = Ω(1) σz(1) ⊗ 1 ⊗ ...⊗ 1 + ...+ 1 ⊗ 1⊗ ...⊗ 1⊗ Ω(N) σz(N), (14)
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and 1 denotes the identity in the Hilbert space of each two-level system. The quantity
gkj is the coupling coefficient. Each two-level system is described by a Hilbert space
H(1),H(2), ...,H(N). The composite atomic system is described by the N -fold tensor product
space H(1) ⊗H(2) ⊗H(3)...

One point which is important to stress is that in the Eq. (13) there are terms so
called counter-rotating terms. In the rotating-wave-approximation we ignore energy non-
conserving terms in which the emission (absorption) of a quantum of a quantized field is
accompanied by the transition of one atom from its lower (upper) to its upper (lower) state.
As we discussed before, the rotating-wave-approximation ignores terms in which the j − th
atomic raising (lowering) operators multiplies the field creation (annihilation) operator.

We can also introduce an atom-atom interaction, which is relevant in the study of entan-
gled states. In an entangled system, the state of the composite system can not be factorized
in to a product of the states of its sub-systems. For example in the case of two two-level
atoms, the interaction Hamiltonian of two atoms including the dipole-dipole interaction
reads

H(qq) =
1

N

2∑
i 6=j

H(ij) σ
+
(i) ⊗ σ

−
(j). (15)

Let us note that the interaction Hamiltonian given by Eq. (15) is a particular case of
the quantum Hamiltonian describing an axially symmetric ferromagnet, with the coupling
constants Jzij and Jij. In terms of the pseudo spin operators we have

H = −
∑
<i,j>

(
Jzij σ

z
(i) σ

z
(j) + Jij

(
σ+

(i)σ
−
(j) + σ−(i)σ

+
(j)

))
. (16)

The < i, j > symbol denotes a summation over pair of first neighbors. In the absence of
the ”dipole-dipole” interaction the pure Hilbert space of the two atomic system is spanned
by the states | g1 〉 ⊗ | g2 〉, | g1 〉 ⊗ | e2 〉, | e1 〉 ⊗ | g2 〉 and | e1 〉 ⊗ | e2 〉, where g and e
denotes respectively the ground and the excited state of the two atomic system. If we
include the dipole-dipole interaction term in the form of Eq. (15), the vectors | g1 〉 ⊗ | e2 〉
and | e1 〉 ⊗ | g2 〉 are not more eigenstates of the Hamiltonian of the atomic system. It can
be shown that these two vectors states must be substituted by the two entangled states,
known in the literature as maximally entangled states [12] [38]

| s 〉 =
1√
2

(| e1 〉 ⊗ | g2 〉+ | g1 〉 ⊗ | e2 〉) (17)

and

| a 〉 =
1√
2

(| e1 〉 ⊗ | g2 〉 − | g1 〉 ⊗ | e2 〉) . (18)

The Hilbert space of the system is spanned by the collective states of the two identical
interacting two-level atoms given respectively by (| g1 〉 ⊗ | g2 〉, | s 〉, | a 〉, | e1 〉 ⊗ | e2 〉). As
stated before, both the states | s 〉 and | a 〉 tell us nothing about the state of the first or
second atom separately. Therefore when we include the dipole-dipole interaction between
the atoms, we open the possibility of realize entangled states.

In the spin-boson model with the dipole-dipole interaction included, we are consider-
ing the question of how does the dipole-dipole interaction change the critical temperature,
where again the system exhibit a phase transition from fluorescence to super-radiance. The
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Hamiltonian for the spin-boson model with the dipole-dipole interaction reads

H =
1

N

N∑
i 6=j

H(ij) σ
+
(i) ⊗ σ

−
(j) +

IB ⊗ Ω
N∑
j=1

σz(j) +
∞∑
k=1

ωk b
†
k bk ⊗ IQ +

1√
N

N∑
j=1

∞∑
k=1

gik
(
bk + b†k

)
⊗
(
σ+

(j) + σ−(j)

)
. (19)

Each two-level atom interact with all other atoms of the ensemble with the same coupling
strength, i.e., H(ij) = λ, and the summation is over all the atoms. This is a model with one
infinite range interaction. This model is based in the models describing spin systems with
long range interaction [77] [78]. In the next section we discuss first the full Dicke model,
showing the presence of a quantum phase transition and also a super-radiant phase at some
critical temperature.

3 The functional integral for the fermionic full Dicke

model

The typical situation in cavity quantum electrodynamics is the case where a single atom
is coupled to a cavity mode. Now suppose N identical two-level atoms in an optical cavity
whose linear dimensions are small compared to the wavelength associated to the bosonic
mode. This ensemble of identical N two-level atoms interacting linearly with one mode of
a bosonic field defines the full Dicke model. The Hamiltonian of the system reads

H = IS ⊗
N∑
j=1

Ω

2
σz(j) + ω0 b

† b ⊗ IB +
g√
N

N∑
j=1

(
b+ b†

)
⊗
(
σ+

(j) + σ−(j)

)
. (20)

In the above equation g is the coupling constant between the atoms and the single mode of
the bosonic field. The b and b† are the boson annihilation and creation operators of mode
excitations that satisfy the usual commutation relation rules.

The aim of this section is to prove that a model with an interaction Hamiltonian where
we take into account non-resonant processes in which the two-level systems and the bosonic
modes are excited or de-excited simultaneously, presents a phase transition from normal
to super-radiant state at some temperature with the presence of a condensate and also a
quantum phase transition at some critical coupling. We should mention that the results of
this section are not original, but by completeness we include in the paper. The Euclidean
action of the model is S, where HF is the full Hamiltonian for the fermionic full Dicke model.
This quantity can be written as

HF = ω0 b
∗(τ) b(τ) +

Ω

2

N∑
i= 1

(
α ∗i (τ)α i(τ) − β ∗i (τ)β i(τ)

)
+

+
g 1√
N

N∑
i= 1

(
α ∗i (τ) β i(τ) b(τ) + α i(τ) β ∗i (τ) b ∗(τ)

)
+

+
g 2√
N

N∑
i= 1

(
α i(τ) β ∗i (τ) b(τ) + α ∗i (τ) β i(τ) b ∗(τ)

)
. (21)
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Note we are introducing two coupling constants, g1 and g2, for the rotating and counter-
rotating terms, respectively. As we discussed before, the main reason for this is that we
are interested in to identify the contribution of the real and virtual processes in the phase
transition with the formation of the condensate. For this purpose we must to find the
partition function of the system, therefore we calculate the formal quotient Z

Z0
, being defined

by the equation:
Z

Z0

=

∫
[dη] eS∫
[dη] eS0

, (22)

where the functional integral is with respect to the complex functions b∗(τ) and b(τ) and
Grassmann Fermi fields α∗i (τ), αi(τ), β∗i (τ) and βi(τ). Here the expression [dη] is the
functional measure. It is possible to show that an expression for Z

Z 0
which is given by [63]

[67]

Z

Z 0

=

[ (
1 − a(0) + 2 c(0)

)(
1 − a(0) − 2 c(0)

) ]− 1/2

∏
ω> 0

[ (
1 − a(ω)

)(
1 − a(−ω)

)
− 4c 2(ω)

]− 1

+

+O(N −1) , (23)

where a(ω) and c(ω) in the above equation are given, respectively, by

a(ω) =

(
g 2

1 (Ω− iω)−1 + g 2
2 (Ω + iω)−1

(ω0 − i ω)

)
tanh

(
β Ω

4

)
(24)

and

c(ω) =

(
g 1 g 2 Ω

(ω 2
0 + ω 2) 1/2 (Ω 2 + ω 2)

)
tanh

(
β Ω

4

)
. (25)

To obtain the thermodynamic limit we have to take the limit (N → ∞) in Eq. (23). We
turn out to the discussion concerning the local elementary excitation of the ground state.
To find the energy spectrum of the bosonic collective excitations we have to use the equation

4 c 2(ω) −
(

1 − a(ω)
)(

1 − a(−ω)
)

= 0 , (26)

and making the analytic continuation (iω → E), we obtain the following equation

1 = −
[

g 4
1 + g 4

2

(ω 2
0 − E 2) (Ω 2 − E 2)

]
tanh 2

(
β Ω

4

)
+

−
[

g 2
1 g

2
2

(ω 2
0 − E 2)

(
1

(Ω − E) 2
+

1

(Ω + E) 2
− 4 Ω 2

(Ω 2 − E 2) 2

)]
tanh 2

(
β Ω

4

)
+

+

[
g 2

1( Ω − E )−1 + g 2
2( Ω + E )−1

(ω0 − E)
+
g 2

1( Ω + E )−1 + g 2
2( Ω − E )−1

(ω0 + E)

]
tanh

(
β Ω

4

)
.

(27)
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Solving the above equation for the case β−1 = β−1
c we find the following roots

E 1 = 0 (28)

and

E 2 =

(
g 1 (Ω + ω 0) 2 + g 2 (Ω − ω 0) 2

(g 1 + g 2)

) 1/2

. (29)

Its low energy state of excitation is a Nambu-Goldstone mode, since the continuous U(1)
symmetry has been broken. Therefore by using the non-relativistic version for the Goldstone
theorem, the energy spectrum can not have a gap above the ground state. Now, let us present
the critical temperature and the energy level spectrum of the collective bosonic excitations
of the model with the rotating-wave approximation, where g1 6= 0 and g2 = 0. The result
obtained by Popov and Fedotov [79] [80] is recovered, where the equation

a(0) = 1 (30)

and
g2

1

ω0Ω
tanh

(
βc Ω

4

)
= 1 , (31)

gives the inverse of the critical temperature, βc. It is given by

βc =
4

Ω
arctanh

(
ω0Ω

g2
1

)
. (32)

The order parameter of the transition is the expectation value of the number of excitation

associated to the bosonic mode per atom, i.e., limN→∞
〈 b† b〉
N
6= 0. Note that again ω0, Ω

and g1 define also a non-zero critical temperature where the partition function is no more
analytic. We may expect a super-radiant phase for the temperature β−1

c given by Eq. (32).
The energy level spectrum of the collective Bose excitations in this case is

E1 = 0 , (33)

and
E2 = Ω + ω0 . (34)

In this case, there is also a quantum phase transition, i.e., a zero temperature phase tran-
sition when the coupling constant g1 attains the value g1 = (ω0 Ω)

1
2 . Now we will show

that is possible to have a condensate with super-radiance in a system of N two-level atoms
coupled with one mode of a Bose field where only virtual processes contribute. In the pure
counter-rotating wave case, i.e., g1 = 0 and g2 6= 0, the inverse of the critical temperature,
βc is given by

βc =
4

Ω
arctanh

(
ω0Ω

g2
2

)
, (35)

and the spectrum of the collective Bose excitations given by

E1 = 0 , (36)

and
E2 = |Ω− ω0| . (37)
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Again, there is a zero temperature phase transition when g2 = (ω0 Ω)
1
2 . In this case there

is no thermal excitations and the phase transition is driven by the quantum fluctuations.
A comment is in order concerning the spectrum of the Bose excitations. In both of the
cases: working with the pure counter-rotating or the rotating-wave terms, there is a phase
transition. In the case of the rotating-wave approximation g1 6= 0 and g2 = 0, there is a
Nambu-Goldstone mode (E = 0). In the pure counter-rotating case g1 = 0 and g2 6= 0
also there is a Nambu-Goldstone (gapless) mode. We show that it is possible to have a
condensate with super-radiance in a system of N two-level atoms coupled with one mode
of a Bose field where only virtual processes contribute. Since the energy E2 ≈ 0, local
elementary excitations of the ground state with low energy can easily be created causing a
significant fluctuation effect. Unfortunately we are not able to evaluate these effect in the
systems.

4 The functional integral for the spin-boson model

with dipole-dipole coupling

The aim of this section is to prove that the introduction of the dipole-dipole interaction
does not modify the temperature of the phase transition from normal to super-radiant
state and the presence of a condensate. Also, the energy spectrum of the collective bosonic
excitations of the model is the same as in the full Dicke model. Introducing the dipole-dipole
coupling in the full Dicke model, where an ensemble of identical N atoms interacts linearly
with one mode of a bosonic field, in this section we use the same approach of functional
integrals to study the thermodynamic of the model [63] [67] [79] [80]. We would like to
stress that in this new situation, the Grassmann functional integrals are not Gaussian. In
order to perform the integrals we introduce auxiliary variables in the calculation. The total
Hamiltonian of this spin-boson model is defined by:

HT =
1

N

N∑
i 6=j

H(ij) σ
+
(i) ⊗ σ

−
(j) +

IB ⊗ Ω
N∑
j=1

σz(j) + ω0 b
† b ⊗ IQ +

g√
N

N∑
j=1

(
b+ b†

)
⊗
(
σ+

(j) + σ−(j)

)
. (38)

In the above equation the quantity g is the coupling constant between the atoms and the
single mode of the bosonic field. The b and b† are the boson annihilation and creation
operators of mode excitations that satisfy the usual commutation relation rules. As usual,
we are using the pseudo-spin operators σ+

(j), σ
−
(j) and σz(j) which satisfy the standard angular

momentum commutation relations corresponding to spin 1
2

operators. We are also shifting

the zero of energy 1
2
(ω1 + ω2) for each atom and defining Ω = ω2 − ω1.

Let us define the Fermi raising and lowering operators α†i , αi, β
†
i and βi, that satisfy

the anti-commutator relations αiα
†
j + α†jαi = δij and βiβ

†
j + β†jβi = δij. We can also define

the following bilinear combination of Fermi operators, α†iαi − β
†
i βi, α

†
iβi and finally β†iαi.

Note that σz( i), σ
+
( i) and σ−( i) obey the same commutation relations as the above bilinear

combination of Fermi operators. Therefore, we can change the pseudo-spin operators of this
spin-boson model by using the bilinear combination of Grassmann Fermi fields
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σz(i) −→ (α†iαi − β
†
i βi) , (39)

σ+
(i) −→ α†iβi , (40)

and finally
σ−(i) −→ β†iαi . (41)

Using the Eq. (38), the Euclidean fermionic action for the model can be written as

S =
∫ β

0
dτ

(
b∗(τ)

∂b(τ)

∂τ
+

N∑
i=1

(
α∗i (τ)

∂αi(τ)

∂τ
+ β∗i (τ)

∂βi(τ)

∂τ

))
−
∫ β

0
dτHF (τ) . (42)

The Euclidean action S is given by Eq. (42) where HF is the full Hamiltonian for the
fermionic full Dicke model with dipole-dipole interaction. As in the previous section, intro-
ducing two coupling constants, g1 and g2, for the rotating and counter-rotating terms, the
Hamiltonian becomes

HF = ω0 b
∗(τ) b(τ) +

Ω

2

N∑
i= 1

(
α ∗i (τ)α i(τ) − β ∗i (τ)β i(τ)

)
+

+
1

N

N∑
i 6=j

H(ij) α
∗
i (τ) β i(τ) β ∗j (τ)α j(τ) +

g 1√
N

N∑
i= 1

(
α ∗i (τ) β i(τ) b(τ) + α i(τ) β ∗i (τ) b ∗(τ)

)
+

+
g 2√
N

N∑
i= 1

(
α i(τ) β ∗i (τ) b(τ) + α ∗i (τ) β i(τ) b ∗(τ)

)
. (43)

Let us define the formal quotient of two functional integrals, i.e., the partition function
of the interacting model and the partition function of the free model. Therefore, we are
interested in to calculate the quantity given by Eq. (22) where S = S(b, b∗, α, α†, β, β†) is
the Euclidean action given by Eq. (42). Let us define S0 = S0(b, b∗, α, α†, β, β†) which is
the free Euclidean action for the free single bosonic mode and the free two-level atoms and
finally [dη] is the path integral measure. Note that in Eq. (22) we have functional integrals
with respect to the complex functions b∗(τ) and b(τ) and Grassmann Fermi fields α∗i (τ),
αi(τ), β∗i (τ) and βi(τ). Since we are using thermal equilibrium boundary conditions in the
imaginary time formalism, the integration variables in Eq. (22) obey periodic boundary
conditions for the Bose field, i.e., b(β) = b(0), and anti-periodic boundary conditions for
the Grassmann Fermi fields i.e., αi(β) = −αi(0) and βi(β) = −βi(0). The free action of the
bosonic field is given by

S0(b, b∗) =
∫ β

0
dτ
(
b∗(τ)

∂b(τ)

∂τ
− ω0 b

∗(τ) b(τ)
)
. (44)

In order to obtain the effective action of the bosonic mode we must integrate over the
Grassmann Fermi fields in the expression given by Eq. (22). The problem now confronting
us is the fact that in the action given by Eq. (43) there is a non-Gaussian term, corresponding
to the dipole-dipole interaction. Although it is not possible to integrate this term directly,
using auxiliary variables of integration we can circumvented this difficult. The following
integral is helpful

exp

− 1

N

N∑
i, j=1

x∗iAijxj

 = (detA)−1
∫ N∏

i=1

dy∗i dyi
−2πi

e
∑N

i, j=1
y∗i A

−1
ij yj+

1√
N

∑N

i=1
yix
∗
i+ 1√

N

∑N

i=1
y∗i xi ,(45)
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where this integral is valid for commutating variables. To continue we have to study the
non-Gaussian contribution to the partition function. In terms of the Grassmann variables
we define R as

R = exp

− 1

N

N∑
i, j=1

∫ β

0
dτ α∗i (τ)βi(τ)Hij β

∗
j (τ)αj(τ)


= exp

− 1

N

N∑
i, j=1

∫ β

0
dτ
(
β∗i (τ)αi(τ)

)∗
Hij β

∗
j (τ)αj(τ)

 , (46)

and since each pair of Grassmann variables αiβ
∗
i and αjβ

∗
j commutes, we have (αiβ

∗
i )(αjβ

∗
j ) =

(αjβ
∗
j )(αiβ

∗
i ). Therefore in the functional version of the model we can substitute the Gaus-

sian integral given in Eq. (45) in Eq. (46). We get

R = a0 (detH)−1
∫

[dr]e
∑N

i,j=1

∫ β
0
dτ r∗i (τ)H−1

ij rj(τ)+ 1√
N

∑N

i=1

∫ β
0
dτ

(
ri(τ)α∗i (τ)βi(τ) + r∗i (τ)β∗i (τ)αi(τ)

)
,(47)

where the auxiliary fields ri(τ) satisfy periodic boundary conditions, i.e., ri(0) = ri(β) and
also r∗i (0) = r∗i (β). In the above expression the quantity a0 is a numerical factor that can
be absorbed in the normalization factor and the term [dr] ≡ ∏N

i [dri][dr
∗
i ] is the functional

measure for the auxiliary complex fields. Substituting the Eq. (47) in the partition function
Z, we obtain

Z = a0 (detH)−1
∫

[dr]e−
∑N

i,j=1

∫ β
0
dτ r∗i (τ)H−1

ij rj(τ)
∫

[dη] eSr , (48)

where in Eq. (48) we have Sr ≡ Sr(ri, r
∗
i , b, b

∗, αi, ...). Consequently the last functional
integral

∫
[dη] eSr depends on the auxiliary fields r∗i (τ) and ri(τ). Moreover, the action Sr

can be separated into a free action for the bosons and a Gaussian fermionic part. The action
Sr can be written in the form

Sr = S0(b, b∗) +
∫ β

0
dτ

N∑
i=1

ρ†i (τ)Mr ρi(τ) . (49)

We would like to stress that in Eq. (49), instead of writing M(ri, r
∗
i , b
∗, b), for simplicity we

use the notation Mr, i.e., Mr ≡ M(ri, r
∗
i , b
∗, b). The column matrix ρ i(τ) is given in terms

of the Grassmann Fermi fields

ρ i(τ) =

 β i(τ)

α i(τ)

 ,
ρ†i(τ) =

(
β∗i(τ) α∗i(τ)

)
(50)

and the matrix Mr is given by

Mr =

 ∂τ + Ω
2

−N−1/2

(
g1 b

∗ (τ) + g2 b (τ)− r∗i (τ)
)

−N−1/2

(
g1 b (τ) + g2 b

∗ (τ)− ri(τ)
)

∂τ − Ω
2

 .

(51)



CBPF-NF-014/09 13

The complex functions and Grassmann Fermi fields ri(τ), b(τ), αi(τ) and βi(τ) can be
represented in terms of a Fourier expansion. Therefore, we have

ri(τ) = β−1/2
∑
v

ri(v) eivτ , (52)

b(τ) = β−1/2
∑
ω

b(ω) eiωτ , (53)

and
ρi(τ) = β−1/2

∑
p

ρi(p) e
ipτ . (54)

Since the complex functions ri(τ) and b(τ) obey periodic boundary conditions, and the
Grassmann Fermi fields αi(τ) and βi(τ) obey anti-periodic boundary conditions, we have

that v = 2πn
β

, ω = 2πn
β

and p = (2n+1)π
β

, for integer n. They are respectively the bosonic and

fermionic Matsubara frequencies. Substituting the Fourier expansions in the action given
by Eq. (49) we get

Sr =
∑
ω

(iω − ω0) b∗(ω) b(ω) +
∑
p, q

N∑
i=1

ρ†i (p)Mp q ρi(q) , (55)

where the matrix Mp q ≡Mp q(ri, r
∗
i , b, b

∗) is given by

Mp q =

 (ip+ Ω/2)δp q −(N β)−1/2Q†p q

−(N β)−1/2Qp q (ip− Ω/2)δp q

 (56)

and the function Qp q ≡ Qp q(ri, b, b
∗) can be written as

Qp q = g1 b(p− q) + g2 b
∗(q − p)− ri(p− q) . (57)

Since the integrals with respect to the Fermi fields are Gaussian, we may integrate over
these Grassmann variables. This procedure yields

∫
[ dη(ρ)] exp

(∑
p,q

N∑
i=1

ρ†i (p)Mp q ρi(q)
)

=
N∏
i=1

detMi , (58)

where the matrix Mi ≡Mi(ri, r
∗
i , b
∗, b) is a block matrix of the following form

Mi =

 iP + Ω
2
I −(Nβ)−1/2Q†

−(Nβ)−1/2Q iP − Ω
2
I

 . (59)

In the above equation I is the identity matrix and the components of matrix P are Pp q =
p δp q and Q was defined in Eq. (57). Our aim is to present the quotient Z

Z0
, defined in Eq.

(22). Combining the results obtained in Eq. (48), Eq. (49) and Eq. (58) we get that Z
Z0

is
given by

(detH)−1
∫

[ dr]e
∑N

i,j=1

∑
v
r∗i (v)H−1

ij rj(v) ∫ [ dη(b)]e
∑

ω
(iω−ω0)b∗(ω)b(ω)∏N

j=1 detMj∫
[ dη(b)]e

∑
ω

(iω−ω0)b∗(ω)b(ω)detNM(0, 0)
(60)
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where the functional measure [ dη(b)] is defined by

[ dη(b)] =
∏
ω

db(ω) db∗(ω) . (61)

In the Eq. (60) the matrix M(0, 0) is given by

M(0, 0) =

 iP + Ω
2
I 0

0 iP − Ω
2
I

 . (62)

In order to simplify the calculations, let us change variables in the following way:

b(ω)→
(

π

(ω0 − iω)

)1/2

b(ω) (63)

and

b∗(ω)→
(

π

(ω0 − iω)

)1/2

b∗(ω) . (64)

Note that Eq. (64) is not the complex conjugate of Eq. (63). It is not difficult to see that
after these changes of variables, the denominator of the Eq. (60) turns out to be equal to
unity ∫

[ dη(b)] exp
(
−π

∑
ω

b∗(ω)b(ω)
)

= 1 . (65)

We can express the ratio Z
Z0

by the integral

Z

Z0

= (detH)−1
∫

[ dr] e
∑N

i,j=1

∑
v
r∗i (v)H−1

ij rj(v)
∫

[ dη(b)] exp
(
S eff (b)

)
, (66)

where after doing the Fourier transform for the auxiliary fields the functional measure be-
comes [ dr] =

∏N
i

∏
ω dri(ω)dr∗i (ω). The effective action of the bosonic mode, S eff (b) is

given by

S eff = − π
∑
ω

b ∗(ω) b(ω) +
N∑
i=1

ln det (I + Ai) . (67)

The matrix Ai in the determinant of the above equation is given by

det(I + Ai) = det
(
M−1/2(0, 0)Mi(b

∗, b)M−1/2(0, 0)
)
. (68)

Performing the product of matrices we obtain the matrix A afterwards. Therefore we can
write

Ai =

 0 Bi

−Ci 0

 . (69)

The components of the matrices Bi and Ci are given by

(Bi)p q = −
(

1

βN

) 1
2
(
iq − Ω

2

)− 1
2
(
ip+

Ω

2

)− 1
2

×

×
( √

πg 1 b
∗ (q − p)√

ω0 − i(q − p)
+

√
πg 2 b (p− q)√
ω0 − i(p− q)

− r∗i (q − p)
)

(70)
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and

(Ci)p q =

(
1

βN

) 1
2
(
ip− Ω

2

)− 1
2
(
iq +

Ω

2

)− 1
2

×

×
( √

πg 1 b (p− q)√
ω0 − i(p− q)

+

√
πg 2 b

∗ (q − p)√
ω0 − i(q − p)

− ri(p− q)
)
. (71)

In order to perform the functional integral given by Eq. (66) we must to find a manageable
expression for det (I + A). For this case we can use the following identity

det (I + Ai) = det (I +BiCi)→ exp
(
tr(BiCi)

)
. (72)

So using this approximation given by Eq. (72) we can find an expression for the ratio Z
Z0

defined in Eq. (66) of the following form

Z

Z0

= (detH)−1
∫

[ dr]e

∑N

i,j=1

∑
v
ri(v)

(
H−1
ij −

1
N

tanh(β Ω
4 )

δij
iv−Ω

)
r∗j (v) Zr

Z0

, (73)

where

Zr
Z0

=
∫

[dη(b)] e
−π

∑
ω
b ∗(ω)

(
1− a(ω)

)
b(ω) +π

∑
ω

(
b(ω) c(ω) b(−ω) + b ∗(ω) c(ω) b ∗(−ω)

)
×

× e
π
N

∑
ω

(
d1(ω) b(ω) + d2(ω) b∗(ω)

)
. (74)

In the Eq. (73) the coefficients a(ω) and c(ω) are given respectively by

a(ω) =

(
g 2

1 (Ω− iω)−1 + g 2
2 (Ω + iω)−1

(ω0 − i ω)

)
tanh

(
β Ω

4

)
, (75)

c(ω) =

(
g 1 g 2 Ω

(ω 2
0 + ω 2) 1/2 (Ω 2 + ω 2)

)
tanh

(
β Ω

4

)
, (76)

d1(ω) = − 1√
π
√
ω0 − i ω

(
g1

Ω− iω
∑
i

r∗i (ω) +
g2

Ω + iω

∑
i

ri(−ω)

)
tanh

(
β Ω

4

)
(77)

and

d2(ω) = − 1√
π
√
ω0 − i ω

(
g1

Ω− iω
∑
i

ri(ω) +
g2

Ω + iω

∑
i

r∗i (−ω)

)
tanh

(
β Ω

4

)
. (78)

Performing the Gaussian integral in the bosonic variables in the Eq. (74), we finally obtain

Zr
Z0

= I0 × exp

 1

N2

∑
ω

A1(ω)(
1− a(−ω)

) (
1− a(ω)

)
− 4 c2(ω)

∑
ij

ri(ω) r∗j (ω) +

+
∑
ω

A2(ω)(
1− a(−ω)

) (
1− a(ω)

)
− 4 c2(ω)

∑
ij

ri(ω) rj(−ω) +
∑
ij

r∗i (ω) r∗j (−ω)

 ,(79)
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where I0, A1(ω) and A2(ω) are defined respectively by

I0 =
1(

1− a(0)− 2 c(0)
)1/2(

1− a(0) + 2 c(0)
)1/2

×

×
∏
ω

1(
1− a(−ω)

)(
1− a(ω)

)
− 4 c2(ω)

,

A1(ω) =
tanh

(
βΩ
4

)
π
(
Ω− iω

)2

(
g2

1

ω0 − iω
+

g2
2

ω0 + iω
− tanh

(
β Ω

4

)
(g2

1 − g2
2)2

(ω2
0 − ω2)(Ω + iω)

)
,

A2(ω) =
g1 g2 ω0

π (ω2
0 − ω2)(Ω2 + ω2)

tanh
(
β Ω

4

)
. (80)

Comparing the partition function for the full Dicke model in Eq. (23), with the partition
function of the model with dipole-dipole coupling in Eqs. (73) and (79), we can see that
the poles in the partition function are the same and therefore the temperature of the phase
transition from normal to super-radiant state and the presence of a condensate is not affected
by the dipole-dipole coupling. The energy level spectrum of the collective bosonic excitations
of the model is the same as the original full Dicke model. The quantum phase transition
is not modified in this situation. An important question here, is why the full Dicke model
with the dipole-dipole interaction has the same critical behavior as the original model?

5 Conclusions

With the development of quantum information and its application in computation and
communication the entangled states have been attracted enormous interest, since several
quantum protocols can be realized exclusively with the help of entangled states. For exam-
ple new features in cryptography becomes possible utilizing the non-classical properties of
entangled pairs of particles. The basic problem that arises in this area of research is how to
measuring entanglement in many-body systems. The Schmidt decomposition can be used to
measure correlation between two sub-systems in a joint pure state. An important property
is that the reduced matrices (see appendix A) of both sub-systems written in the Schmidt
basis are diagonal and have the same positive spectrum. For more than two entangled
sub-systems the Schmidt decomposition is in general impossible to be implemented. For
mixed states of two or more subsystems there is not a Schmidt decomposition, and different
measures of entanglement are nonequivalent. The structure of entanglement in many-body
systems is much more difficult to study then for bipartite systems.

In a system of N atoms, the presence of the dipole-dipole interaction generates entangled
states. If entangled has been created in a portion of the many-body system, the critical
behavior of the system can changes revealing the strong correlation between the atoms. In
this work we investigate if the entanglement between the atoms, generated by the dipole-
dipole interaction, changes the critical properties of the system, as the critical temperature
that characterize the phase transition from fluorescent to super-radiant phase and also the
spectrum of the bosonic excitation of the model.

First we consider the full Dicke model composed by a single bosonic mode and an en-
semble of N identical two-level atoms. Assuming that the system is in thermal equilibrium
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with a reservoir at temperature β−1, we consider the situation where the coupling between
the bosonic mode and the atoms generates resonant and non-resonant processes. Secondly
we consider the full Dicke spin-boson model with the dipole-dipole interaction between the
atoms. We show that, introducing the dipole-dipole interaction term, the critical temper-
ature that characterize the phase transition from fluorescent to super-radiant phase does
not change. Also, the spectrum of the bosonic excitations of the model is unaffected by
the dipole-dipole interaction. Finally, the quantum phase transition is not modified by the
dipole-dipole interaction. Furthermore, as discussed previously there is a zero temperature
phase transition when g1 = 0 and g2 6= 0. In this case there are no thermal excitations
and the phase transition is driven by the quantum fluctuations. An important point is that
there is a close connection between quantum phase transition and entanglement. A quan-
tum phase transition can be characterized by long range correlations. As the same way, the
definition of entangled pure state is that in the system at least one pair of the observables
has quantum correlations.

We might ask why we have obtained this result, since we expect at principle that the non-
Gaussian terms in the Hamiltonian can modify phase transition properties. Remember that
the spin-boson Hamiltonian is a particular case of the Hamiltonian describing a system of
bound charges and a radiation field in the dipole approximation [81], where we are assuming
that the system is confined in a region whose linear dimensions are small compared with the
wavelength of the bosonic mode. In the full Dicke model, field non-uniformity is disregarded.
All atoms are in the same environment. The introduction of the dipole-dipole interaction
with infinite range does not modify this situation. Each two-level atoms is coupled to
infinitely many others. The above discussion leads us to conclude that we are solving mean-
field models. Other heuristic argument is related to the fact that mean field theories give
exactly the right description of critical properties for large d, where d is the dimensionality
of space. Since our results are independent of the dimensionality, we are solving mean field
models. That is the reason why the dipole-dipole interaction is not able to modify the
critical properties for this cooperative phenomena of super-radiance.

We conjecture that the critical properties are different if we go beyond the mean field
approximation. First let us assume that linear dimensions of the system are not small com-
pared with the wavelength associated to the bosonic mode. In this case we have to take
into account the spatial variation in the coupling coefficient between the pseudo-spin oper-
ators σ+

(j), σ
−
(j) and the boson annihilation and creation operators of mode excitations. We

note that Li and co-workers [82] investigated the quantum phase transition and the super-
radiant phase in the full Dicke model assuming that the dimensions of the atomic ensemble
are much larger than the wavelength of the bosonic mode. This system has a critical tem-
perature of the phase transition from normal to super-radiant state and also the presence
of a condensate. With the introduction of the dipole-dipole term, the critical temperature
of the super-radiant phase transition must change. This subject is under investigation by
the authors.
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A The theory of pure and mixed states and the re-

duced density operator.

In the theory of quantum systems, the notion of composite quantum systems is funda-
mental. The Hilbert space of a composite quantum system is the tensor product space of the
Hilbert spaces describing its sub-systems. Being more specific, let us consider a bi-partite
quantum system S made of two quantum systems S(1) and S(2), with respective Hilbert
spaces H(1) and H(2). The state space H of the combined system (S(1) + S(2)) is given
by the tensor product of the Hilbert spaces pertaining to the sub-systems S(1) and S(2).
Therefore we have that the total Hilbert space can be written as

H = H(1) ⊗ H(2). (A.1)

If we take fixed orthonormal basis {|ϕ
i

(1) 〉} and {|ϕ
j

(2) 〉} in H(1) and H(2) respectively, a
general state |ψ 〉 in the tensor product space H may be written as

|ψ 〉 =
∑
i, j

α i j |ϕi (1) 〉 ⊗ |ϕ
j

(2) 〉. (A.2)

where {|ϕ
i

(1) 〉 ⊗ |ϕ
j

(2) 〉} is a basis of the tensor product space.

Suppose that we have an operator A (1) acting only in H(1) and an operator A (2) acting
only in H(2). Therefore we define the tensor product A (1) ⊗ A (2) showing how does this
quantity acts on any element of the basis of the tensor product space. We have(

A (1) ⊗ A (2)
) (
|ϕ

i

(1) 〉 ⊗ |ϕ
j

(2) 〉
)

=
(
A (1) |ϕ

i

(1) 〉
)
⊗
(
A (2) |ϕ

j

(2) 〉
)
. (A.3)

This important definition lead us to its linear extension for an arbitrary state |ψ 〉 . Using
the Eq. (A.2) and the Eq. (A.3) we get(

A (1) ⊗ A (2)
)
|ψ 〉 =

∑
i, j

α i j

(
A (1)|ϕ

i

(1) 〉
)
⊗
(
A (2) |ϕ

j

(2) 〉
)
. (A.4)

We also have that any product of operators acting in H can be represented as a linear
combination of tensor products. We have

A =
∑
α

(
A α

(1) ⊗ A α
(2)
)
. (A.5)

The observable of the sub-system S (1) take the form A (1) ⊗ I (2), while observable of sub-
system S (2) take the form I (1) ⊗ A (2).

Suppose that we are interested in the behavior of the sub-system S(1). This behav-
ior is determined by the expectation values of the operators {X(1)

α
}, where the label (1)

means that each operator acts on the states of the subsystem S(1) alone, and the index
α = 1, 2, ..., N means operators in H(1). In other words, the label α denotes the family of

commutating operators
(

[Xα
(1), Xβ

(1)] = 0
)
, acting in the state |ψ 〉. Since the state vector

|ψ 〉 of the combined system can be expanded using the orthonormal basis {|ϕ
i

(1) 〉} and
{|ϕ

j
(2) 〉} we get for any operator {X(1) }, is its expectation value given by

〈X(1)〉 = 〈 ψ|X(1) |ψ 〉. (A.6)
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Note that we drop the indices α in the operator. Using the Eq. (A.2), the fact that
the operator X(1) does not act on the vectors that span the Hilbert space H(2), and the
orthonormality of the { |ϕ

j
(2) 〉 } basis, we get

〈X(1) 〉 =
∑
ijk

α∗kjαij〈ϕk (1) |X(1) |ϕ
i

(1)〉. (A.7)

Defining cik =
∑
j αij α

∗
kj, we have that the expectation value of the operator X(1) in a

general state |ψ 〉, defined by 〈X(1) 〉, is given by

〈X(1) 〉 =
∑
ik

cik〈ϕk (1) |X(1) |ϕ
i

(1)〉, (A.8)

or
〈X(1) 〉 = tr [X(1)ρ(1) ], (A.9)

where
ρ(1) =

∑
ik

cik|ϕi (1)〉 〈ϕ
k

(1) |. (A.10)

The quantity ρ (1) is called the density operator of the sub-system S(1). The density operator
describes the state of the system interacting with other system in the same way as the state
vector describes the state of an isolated system.

Is a fundamental interest to measuring entangled in many body systems, where we have
usually mixed sates. For simplicity, let us consider a two-component quantum system S(1)

and S(2) in a pure state |Φ 〉. A pure state is separable if and only if the reduced density
operators represent pure states. Essentially separable states satisfy the classical separability
principle. In a bipartite quantum system with an entangled state |Φs 〉, measurements in
its sub-systems show that |Φs 〉 contain information in the measurements in S(1) and S(2)

and also correlation between the measurements. To test whether the sub-systems S(1) and
S(2) are entangled or not, we perform the Schmidt decomposition of the state vector |Φ 〉.
If the Schmidt number is greater then one, the state |Φ 〉 is an entangled state. Therefore
a pure state is entangled if and only of the reduced density operators for the sub-systems
describe mixed states. Using the Schmidt decomposition it is possible to evaluate the

density operators ρ
(1)
mixed = Tr(2)|Φ 〉 〈Φ | and ρ

(2)
mixed = Tr(1)|Φ 〉 〈Φ |. The two reduced

density operators have the same eigenvalues, and the two sub-systems have identical von
Neumann entropies. On the other hand, if the Schmidt number is one, the reduced density
operators for S(1) or S(2) represent pure states and the bipartite system is not an entangled
state. The von Neumann entropy of a pure state is zero. Suppose the operators X(1)

and X(2) defined as X (1) ⊗ I (2) and I (1) ⊗ X (2). The fluctuation operator are defined as
δ X(1) = X(1)−〈X(1)〉 and δ X(2) = X(2)−〈X(2)〉. In practice, a pure state is separable if and
only if the quantum fluctuations of all observable (linear self-adjoint operators acting in the
respective Hilbert space of each sub-system) are uncorrelated. If at least one pair of linear
self-adjoint operators have correlated quantum fluctuations, the pure state is entangled.

Note that the von Neumann entropy attains the maximum S(ρ) = lnN , in the case of
completely mixed state where ρ = 1

N

∑
i
|ψi〉 〈ψi|, where N is the dimension of the corre-

sponding Hilbert space. Thus quantity is a monotonically function of the degree of entangled
between a pair of sub-systems. Therefore the von Neumannn entropy of the density matrix
for S(1) or S(2) of the bipartite system is a measurement of entangled [42].
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