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Abstract

The connection of (split-)division algebras with Clifford algebras and super-
symmetry is investigated. At first we introduce the class of superalgebras con-
structed from any given (split-)division algebra. We further specify which real
Clifford algebras and real fundamental spinors can be reexpressed in terms of
split-quaternions. Finally, we construct generalized supersymmetries admitting
bosonic tensorial central charges in terms of (split-)division algebras. In particu-
lar we prove that split-octonions allow to introduce a split-octonionic M -algebra
which extends to the (6, 5) signature the properties of the 11-dimensional octo-
nionic M -algebras (which only exist in the (10, 1) Minkowskian and (2, 9) signa-
tures).

CBPF-NF-014/06

∗e-mail: zhanna@cbpf.br
†e-mail: toppan@cbpf.br



CBPF-NF-014/06 2

1 Introduction

The connection between division algebras and supersymmetry is well established since
the [1] paper. Along the years, this connection has been further clarified, see e.g. [2]. It
is also well-known that division algebras are at the core of the classification of Clifford
algebras and spinors, [3] and [4]. The inter-relation of these mathematical structures
has played a major role in a vast set of physical applications, ranging from supergravity
(as well as superstrings and M-theory) to the construction of supersymmetric integrable
models. Comparatively less is known, however, when we consider the case of the
split version of division algebras (see [5] for an introduction to split-division algebras).
Split-division algebras have been used with profit both in mathematical applications
like, e.g., the generalization of the Tits-Freudenthal magic square construction to split
division algebras [6], as well as in more physically motivated applications, like the recent
interesting reformulation of electrodynamics, see [7] and [8], in terms of split-octonions.

The purpose of this paper is to clarify the interrelation between (split)-division
algebras and the graded algebras that can be obtained from them, as well as the role
played by the split-division algebras in the construction of Clifford algebras and spinors.
Finally, we will construct the generalized supersymmetries associated to them. As an
extra bonus, we will be able to solve a puzzle concerning the octonionic version of
the M-theory, see [9] and [10], proving the existence of a split-octonionic M-algebra
existing in the exotic (6, 5) signature (more on that later).

This paper is so conceived, at first we introduce the whole set of (split)-division
algebras through the unified framework provided by the (generalized) Cayley-Dickson
doubling construction. We further point out which graded algebras can be obtained as
(anti-)commutators algebras from a given split-division algebra composition law. Ta-
bles will further be produced, extending to split-quaternions the results of [3] concerning
the division-algebra character of Clifford algebras and spinors. In given space-time sig-
natures spinors which are valued either in the split-quaternions or in the split-octonions
are produced. This allows to extend to split-quaternions or to split-octonions the con-
struction of (constrained) generalized supersymmetries presented in [11], [12] and [13].
The split-octonionic M-algebra, existing in the (6, 5) signature, is a particular example
of this construction. In the Conclusions we make further comments about the implica-
tions and the physical relevance of the results here obtained. For the moment we point
out that higher-dimensional (generalized) supersymmetries formulated in space-time
dimensions D ≥ 8 admit the peculiar feature that they come in several related ver-
sions in given signatures. The associated supersymmetric theories are all dually related
(“the space-time dualities” of ref. [14]). The 10-dimensional superstrings, e.g., only
exist in three ((9, 1), (1, 9) and (5, 5)) signatures, the latter presenting five time di-
rections. The 11-dimensional supergravities are encountered, besides the Minkowskian
(10, 1) signature, also in the exotic (2, 9) and (6, 5) signatures. It was proven in [15]
that such dually-related versions are in consequence of the triality of the D = 8 dimen-
sions (the dually related theories are indeed triality related and close the S3 group).
We recall that it is eight-dimensional the transverse space of both the light-cone for-
mulation of the 10-dimensional superstrings and of the supermembranes evolving in
a flat 11-dimensional target spacetime. In D = 8, the triality allowed signatures are
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(8, 0), (0, 8) and the exotic (4, 4). Both the original Cartan’s triality, see [16], and the
space-time triality of ref. [15] are a consequence of the octonions. On the other hand,
it was quite puzzling that, while the standard M-algebra (based on real spinors) exists
for the whole set of above signatures, the octonionic M-algebra of ref. [9] and [10] only
exists in (10, 1) and (2, 9) (the (6, 5) signature is missing). The reason being essentially
due to the fact that the seven imaginary octonions have to be accommodated either in
the time-like or in the space-like directions. Obviously 7 cannot enter either 6 or 5. By
relaxing the condition of dealing with division-algebras, we can here solve the puzzle
by expressing the counterpart of the octonionic M-algebra in the exotic signature (6, 5)
in terms of the split-octonions. It is worth mentioning that the (6, 5) space-time also
carries a supersymmetry based on split-quaternionic spinors.

The paper is structured as follows: in Section 2 we revisit the split-division alge-
bras. In Section 3 we construct the (graded)-algebras associated to the (split)-division
algebras. The tables relating Clifford algebras and spinors to split-quaternions are
furnished in Section 4. The generalized supersymmetries based on split-division alge-
bras and the split-octonionic M-algebra are presented in Section 5. We produce here
also the free actions for split-quaternionic and split-octonionic spinors. In the Conclu-
sions, we provide comments on the results here obtained. In order to make the paper
self-consistent we present in appendix the generalized Cayley-Dickson doubling.

2 Split-division algebras revisited

The construction of split-division algebras in terms of the Cayley-Dickson doubling pro-
cedure is reviewed in the Appendix. For later purposes it is useful to explicitly present
here the (split-)division algebras structure constants, conjugations and quadratic forms

in the case of quaternions (H), split-quaternions (H̃), octonions (O) and split-octonions

(Õ). Complex (C) and split-complex (C̃) numbers are immediately recovered as sub-
algebra of, let’s say, the split-quaternions.

Let us introduce at first the quaternions. The three imaginary quaternions ei ∈ H

(i = 1, 2, 3) satisfy the relations

ei · ej = −δij1 + εijkek (2.1)

(εijk is the totally antisymmetric tensor, normalized s.t. ε123 = 1).
The conjugation and the quadratic form (norm) are respectively given by

ei
∗ = −ei,

N(ei) = 1. (2.2)

For what concerns the octonions, we can introduce them as as O = H− (see Ap-
pendix). Therefore, the seven imaginary octonions Ei are recovered through the posi-
tions

Ei = (ei, 0)

E3+i = (0, ei)

E7 = −(0, 1). (2.3)
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They satisfy the relations

Ei · Ej = −δij1 + CijkEk, (2.4)

while their conjugation and quadratic form are respectively given by

Ei
∗ = −Ei,

N(Ei) = 1. (2.5)

In the above (2.4) formula the Cijk’s are the totally antisymmetric octonionic structure
constants, non-vanishing only for the triples∗

C123 = C147 = C165 = C246 = C257 = C354 = C367 = 1. (2.6)

With a similar procedure the split octonions can be expressed through the identificaion
Õ = H+. The seven imaginary split-octonions Ẽi are given, as before, by

Ẽi = (ei, 0)

Ẽ3+i = (0, ei)

Ẽ7 = −(0, 1). (2.7)

They satisfy the relations

Ẽi · Ẽj = −ηij1 + CijkηkrẼr, (2.8)

together with

Ẽ∗
i = −Ẽi,

N(Ẽi) = ηii. (2.9)

In the above formulas ηij denotes the diagonal matrix (+ + + − − − −) with three
positive and four negative eigenvalues (normalized to ±1).

The quaternionic subalgebra H of the split octonions is obtained by restricting the
imaginary split-octonions Ẽi to the values i = 1, 2, 3.

On the other hand, the split-quaternionic subalgebra H̃ is recovered by taking any
subset of three elements lying in the six other lines of the Fano’s projective plane
(namely, the triples (147), (165), (246), (257), (354) and (367)).

The split-quaternions subalgebra can be explicitly presented as follows, in terms of
the three generators ẽi (i = 1, 2, 3),

ẽi · ẽj = −ηij1 + εijkηkrẽr, (2.10)

with conjugation and quadratic form given by

ẽ∗i = −ẽi,

N(ẽi) = ηii. (2.11)

∗The seven imaginary octonions can be associated to the points of the seven-dimensional projective
Fano’s plane, while the triples correspond to the seven lines of this plane, see [16] for details.



CBPF-NF-014/06 5

ηij is now the diagonal matrix (−− +).
The split quaternions admit a faithful representation in terms of 2×2 real matrices

given by

τ1 =

(
0 1
1 0

)
τ2 =

(
1 0
0 −1

)

τA =

(
0 1
−1 0

)
12 =

(
1 0
0 1

)
(2.12)

The conjugate element of a generic split-quaternion X ∈ H̃ is represented by

X∗ = −τAXT τA. (2.13)

3 Graded algebras from (split-)division algebras

The multiplication “·” of a composition algebra A induces on A the structure of a
(graded) algebra A × A → A of (anti)commutators. Namely, for a, b ∈ A, we can
introduce the algebra of graded brackets defined through

[a, b} = ab + (−1)εaεbba, (3.14)

where εa,b ≡ 0, 1 mod 2 corresponds to the Z2 grading of the generators a, b respectively.
The (anti)commutator algebra is a (graded) Lie algebra if the multiplication is asso-
ciative. If the multiplication is alternative (see the Appendix), the (anti)commutator
algebra is a (graded) Malcev algebra (see [17] for its definition).

The Z2 grading implies for A the decomposition A = A0 ⊕ A1 such that, for non-
vanishing [a, b},

deg([a, b}) = deg(a) + deg(b) ≡ εa + εb (mod 2) (3.15)

We can easily list the set of admissible Z2 gradings for each one of the four division
algebras (the R case is trivial). As a corollary, this gives us the list of the admissible
superalgebras based on each division algebra. ¿From the previous section results we
know that the split-division algebras structure constants are recovered, up to a nor-
malization factor, from the structure constants of their corresponding division algebra.
For this reason the list of the admissible Z2 gradings (and associated superalgebras)
of division algebras can also be regarded as the list of admissible Z2 gradings (and
associated superalgebras) of the split-division algebras . The identity is necessarily an
even (bosonic) element of the (super)algebra and corresponds to a central term. The

(split) imaginary numbers close graded subalgebras of dimension 1 (for C and C̃), 3

(for H and H̃) and 7 (for O and Õ).
It is worth noticing that we can regard the (anti)commutators algebras induced by

the composition law as abstract (super)algebras. In particular this implies that the Z2

superalgebra grading does not necessarily coincide with a Z2 grading of the composition
law (which requires satisfying deg(ab) = deg(a) + deg(b) mod 2). This point can be
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better illustrated with an explicit example. Let’s take the three imaginary quaternions
ei’s. If we assign odd-grading (fermionic character) to e1 and e2, then e3, appearing on
the r.h.s. of the multiplication e1 ·e2, is necessarily even-graded (bosonic). On the other
hand, the anticommutator {e1, e2} is vanishing. As far as the anticommutators alone
are concerned, we can consistently assign odd-grading to e3 as well. In the following we
will denote as “compatible” the restricted class of (super)algebras whose Z2 grading is
an acceptable Z2 grading for the composition law.

The admissible Z2 gradings are expressed by the following table (the last column
refers to the compatible superalgebras). We have

bosons/fermions (super)algebra compatibility

C, C̃ 1B + 0F yes yes
0B + 1F yes yes

H, H̃ 3B + 0F yes yes
2B + 1F no −
1B + 2F yes yes
0B + 3F yes no

O, Õ 7B + 0F yes yes
6B + 1F no −
5B + 2F no −
4B + 3F no −

3B + 4F (a) no −
3B + 4F (b) yes yes
2B + 5F no −
1B + 6F yes no
0B + 7F yes no

(3.16)

There are two distinguished 3B + 4F cases. The second one (b) corresponds to the
three bosonic elements lying on one of the seven lines corresponding to the triples in
(2.6). Without loss of generality, the three octonionic elements in the line can always

be chosen as E1, E2 and E3 (Ẽ1, Ẽ2, Ẽ3 for split-octonions). Without loss of generality

the case (a) can be obtained by taking the three bosonic elements as E1, E2, E4 (Ẽ1,

Ẽ2, Ẽ4 for split-octonions, respectively). There is no superalgebra associated to the
case (a), while a compatible superalgebra is found in the (b) case.

4 (Split-)division algebras, Clifford algebras

and spinors

It is well-known that the Clifford algebras are related to the R, C, H associative division
algebras. The Cl(s, t) Clifford algebra is defined as the enveloping algebra generated
by the gamma-matrices satisfying the relation

ΓiΓj + ΓjΓi = 2ηij , (4.17)
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with ηij a diagonal matrix of (s, t) signature (i.e. s positive, +1, and t negative, −1,
diagonal entries, with s and t denoting, respectively, the number of space-like and
time-like dimensions).

The most general irreducible real matrix representation of a Clifford algebra is
classified according to the property of the most general S matrix commuting with all
the Γ’s ([S, Γi] = 0 for all i). If the most general S is a multiple of the identity, we
get the normal (R) case. Otherwise, S can be the sum of two matrices, the second one
multiple of the square root of −1 (this is the almost complex, C case) or the linear
combination of 4 matrices closing the quaternionic algebra (this is the H case). We
obtain, for s, t ≤ 8, the following table, see [3]

s\t 0 1 2 3 4 5 6 7 8
0 R C H 2H H(2) C(4) R(8) 2R(8) R(16)
1 2R R(2) C(2) H(2) 2H(2) H(4) C(8) R(16) 2R(16)
2 R(2) 2

R(2) R(4) C(4) H(4) 2
H(4) H(8) C(16) R(32)

3 C(2) R(4) 2R(4) R(8) C(8) H(8) 2H(8) H(16) C(32)
4 H(2) C(4) R(8) 2R(8) R(16) C(16) H(16) 2H(16) H(32)
5 2

H(2) H(4) C(8) R(16) 2
R(16) R(32) C(32) H(32) 2

H(32)
6 H(4) 2H(4) H(8) C(16) R(32) 2R(32) R(64) C(64) H(64)
7 C(8) H(8) 2H(8) H(16) C(32) R(64) 2R(64) R(128) C(128)
8 R(16) C(16) H(16) 2H(16) H(32) C(64) R(128) 2R(128) R(256)

The famous mod 8 property of Clifford algebras allows to extend the table above for
values s, t > 8.

The suffix “ 2” in the s − t = 1 mod 8 entries is introduced to take into account
that, for such coupled values of s, t, a faithful representation of the Clifford algebra is
obtained as a direct sum of its two inequivalent irreducible representations, see [3] for
details.

Following [11] we have another possibility of understanding the connection between
Clifford algebras and division algebras. We can simply state that a Clifford algebra
is of R, C or H type if its fundamental irreducible representation is realized in terms
of matrices with entries in the corresponding division algebra. A constructive way of
proving the above statement makes use of the two lifting algorithms [11], expressing
the Cl(s + 1, t + 1) and Cl(t + 2, s) Clifford irreps in terms of the Clifford irreps of
Cl(s, t) (given by the s + t gamma d× d matrices γi’s). The s + t + 2 gamma matrices
Γj are given, in the two cases, by

Γi ≡
(

0 γi

γi 0

)
,

(
0 1d

−1d 0

)
,

(
1d 0
0 −1d

)
(4.18)

and, respectively,

Γj ≡
(

0 γi

−γi 0

)
,

(
0 1d

1d 0

)
,

(
1d 0
0 −1d

)
(4.19)
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The spinors carry a representation of the Spin(s, t) spin group (see [3]), whose Lie
algebra generators are given by the gamma matrices commutators. As a result, the
division algebra structure of Gamma matrices extends to spinors. There is, however, for
certain signatures of the space-time, a mismatch between division-algebra properties
of the fundamental spinors and their associated Clifford algebras, see [9] and [18].
The mismatch is due to the existence of a Weyl-projection. We recall that, following
[11], the fundamental spinors belong to the representation of the spin group admitting
maximal division algebra structure. A table, presenting the division-algebra properties
of spinors for s, t ≤ 8, is here produced

s\t 0 1 2 3 4 5 6 7 8
0 RW CW H HW H(2)W C(4)W R(8) R(8)W

1 R RW R(2)W C(2)W H(2) H(2)W H(4)W C(8)W R(16)
2 CW R(2) R(2)W R(4)W C(4)W H(4) H(4)W H(8)W C(16)W

3 HW C(2)W R(4) R(4)W R(8)W C(8)W H(8) H(8)W H(16)W

4 HW H(2)W C(4)W R(8) R(8)W R(16)W C(16)W H(16) H(16)W

5 H(2) H(2)W H(4)W C(8)W R(16) R(16)W R(32)W C(32)W H(32)
6 C(4)W

H(4) H(4)W
H(8)W

C(16)W
R(32) R(32)W

R(64)W
C(64)W

7 R(8)W C(8)W H(8) H(8)W H(16)W C(32)W R(64) R(64)W R(128)W

8 R(8)W R(16)W C(16)W H(16) H(16)W H(32)W C(64)W R(128) R(128)W

The “W” denotes the presence of the Weyl projection. The numbers denote the di-
mensionality of the spinors. Just like the previous table, the division algebra properties
of fundamental spinors for s, t > 8 are recovered from the mod 8 property of Clifford
algebras.

The same type of analysis leading to the division-algebra properties of, respectively,
Clifford algebras and fundamental spinors, can be repeated when investigating split-
division algebra properties. The interesting case is that of split-quaternions (H̃) since,
unlike the division-algebra case, split complex numbers and split quaternions are both
represented in terms of 2 × 2 real matrices (complex numbers are represented by two
2 × 2 real matrices and quaternions by 4 × 4 real matrices). The basic example is
provided by the Cl(2, 1) Clifford algebra, whose fundamental relation (4.17) can be
realized in terms of the three split-quaternions of (2.10). The application of the lifting
algorithms (4.18) and (4.19) allows to induce a split-quaternionic structure for the
Cl(s, t) Clifford algebras with

s = 2 + k , t = 1 + 8m + k, for m, k = 0, 1, 2, . . . (4.20)

and

s = 3 + 8m + k , t = 2 + k, for m, k = 0, 1, 2, . . . (4.21)

These Clifford algebras are the “oxidized forms” (according to [13]). In analogy with
the construction in [11], reduced split-quaternionic Clifford algebras are obtained for
Cl(s − 1, t) and Cl(s − 2, t), where s, t are either given by (4.20) or by (4.21).
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At the end we obtain the table of split-quaternionic Clifford algebras given by

s\t 1 2 3 4 5 6 7 8

1 H̃ 0 0 0 0 0 0 0

2 2H̃ H̃(2) 0 0 0 0 0 H̃(16)

3 H̃(2) 2H̃(2) H̃(4) 0 0 0 0 0

4 0 H̃(4) 2
H̃(4) H̃(8) 0 0 0 0

5 0 0 H̃(8) 2H̃(8) H̃(16) 0 0 0

6 0 0 0 H̃(16) 2H̃(16) H̃(32) 0 0

7 0 0 0 H̃(32) 2H̃(32) H̃(64) 0

8 0 0 0 0 0 H̃(64) 2H̃(64) H̃(128)

Similarly, the split-quaternionic table for fundamental spinors is given by

s\t 1 2 3 4 5 6 7 8

1 0 H̃
W 0 0 0 0 0 0

2 H̃ H̃W H̃(2)W 0 0 0 0 0

3 0 H̃(2) H̃(2)W H̃(4)W 0 0 0 0

4 0 0 H̃(4) H̃(4)W H̃(8)W 0 0 0

5 0 0 0 H̃(8) H̃(8)W H̃(16)W 0 0

6 0 0 0 0 H̃(16) H̃(16)W H̃(32)W 0

7 0 0 0 0 0 H̃(32) H̃(32)W H̃(64)W

8 0 0 0 0 0 0 H̃(64) H̃(64)W

Both tables above can be extended for s, t > 8 due to the mod 8 property of Clifford
algebras.

5 Split-division algebras and generalized supersym-

metries

In this Section we discuss a physical application of both split-quaternions and split-
octonions. Essentially, we will prove that the constructions concerning quaternionic
and octonionic spinors, carried out in [11], can be extended to the split-quaternionic
and the split-octonionic cases. The main results in [11] include i) the construction of
free invariant actions for quaternionic and octonionic spinors and ii) the construction of
quaternionic and octonionic generalized supersymmetries. We explicitly discuss here
which modifications have to be introduced in the split cases w.r.t. their non split
counterparts.

The notion of octonionic and split-octonionic spinors requires the introduction of
the (split-)octonionic realization of the (4.17) relation, in terms of matrices with (split-
)octonionic entries. The meaning of the octonionic realizations of (4.17) has been
fully described in [11]. The same considerations apply to the split-octonionic cases as
well. The results furnished in this paper will concern the so-called maximal Clifford
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algebras leading to the oxidized supersymmetries, see [13] for a definition. Basically,
the maximal Clifford algebras correspond to the space-times of maximal dimension
supporting spinors of a given size. The results for the non-maximal space-times are
simply obtained via a dimensional reduction of the oxidized cases by applying the
formulas produced in [13] (see this reference for a full discussion).

A feature distinguishing the split-quaternionic and octonionic cases w.r.t. the non-
split ones is the fact that, in the split case, the same space-time of a given signa-
ture can carry both split-quaternionic and split-octonionic spinors. In the non-split
case, quaternionic and octonionic spinors are carried by space-times of different sig-
natures. For instance, in D = 11 dimensions, the octonionic spinors can be intro-
duced in the Minkowskian (10, 1) signature, while quaternionic spinors are associated
with the Euclidean (0, 11) space-time. On the other hand, the (6, 5) signature carries
both split-quaternionic and split-octonionic spinors. The “oxidized” split-quaternionic
space-times are given by formulas (4.20) and (4.21), while the oxidized split-octonionic
space-times are restricted by the conditions

s = 4 + k , t = 3 + 8m + k, for m, k = 0, 1, 2, . . . (5.22)

and

s = 5 + 8m + k , t = 4 + k, for m, k = 0, 1, 2, . . . (5.23)

We further point out that the D generating gamma-matrices entering (4.17) for a D-
dimensional space-time are given, in the split-quaternionic case, by D − 3 purely real
matrices, while the remaining three matrices are given by the three split-imaginary
split-quaternions multiplying the same purely real matrix (let’s call it “T”). In the
split-octonionic case they are given by D−7 purely real matrices plus the seven matrices
obtained by the seven split-imaginary split-octonions multiplying a single, purely real
matrix T .

We need at first to introduce the two matrices, usually denoted as C and A in
the literature (see [11]), which are related to the transposition and the hermitian con-
jugation respectively. C is the charge-conjugation matrix. For the maximal Clifford
algebras it is uniquely defined and is given, up to a sign factor, by the product of all
symmetric (or all antisymmetric) generating gamma matrices. The matrix A in the
split-quaternionic and split-octonionic cases can be defined as follows. If the purely real
matrix T introduced above is symmetric, then A is given by the product of the subset
of purely real gamma matrices of space-like type. Conversely, if T is antisymmetric, A
is the product of the subset of purely real gamma matrices of time-like type.

The importance of a non-trivial conjugation is reflected by the fact that the su-
persymmetry algebra can be decomposed in the three relations below. We have, for
split-quaternionic or split-octonionic supercharges Qa, the following relations

{Qa, Qb} = Wab, {Qa
∗, Qb

∗} = Wab
∗,

{Qa, Qb
∗} = Zab. (5.24)

The r.h.s. matrices Wab and Zab contain the bosonic degrees of freedom of the su-
peralgebra. Wab is a symmetric matrix, while Zab is hermitean. The bosonic r.h.s.
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can be expanded in terms of the antisymmetrized products of the gamma matrices,
namely Wab =

∑
k(CΓ[µ1...µk ])abW

[µ1...µk] and Zab =
∑

k(AΓ[µ1...µk])abZ
[µ1...µk ], with the

sum over k restricted to symmetric or hermitean matrices. For split-quaternions and
split-octonions, just like their quaternionic and octonionic counterparts (and unlike
the real and complex cases) the decomposition of the symmetric matrix Wab has to
be limited to, at most, k = 0 and k = 1. The reasons discussed in [11] apply to the
split-cases as well. No such a limitation exists for the hermitian Zab matrices. The
admissible integers k label the higher-rank tensors sectors of the bosonic r.h.s. . These
sectors will be compactly denoted as “Mk”.

Due to the non-associativity, in the split-octonionic case (similarly as for the oc-
tonionic case), it must be consistently specified the order in taking the antisymmetric
product of k > 2 (split-)octonionic valued gamma matrices. The correct prescription,
given in [11], applies also to the split-octonions. It is given by the formula

[Γ1 · Γ2 · . . . · Γk] ≡ 1

k!

∑
perm.

(−1)εi1...ik (Γi1 · Γi2 . . . · Γik), (5.25)

where (Γ1 · Γ2 . . . · Γk) denotes the symmetric product

(Γ1 · Γ2 · . . . · Γk) ≡ 1

2
(.((Γ1Γ2)Γ3 . . .)Γk) +

1

2
(Γ1(Γ2(. . .Γk)).). (5.26)

According to the discussion of [12] (see also [13]), the generalized superalgebras (5.24)
are divided into classes, in accordance to whether the bosonic degrees of freedom enter
either the symmetric matrix Wab or the hermitian matrix Zab. In application to our
split-cases, we obtain the following list of generalized superalgebras:

i) the split-quaternionic symmetric case, ii) the split-octonionic symmetric case, iii)
the split-quaternionic hermitean case and, finally, iv) the split-octonionic hermitean
case.

The bosonic sectors in the four cases above are given by the following tables. For
each admissible split-quaternionic or split-octonionic space-time signature of total di-
mension D we provide the decomposition of the bosonic sector into rank-k totally
antisymmetric tensors and the total number of the associated bosonic degrees of free-
dom. We have

i) Split-quaternionic symmetric case,

D = 3 M0 + M1 1 + 3
D = 5 M1 5
D = 7 − −
D = 9 M0 1
D = 11 M0 + M1 1 + 11
D = 13 M1 13

(5.27)

ii) Split-octonionic symmetric case,
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D = 7 M0 + M1 1 + 7
D = 9 M1 9
D = 11 − −
D = 13 M0 1

(5.28)

iii) Split-quaternionic hermitean case,

D = 3 M0 1
D = 5 M0 + M1 1 + 5
D = 7 M1 + M2 7 + 21
D = 9 M2 + M3 36 + 84
D = 11 M0 + M3 + M4 1 + 165 + 330
D = 13 M0 + M1 + M4 + M5 1 + 13 + 715 + 1287

(5.29)

iv) Split-octonionic hermitean case,

D = 7 M0 1
D = 9 M0 + M1 ≡ M4 1 + 9 = 10
D = 11 M1 + M2 ≡ M5 11 + 41 = 52
D = 13 M2 + M3 ≡ M6 64 + 168 = 232

(5.30)

Some comments are in order. The split-octonionic hermitean supersymmetry im-
plies an equivalence among the rank-k totally antisymmetric sectors. The maximal
number of 52 bosonic degrees of freedom in the (6, 5) split-octonionic space-time can
be described either as a single rank k = 5 totally antisymmetric tensor, or as a combina-
tion of the rank k = 1 and k = 2 totally antisymmetric tensors. This feature is peculiar
to the (split-)octonionic supersymmetry and is in consequence of the non-associativity
of the (split-)octonions. For the (6, 5) spacetime no symmetric (split-)octonionic super-
symmetry exists, so that the maximal number of bosonic degrees of freedom necessarily
enter the hermitean matrix Zab.

The same space-time carries also (split-)quaternionic spinors. A supersymmetric
algebra involving split-quaternions for the (6, 5) spacetime implies at most 496 bosonic
degrees of freedom coming from the hermitean sector, plus at most 1+11 = 12 bosonic
degrees of freedom associated with the symmetric (i.e. the Wab matrix) sector. We
should remind that the most general supersymmetry in the (6, 5) space-time based on
real spinors contain at most 528 bosonic degrees of freedom (the symmetric entries of a
32 × 32 real matrix). Summarizing, in the (6, 5) space-time example we can introduce
three different types of supersymmetries, in accordance with the choice of the funda-
mental spinors. We can indeed have real, split-quaternionic or split-octonionic super-
symmetries associated to this spacetime. The properties of each type of supersymmetry
are in consequence of the original choice of the basic spinors (real, split-quaternionic
or split-octonionic).
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Let us conclude this section producing the formulas for the free action of the split-
quaternionic and split-octonionic spinors Ψ. Following [11] we can express the la-
grangian L as a sum L = K + M, where the kinetic term K and the massive term M
are given by

K =
1

2
tr[(Ψ†AΓµ)∂µΨ] +

1

2
tr[Ψ†(AΓµ∂µΨ)],

M = tr(Ψ†AΨ) (5.31)

In the above formulas the “trace” tr refers to the projection over the identity for
elements of the (split-)division algebra (i.e. tr(x0 + xjej) = x0). The brackets are
inserted to take care of the correct ordering when dealing with split-octonions, due to
their non-associativity. The formula (5.31) clearly holds also for the split-quaternionic
case.

One can easily prove that no massive terms are allowed in the split-quaternionic
space-times (2, 1) or (3, 2). Similarly, no massive terms are allowed for the (4, 3) and
(5, 4) split-octonionic spacetimes. The most interesting spacetime for the connection
with the M-theory and its triality properties, as discussed in the Introduction, is (6, 5).
It allows a non-vanishing mass-term for split-octonionic spinors.

6 Conclusions

In this work we have analyzed the connection of (split-)division algebras with Clifford
algebras, spinors and supersymmetry. More specifically, after having reviewed the
generalized Cayley-Dickson double construction which allows to introduce, in a unified
framework, all seven inequivalent (split-)division algebras, we analyzed the following
points. At first we derived the (graded) algebras of (anti)commutators which can be
constructed from the (split-)division algebras composition law. Next, we produced the
tables of Clifford algebras and fundamental spinors related to the split-quaternions.

In Section 5 we made use of the conjugation properties of the split-division al-
gebras in order to construct, in the case of space-time signatures supporting either
split-quaternionic or split-octonionic valued spinors, the corresponding (constrained)
generalized supersymmetries. We also produced the free lagrangians for both the split-
quaternionic and the split-octonionic spinors. Concerning supersymmetries, we pointed
out that in several examples the same space-time can carry both split-quaternionic and
split-octonionic supersymmetries. The most interesting application concerned the con-
struction of the split-octonionic M-algebra, available in the exotic (6, 5)-signature. The
construction of split-octonionic generalized supersymmetries parallels the construction,
already available in the literature ([9, 10, 11]), of the octonionic generalized supersym-
metries.

As recalled in the Introduction, higher-dimensional (for D ≥ 8) supersymmetries
hide a fundamental ambiguity, due to the existence of triality-related formulations in
different signatures. This feature is exemplified, for instance, in the case of super-
strings. The criticality condition allows to determine the overall dimension (= 10) of
the target spacetime, but not its signature, which could be either (9, 1), (1, 9) or the
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exotic (5, 5). A mathematically consistent superstring theory can be formulated not
only for a Minkowski target, but also in a (5, 5) spacetime. In [14] the web of dualities
of the corresponding theories (and their consequences for the dimensionally reduced
theories) were explored.

So far this construction only existed for theories formulated in terms of real-valued
(Majorana or Majorana-Weyl) spinors, but not for their octonionic counterparts. The
introduction of split-octonionic supersymmetries in exotic signatures allows to extend
the web of dualities to the (split-)octonionic formulations. It immmediately implies,
e.g., the existence (for the exotic (5, 5) signature) of a split-octonionic version of the
[19] octonionic formulation of the superstrings. In the case of generalized supersym-
metries with tensorial central charges, we obtain the split-octonionic version of the
M-algebra in (6, 5) signature, sharing the same features as its octonic counterpart (the
most noticeable property being the dependence of the rank-5 totally antisymmetric
tensors in terms of a combination of the rank-1 and rank-2 antisymmetric tensors).
The 11-dimensional M-algebra admits an equivalent 12-dimensional presentation, the
F -algebra formulation [11] which, in case of the split-octonions, is realized in the (6, 6)
signature. It is worth reminding that it has been suggested, see e.g. [20] and references
therein, that since octonions are at the very core of many mathematical exceptional
structures, a possible exceptional formulation for a “Theory Of Everything” would re-
quire an octonionic formulation. If this is indeed the case, it would be expected that
the octonionic and split-octonionic versions of the M-algebra should play a major role.

Appendix

We collect here for convenience, following [5] and [6], the main properties and
definition of (split-)division algebras.

An algebra A over the reals (R) is a composition algebra if it possesses a unit
(denoted as 1A) and a non-degenerate quadratic form N satisfying

N(1A) = 1,

N(xy) = N(x)N(y), ∀x, y ∈ A. (A.1)

A composition algebra is alternative if the following left and right alternative properties
are satisfied [22]

(x2)y = x(xy),

yx2 = (yx)x. (A.2)

A positive definite quadratic form (norm) is a mapping N : A → R+ s.t.

N(x) = 0 ⇔ x = 0. (A.3)

A composition algebra with positive quadratic form is a division algebra, satisfying the
property

xy = 0 ⇒ x = 0 ∨ y = 0. (A.4)
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Due to the Hurwitz’s theorem, the only division algebras are R, C, H and O.
A ∗-algebra possesses a conjugation (i.e. an involutive automorphism A → A) s.t.,

denoted as x∗ the conjugate of x ∈ A, we have

(x∗)∗ = x,

(xy)∗ = y∗x∗. (A.5)

The norm N(x) of an element of a division algebra is expressed as

N(x) = xx∗. (A.6)

Besides division algebras, we can introduce their split forms [5] as a new set of algebras.
The split-division algebras are ∗-algebras with unit. The quadratic form N is no longer
positive-definite and the property (A.4) is no longer valid. The algebras of split complex

numbers, split quaternions and split octonions are respectively denoted as C̃, H̃ and Õ.
The total number of inequivalent (split)-division algebras over R is 7 (the 4 division
algebras and their 3 split forms above).

(Split)-division algebras find a unified description through the Cayley-Dickson dou-
bling construction. Given an algebra A over R, possessing a “ · ” multiplication, a “
∗” conjugation and a quadratic form N , the Cayley-Dickson doubled algebra A2 over
R is defined in terms of the operations in A. The multiplication, the conjugation and
the quadratic form in A2 are respectively given by

i) multiplication in A2: (x, y) · (z, w) = (xz + εw∗y, wx + yz∗),
ii) conjugation in A2: (x, y)∗ = (x∗,−y),
iii) norm in A2: N(x, y) = N(x) − εN(y).

The unit element 1A2 of A2 is represented by 1A2 = (1A, 0).
In the above formulas ε is just a sign (ε = ±1).

It is convenient to denote the Cayley-Dickson’s double of an algebra A by writing
the ε sign on the right of the original algebra. For division algebras ε is always negative
(ε = −1). We can therefore write

C = R−,
H = C− = R −−,
O = H− = C −− = R −−−.

The split division algebras are obtained by taking a positive (ε = +1) sign. We have

C̃ = R+,
H̃ = C+ = R − +
Õ = H+ = C − + = R −−+.
Other choices of the sign produce, at the end, isomorphic algebras. We can, e.g.,

also write H̃ = R + +, as well as Õ = R + ++.
All (split-)division algebras over R are obtained by iteratively applying the Cayley-

Dickson’s construction starting from R.
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[18] R. D’Auria, S. Ferrara, M.A. Lledó and V.S. Varadarajan, J. Geom. Phys. 40
(2001) 101.

[19] K.W. Chung and A. Sudbery, Phys. Lett. B 198 (1987) 161.

[20] L. J. Boya, “Octonions and M-Theory”, hep-th/0301037.

[21] J. Lukierski and F. Toppan, Phys. Lett. B 584 (2004) 315.

[22] R.D. Schafer, “An Introduction to Nonassociative Algebras”, Dover Publications,
New York, 1995.


